第十三章 原子吸收分光光度法

合集下载

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法1原子吸收分光光度法基本原理:原子吸收光谱分析是利用分析处于基态的待测原子蒸汽对特征辐射的吸收来测定样品中该元素含量的一种办法。

2共振吸收线:原子从基态激发到能量最低的激发态,产生的谱线称为共振吸收线。

由于元素的原子结构和外层电子排布不同,吸收的能量不同,共振吸收线各具有特征性,这种共振线称为元素的特征谱线,是元素所有谱线中最灵敏的谱线。

3原子吸收谱线轮廓和谱线宽度:谱线轮廓是指谱线具有一定频率范围和形状。

吸收线轮廓常用吸收系数K v随频率(或波长)的变化曲线来描述,而原子吸收线的特点是用谱线中心频率(由各原子能级分布特征所决定)、半宽度(最大吸收系数一半处峰的频率差)和强度来表征。

4原子吸收分光光度计:主要部件:瑞线光源、原子化器、单色器、检测器。

①光源:作用是发射待测元素的特征曲线,发射辐射波长的半宽度要明显小于吸收线的宽度,辐射强度大,稳定且背景信号小。

常用空心阴极灯。

②原子化器:将试样中的待测元素转变成原子蒸气。

主要有火焰原子化器和无火焰原子化器两类。

③单色器:衍射光栅是常用的分光元件。

单色器的作用是将所需的共振吸收线与邻近干扰线分离。

④检测系统:作用是将单色器分出的光信号进行光电转换,常用光电倍增管。

4仪器类型:①单光束原子吸收分光光度计:光源辐射不稳定引起基线漂移,仪器需预热。

②双光束原子吸收分光光度计:一束光通过火焰照样品,另一束光照参比,不通过火焰直接经单色器投射到光电元件上。

可克服光源的任何漂移及检测器灵敏度的变动。

5干扰及其消除:①电离干扰:某些易电离元素在原子化条件下电离,致使基态原子数减少,测定结果降低。

消除方法:加入消电剂。

②物理干扰:试样的物理性质(如表面张力、黏度、比重、温度等)变化影响吸收强度,导致测定误差。

标准加入法是常用的消除方法。

③光学干扰:主要指光谱线干扰和背景干扰。

谱线干扰是试样中共存元素的吸收线与被测元素的分析线相近而产生的干扰,使分析结果偏高。

原子吸收分光光度法(重点)

原子吸收分光光度法(重点)
优缺点:
(1)辐射光强度大,稳定,谱线窄,灯容易更换。 (2)每测一种元素需更换相应的灯。
三、原子化系统
1.作用
将试样中离子转变成原子蒸气。
2.原子化方法
火焰法
无火焰法—电热高温石墨管,激光。
3.火焰原子化装置—雾化器和燃烧器。
(1)雾化器:结构如图所示:
主要缺点:雾化效率
低。
(2)火焰
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。
二、原子在各能级的分布
原子吸收光谱是利用待测元素的原子蒸气中基 态原子与共振线吸收之间的关系来测定的。
需要考虑原子化过程中,原子蒸气中基态原子 与待测元素原子总数之间的定量关系。
热力学平衡时,两者符合Boltzmann分布定律。
三、原子吸收线的轮廓和变宽
(一)原子吸收线的产生 当通过基态原子的光辐射具有的能量hν恰好等于
结构如图所示
3.空心阴极灯的原理
•施加适当电压时,电子将从空心阴极内壁加速飞向阳极; 在加速飞行过程与充入的惰性气体分子碰撞而使之电离, 产生正电荷,其在电场作用下,向阴极内壁猛烈轰击;使 阴极表面的金属原子溅射出来,溅射出来的金属原子再与 电子、惰性气体原子及离子发生撞碰而被激发,发出被测 元素特征的共振线。 • 用不同待测元素作阴极材料,可制成相应空心阴极灯。 • 空心阴极灯的辐射强度与灯的工作电流有关。
(1)待测元素与其共存物质作用生成难挥发的化合物,致 使参与吸收的基态原子减少。
例:a、钴、硅、硼、钛、铍在火焰中易生成难熔化合物
b、硫酸盐、硅酸盐与铝生成难挥发物。
(2)待测离子发生电离反应,生成离子,不产生吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温 度越高,干扰越严重,(如碱及碱土元素)。

原子吸收分光光度法

原子吸收分光光度法

消除方法:
可通过配制与试样组成相近的对照品或采用标准加入
法来消除。
光学干扰
原子光谱对分析线的干扰。包括光谱线干扰和非吸收
线干扰。
光谱线干扰: 现象 光谱线干扰是试样中共存元素的吸收线与待测元素的分 析线相近(吸收线重叠)而产生的干扰。
消除方法:
另选波长或用化学方法分离干扰元素。
非吸收线干扰


气体使用之后,必须关掉截止阀和主阀。
当乙炔瓶内压力低于 0.5Mp时必须更换,否则乙炔钢瓶内溶 解物会溢出,进入管道,造成仪器内乙炔气路堵塞,不能点火。

样品舱的光路窗口和空心阴极灯的石英窗会受到灰尘或 指纹的污染。当发现元素灯的噪声变大,分析结果的重 复性变差此时可以使用蘸有甲醇或乙醇水溶液的软的擦 镜纸进行清洗。
并传导给石墨管,使其产生高达3000℃的高温,将置于
管中的被测元素变为基态的原子蒸汽。 保护系统分为气体与冷却水保护。气体使用惰性气体, 保证石墨管在高温的状态下不会被氧化。冷却水保证石 墨炉在开始第二次测试前可以迅速冷却到室温状态。
石墨炉原子化器原子化效率高,灵敏度优于火焰原子
化方法。
石墨炉的加热: 干燥阶段,管加热到约 100℃,样品中的水完全蒸发。 灰化阶段,管加热到 400 ℃ ~ 1000 ℃ ,有机物质 和其他共存物质分解和蒸发。 原子化阶段,加热到 1400 ℃ ~ 3000 ℃ ,留在管中 的金属盐类原子化。

定期的拆下石墨管检查石墨管保护器的情况,确保其内
腔和进样孔区域没有疏松的碳粒子和残留的样品。
四、仪器维护及注意事项

实验用器皿:使用前用10%~20%的硝酸浸泡过夜。 乙炔作为燃烧气,需要检查钢瓶和仪器之间的连接器以防泄 漏,特别是更换钢瓶之后需要使用肥皂水或专用的泄漏检测 器进行检测。

第十三章 原子吸收分光光度法

第十三章 原子吸收分光光度法

第十三章 原子吸收分光光度法原子吸收分光光度法(atomic absorption spectrophotometry, AAS)又称为原子吸收光谱法。

它是本世纪60年代后期迅速发展和广泛应用的一种较新型的仪器分析方法。

1955年澳大利亚物理学家瓦尔西(A.Walsh)在墨尔本展出了由他设计的第一台原子吸收分光光度计。

原子吸收分光光度法是基于物质产生的原子蒸气对特征谱线的吸收,测量原子蒸气对光辐射的吸收,即通过测量基态原子对特征谱线吸收程度,进行定量分析方法。

AAS法同UV法同属于吸收光谱法,因此在基本原理和仪器基本组成等方面有某些相似。

然而UV法研究对象是溶液中化合物的分子吸收,分子吸收的谱带较宽(在几nm以上),为带状吸收光谱,而原子吸收分光光度法研究对象是原子蒸气,气态原子吸收是窄带吸收,即线吸收,线宽仅为千分之几纳米(约为10-3 nm,极窄吸线)。

由于这种区别,致使它们的仪器装置和分析方法都有不同,由图比较,就可以看出二者的主要区别:(1)原子吸收分光光度法采用原子化器代替了吸收池;(2)用空心阴极灯(锐线光源)代替了连续光源;(3)单色器位置放在原子化系统之后。

原子吸收分光光度法具有如下特点:(1)灵敏度高。

火焰原子吸收法灵敏度高达可测到10-6~10-9g/ml,用无火焰原子吸收光谱法可没到10-9mg/ml数量级。

1(2)干扰少,且易于消除。

由于原子吸收光谱法是根据原子蒸气对待测元素特征谱线的吸收来进行分析的。

特别是同族元素,不需预分离,就可以直接测定。

(3)分析速度快。

由于选择性好,化学处理的测定操作简便。

近年来,微机的广泛应用以及智能化仪器的出现,与自动进样器、荧光显示屏的打印机等相配合,可在30分钟内分析50个样品中6元素。

(4)准确度高。

±1~3%误差。

(5)应用范围广。

几乎全部金属元素和一些准金属元素,目前用原子吸收分光光度法可测定元素已达70多种。

缺点:通常每个元素都要有自已的灯作为光源,因而附件多。

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法〔AAS 〕概念:根据蒸气相中被测原子基态对特征辐射的吸收来测定试样中该元素含量的方法. 特点:准确度高;灵敏度高;选择性好,抗干扰能力强;适用X 围广;局限性:线性X 围窄;一种元素测定需要一种元素灯;对难溶元素等和非金属元素测定及同时测定多种元素有一定的困难.光谱相:n 2S+1L J 是描述量子能级的形式,n 为主量子数〔电子分布层数〕,S 为总自旋量子数〔表价电子自旋量子数矢量和〕,L 为总角量子数〔表电子轨道形状〕,J 为内量子数〔表价电子组合得到L 和S 的矢量和,L>=S,J 有2S+1个数值,L<S,J 有2L+1个数值〕.原子能级图:表示原子中各种可能存在的光谱相-能级及能级跃迁的图解.共振吸收线:原子从基态激发到能量最低的激发态,为共振激发,产生的谱线为共振吸收线 原子吸收线特点:吸收线的频率、半宽度和强度表征半宽度:中心频率的吸收系数一半处谱线轮廓上两点之间的频率差.影响因素:①、 自然宽度:无外界影响下谱线固有的宽度,与激发态原子的寿命反比②、 多普勒变宽:有无规那么热运动产生的变化.正比于热运动激烈程度③、 压力变宽:由于吸光原子与蒸气原子相互碰撞引起,压力越高碰撞越激烈,影响越大.又分为:赫鲁兹马克变宽:共振变宽.同种原子之间的碰撞,与试样的蒸气浓度成正比劳伦茨变宽:吸光原子与蒸气中其他原子碰撞,与原子区内气体压力和温度正相关④、 电场变宽,磁场变宽等积分吸收:吸收线轮廓所包围的面积,即气态原子吸收共振线的总能量.VK dv KN =⎰,N 为待测原子总数,此式为原子吸收分光光度法的基础 峰值吸收:通过测定中心频率处的吸收系数来测定吸收度和原子总数.代替积分吸收定量分析必要条件:①、 锐线光源的发射线与原子吸收线的中心频率完全一致②、 锐线光源发射线的半宽度比吸收线的半宽度更窄,一般为吸收线的1/5-1/10A K C '=,K ’是与实验条件有关的常数,原子分光光度计部件:①锐线光源、②原子化器、③单色器,④检测系统①、 光源:作用:发射被测元素基态原子特征共振线.基本要求:发射波长的半宽度要明显小于吸收线的半宽度,强度大,稳定性好,寿命长空心阴极灯:最常用,辐射光强度大,稳定,谱线窄,灯容易更换,缺点是只能测一种元素多元素空心阴极灯:同时测定几种元素.缺点辐射强度、灵敏度和寿命较差②、 原子化器:作用提供能量,干燥、蒸发并转换试样为所需基态原子蒸气.火焰原子化器:化学火焰提供能量.雾化器雾化试液;雾化室是雾粒均匀、雾粒与燃气混合均匀和稳定混合器气压;燃烧器产生火焰,使试样蒸发和原子化.火焰稳定、重现性好、操作简单.非火焰原子化器:石墨炉原子化器〔可加入基体改进剂提高原子化率〕.包括干燥、灰化〔去除基体〕、原子化和净化〔去除残渣〕过程.用量少、重现性差,原子化率高.③、 单色器:作用分离所需的共振吸收线与邻近干扰线.关键部件为色散元件④、 检测系统:由检测器、放大器、对数变换器、显示装置组成实验方法:试样处理,测定条件选择①、 分析线:通常选用共振吸收线,当浓度高时为避免邻近光谱线干扰多选用次灵敏线测定②、 狭缝宽度:较宽,提高信噪比,增加灵敏度.③、 工作电流:保证放电稳定和足够光强下尽可能选用低的工作电流④、 原子化条件:火焰原子化法中,根据测定需要选用合适的火焰;石墨炉原子化法中温度应选择吸收信号最大时的最低温度实验中的干扰:主要有电离干扰、物理干扰、化学干扰和光学干扰①、 电离干扰:由于原子电离引起.降低基态原子数,测定结果偏低,温度越高干扰越严重,可用消电离剂〔常为碱金属〕消除②、 物理干扰:试样在转移、蒸发和原子化中,由于试样物理性状变化而引起的吸光度下降的效应.试样的黏度〔影响喷入火焰的速度〕、表面X 力〔液滴大小及分布〕、溶剂的蒸气压〔蒸发速度〕和雾化气体压力〔喷入量的多少〕等,可用对照品或采用标准加入法消除③、 光学干扰:光谱线干扰和非吸收线干扰光谱线干扰:共存元素的吸收线与被测元素的吸收线相近,使结果偏高.可另选波长或用化学方法分离干扰元素消除非吸收线干扰:原子化过程中的分子等对共振线的吸收和小固体颗粒对光的散射及火焰吸收引起,宽带吸收,干扰较严重.用仪器调零吸收、邻近非共振线校正、连续光源背景校正、塞曼效应背景校正等消除④、 化学干扰:溶剂或气相中被测元素和其他物质发生化学反应生成难挥发或解离的化合物引起.是原子吸收分析的主要干扰来源.可用加入释放剂、保护剂和适当提高火焰温度来消除.结果处理:灵敏度:()/x f C S dx dC ==为分析标准函数的一次导数,用表示,S 越大,灵敏度越高.取决于待测元素性质、与仪器的性能有关和实验因素的影响.用特征浓度和特征质量表示.特征浓度:火焰原子化法中产生1%光吸收所对应的被测元素的浓度<μg/ml>.特征质量:石墨炉原子吸收法中,能产生1%光吸收所对应的被测元素的质量<g,μg>检出限:一定置信度条件下被检出的最小浓度或量.一般仪给出信号为空白溶液信号的标准偏差的3倍所对应的浓度或质量.分析方法:校正曲线法<用于组成简单的试样>,标准加入法<极微量元素或没有空白试样>和内标法<消除实验条件变化引起的误差>.质谱法概念:利用多种离子化技术,将物质分子转化为离子,选择其中带正电荷的离子使其在电场或磁场的作用下,按其质荷比m/z 的差异进行分离测定,从而进行物质成分和结构分析的方法.特点:应用X 围广;灵敏度高,试样用量少;不受试样物态限制;分析速度快;易于与色谱联用;信息直观.用途:测定分子量;鉴定和推测结构重要概念:相对丰度:以质谱中基峰的高度为100%,其余峰按与基峰的比例加以表示的峰强度离子源:质谱仪中是被分析物质电离成离子的部分.常见有电子轰击源EI,化学电离源Ci和快原子轰击源FAB等.分子离子:分子通过某种电离方式,失去一个价电子而形成带正电荷的离子.碎片离子:当分子在离子源中获得的能量超过其离子化所需的能量时,分子中某些化学键断裂而产生的离子.单纯开裂:仅一个键发生开裂并脱去一个游离基重排开裂:通过断裂两个或两个以上化学键,进行重新排列的开裂方式.常见有McLafferty重排:含不饱和C=X<X=C,N,O,S>,有γ氢原子.重排前后电子的奇、偶性保持不变;失去奇数个氮原子那么质量奇偶性改变,反之不变逆Dials-Alder重排:常见于脂环化合物、生物碱等基本原理:1.质谱中大多数离子的产生根据化合物本身的裂解规律形成,其相对丰度和键断裂的难易以及化合物的结构相关.碎片离子的峰位和相对丰度反映分子的结构信息.2.分子离子的质量数服从奇偶规律:C、H、O组成的分子离子峰为偶数; C、H、O、N组成的分子离子峰含奇数个氮质量数为奇数,反之为偶数.质谱仪:①高真空系统、②样品导入系统,③离子源,④质量分析器,⑤离子检测器,⑥记录装备①、高真空:保障系统.避免离子辐射以及离子与残余气体分子碰撞引起的能量变化,同时也可降低本底和记忆效应.由旋转泵和扩散泵串联组合②、样品导入系统:质接进样〔适合单组分、挥发性较低的固、液体试样〕和色谱联用导入③、离子源:将被分析样品离子化;并使其具有一定的能量.a)电子轰击源:重现性好;灵敏度高;有丰富的碎片离子信息和成熟的离子开裂理论,有利于结构分析和鉴定;缺点离子化方式能量高;不适合分子量较大或稳定性差的试样;不适合难挥发、热不稳定化合物分析b)化学电离源:发生离子-分子反应,常用反应气有甲烷、异丁烷、氨等,优点:软电离方式,准分子离子强度大,利于推测分子量和定量分析;易获得官能团信息;缺点:重现性差;不适合于热不稳定和难挥发化合物c)快原子轰击离子源:离子化过程无需加热气化;属于软电离方式;缺点:影响离子化效率的因素多,重现性差;检测灵敏度低于EI④、质量分析器:将离子源形成的离子按荷质比的差异进行分离的装置.主要为磁分析器〔单聚焦和双聚焦质量分析器〕和四极杆分析器磁分析器:单聚焦〔已淘汰〕实现质量色散和方向聚焦;双聚焦实现质量色散、能量聚焦和方向聚焦四极杆分析器:可在较低的真空度下工作;扫描速度快,有利于与色谱联用;结构简单;缺点是分辨率低于双聚焦质量分析器;质量X围较窄,⑤、离子检测器:将微弱的离子流信号接收并放大,然后送至显示和计算机数据处理系统,得到被分析样品的数据.常采用电子倍增器和微通道板检测器⑥、记录装备性能指标:①、分辨率:指仪器分离相邻两质谱峰的能力.两强度近似相等、质量分别是M和M+△M的两个相邻峰恰好分开〔两峰间的峰谷高度为峰高的1/10〕α/=∆,R>10000为高分辨质谱仪,R<1000为低分辨质谱仪R M M②、灵敏度:仪器记录所产生的峰信号强度和所用样品量之间关系的度量.常采用绝对灵敏度,即一定分辨率条件下,产生一定信噪比的分子离子峰所需要的样品量.常用硬脂酸甲酯或六氯苯测定③、质量X围:仪器能够测量的离子质量X围④、质量准确度:离子质量实测值和理论值之间的相对误差,一般要求小于10ppm 质谱分析法:1、分子量测定:1)分子离子峰的辨认:一般最高,当有同位素峰或者杂质峰以及样品稳定性差导致分子离子峰很弱时不是.需考虑以下几点:分子离子稳定性:芳香族化合物 > 共轭链烯 > 脂环化合物 > 直链烷烃 > 硫醇 > 酮 > 胺 > 酯 > 醚 > 酸 > 分支烷烃 > 醇质量数服从奇偶规律与相邻离子间的质量差是否合理:4-14间不合理M+1和M-1准分子离子峰以及实验条件改变2)分子量测定:一般为分子离子峰的质量数3)分子式确定:低分辨用同位素峰强比法;高分辨用精密质量法2、常见化合物结构分析:烷烃:分子离子峰弱;一系列相差14的碎片峰;有"伴峰";支链优先裂解烯烃:分子离子峰稳定;通常有41+14n的碎片峰;易开裂;有麦氏重排芳烃:分子离子峰较强;易发生β裂解,有C7H7+<91>、C6H5+<77>、C5H5+<65>、C4H3+<51>、C3H3+<39>特征峰;麦氏重排饱和脂肪醇:分子离子峰弱;易发生α裂解;易发生脱水反应;直链伯醇有含羟基离子、烷基离子和链烯离子.醛:分子离子峰强;易发生α裂解,麦氏重排〔44的离子峰〕;长链发生β裂解酮:分子离子峰很强;易发生α裂解,麦氏重排酸和酯类:一元饱和酸和酯分子离子峰弱,芳香酸和酯有较强分子离子峰;易发生α裂解,麦氏重排,强特征峰663、解析顺序1.首先确认分子离子峰,确定分子量.2. 用同位素峰强比法或精密质量法确定分子式.3. 计算不饱和度.4. 解析某些主要质谱峰的归属及峰间关系.5. 推定结构.6. 验证:核磁共振波谱法核磁共振:在外磁场的作用下,一些原子核能产生核自旋能级分裂,当用一定频率的射频照射分子时,可引起原子核自旋能级的跃迁,吸收一定频率的射频,即产生核磁共振.核磁共振波谱法:结构测定,定性及定量分析;研究有磁矩的原子核基本原理:1.各种核的自旋量子数与核磁共振的关系2. 核磁矩u=rP r:磁旋比,原子核特征常数;P:角动量,610H H H δ-=⨯标样标P =3. 无外磁场时,核磁矩的取向有2I+1种;有外磁场时,核磁矩能量02h E mrH π=- 4. I=1/2时,m=1/2的μz 与m= -1/2的μz 间的能量差随H 0增大而增大,称为能级分裂5. 共振吸收:原子核进动频率v 与外加磁场强度H 0的关系用Larmor 方程表示 0/2v H r π=,条件:照射频率等于核进动频率〔改变照射频率或磁场强度实现核磁共振〕;△m=±1跃迁只发生在相邻能级间6. 自旋弛豫:高能态的核通过非辐射途径回到低能态的过程①、 自旋-晶格弛豫:纵向弛豫②、 自旋-自旋弛豫:横向弛豫化学位移1) 屏蔽效应:核外电子及其他因素对抗外加磁场的现象屏蔽常数:表示屏蔽效应的大小.0(1)/2v H r σπ=-2) 化学位移:由于屏蔽效应的存在,不同化学环境的氢核的共振频率不同〔进动频率〕,用核共振频率的相对差值表示δ,标准物一般是四甲基硅烷TMS ①、 固定磁场强度H 0,661010v v v v v δ-=⨯=⨯样标标标②、 固定照射频率v 0,610H H H δ-=⨯标样标 3> 影响因素:①、 局部屏蔽效应:核外成键电子云在外加磁场的诱导下,产生与外加磁场方向相反的感应磁场,使氢核实受磁场强度稍有降低的现象.②、 各向异性效应:在外加磁场作用下,由化学键产生的〔尤其是π键〕感应磁场使在分子中所处的空间位置不同的核屏蔽作用不同的现象;使处于负屏蔽区的氢核δ值大,处于正屏蔽区的氢核δ值小③、 氢键影响:形成氢键后,氢核屏蔽作用减少,氢键属于去屏蔽作用4〕 烯烃的化学位移:5.28C C H Z Z Z σ=-=+++同顺反 5.28C C H Z Z Z σ=-=+++同顺反偶合常数:①、 自旋偶合:核自旋产生的核磁矩间的相互干扰自旋裂分:自旋偶合引起的共振峰分裂的现象②、自旋分裂的规律:a)n+1规律:某基团的氢与n个相邻氢耦合时将被分裂成n+1重峰,而与该基团本身氢数无关,按此规律分裂的图谱为一级图谱,多重峰峰高之比满足二项式展开式系数比b)I≠1/2时,符合2nI+1规律c)某基团与n,n’, …个氢核相邻时若偶合常数相等〔峰裂距相等〕,那么呈现〔n+n’+…〕+1若偶合常数不等〔峰裂距不等〕,那么分裂为〔n+1〕<n’+1>…重峰③、偶合常数:由自旋分裂产生的峰裂距,反映偶合作用的强弱.对简单偶合峰裂距即为偶合常数.可分为偕偶、邻偶及远程偶合.受偶合核间距离、角度和电子云密度影响.峰裂距只决定于偶合核的局部磁场强度,与外加磁场强度无关.④、化学等价:有相同的化学位移磁等价:分子中一组化学等价核与分子中的其他任何一个核都有相同强弱的偶合.磁等价必定化学等价,与组外核偶合的偶合常数相等,无外核干扰下,组内核偶合但不裂分.化学等价不一定磁等价,磁等价一定化学等价。

原子吸收分光光度法

原子吸收分光光度法

解:已测得 s'(Cu2) 0.08mg/ L,s'(Mg2) 0.06mg/ L
原子吸收的适宜吸光度A: 0.15-0.6
c1

s' 0.15 0.0044

34 s'

2.72mg / L
s' 0.6 c2 0.0044 136 s' 10.88mg/ L
Cu2+较适宜的测定范围c:2.7-10.9mg/L,上述所得
第十三章 原子吸收分光光度法
第一节 概述 第二节 原子吸收分光光度法的基本原理 第三节 原子吸收分光光度计 第四节 实验方法
第一节 概述(generalization)
原子吸收分光光度法: 基于气态的基态原子在某特定波长光的辐射 下,原子外层电子对光的特征吸收的现象所 建立的方法 。
特点: (1) 检出限低,10-9-10-12 g·mL-1; (2) 准确度高,1%-5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中)
单位mg/L
检出限越低,仪器的性能越好,对元素的检出能 力越强。
四、 定量分析方法
1.校准曲线法 配制一系列不同浓度的标
准溶液,由低到高依次测定 ,将获得的吸光度A对应于浓 度作校准曲线,在相同条件 下测定试样的吸光度A,从校 标准曲线上查出对应的浓度 值。
或由标准溶液吸光度和浓度计算出 线性方程,将测定试样的吸光度A数 据带入方程中计算。
消除:加入大量易电离的一种缓冲剂以抑制 待测元素的电离。 例:加入足量的铯盐,抑制K、Na的电离。
(三)、化学干扰
通过在标准溶液和试液中加入某种光谱化学 缓冲剂来抑制或减少化学干扰: (1)释放剂—与干扰元素生成更稳定化合物使 待测元素释放出来。

第十三章原子吸收分光光度法

第十三章原子吸收分光光度法

2021/2/4
9
(一)原子吸收线的轮廓和变宽
一束不同频率强度为I0的平行光通过厚度 为l的原子蒸气,一部分光被吸收,透过光的强 度I服从吸收定律
I = I0 exp(-kl) 式中k是基态原子对频率为的光的吸收系数。
2021/2/4
10
• 不同元素原子吸收不同频率的光,透过光强度 对吸收光频率作图,如下图:
I I0
0 I与 的关系
由图可知,在频率0处透过光强度最小, 即吸收最大。
2021/2/4
11
• 若将吸收系数对频率作图,所得曲线为吸收线 轮廓。
• 峰值吸收系数:吸收系数的极大值。 • 半宽度:是中心频率的吸收系数一半处谱线轮
廓上两点之间的频率差。 • 原子吸收线的特点是由吸收线的频率、半宽度
和强度来表征的。
通常要求燃烧器的原子化程度高、火焰稳定、吸 收光程长、噪声小等。燃烧器有单缝和三缝两种。 燃烧器的缝长和缝宽,应根据所用燃料确定。目 前,单缝燃烧器应用最广。
2021/2/4
24
2.非非火焰火原焰子原化器子常化用器的是石墨炉原子化器。石墨炉原
子化法的过程是将试样注入石墨管中间位置,用大电 流通过石墨管以产生高达2000 ~ 3000℃的高温,使试 样经过干燥、蒸发和原子化。 石墨炉的基本结构包括:石墨管(杯)、炉体(保护 气系统)、电源等三部分组成。 分析过程:干燥、灰化、原子化和净化等四个阶段,即 完成一次分析过程。
分为:火焰原子化器 、非火焰原子化器。
2021/2/4
20
1. 火焰原子化法
组成:火焰原子化法中,常用的是预混合型原 子化器,它是由雾化器、雾化室和燃烧器三部 分组成。 原理:火焰原子化法是将液体试样经喷雾器形 成雾粒,这些雾粒在雾化室中与气体(燃气与 助燃气)均匀混合,除去大液滴后,再进入燃 烧器形成火焰,试液在火焰中产生原子蒸气。

原子吸收分光光度法ppt

原子吸收分光光度法ppt

高数据精度。
数据转换
03
将原始数据转换成吸光度值,通常采用线性回归方法进行转换

Байду номын сангаас
工作曲线绘制
标准溶液配制
根据实验要求,配制不同浓度的标准溶液,确保其准确性和稳定 性。
测量条件设置
根据仪器说明书设定测量条件,如波长、光源、狭缝等,以确保 测量准确性。
工作曲线的绘制
根据标准溶液的浓度和吸光度值,绘制工作曲线,为后续样品分 析提供参考。
样品制备
将样品进行粉碎、研磨、过滤等操作,以便于 后续的实验步骤。
3
样品消解
利用化学试剂将样品中的有机物分解成无机物 ,以便于测定。
进样方式
直接进样
将样品溶液直接喷入火焰中,进行原子吸收测定 。
萃取进样
利用萃取剂将样品中的待测元素萃取出来,再将 其喷入火焰中进行测定。
悬浮进样
将样品以悬浮液的形式喷入火焰中,进行原子吸 收测定。
原子吸收光谱的产生
特征谱线
每种元素都有其独特的原子结构,从而产生特征光谱。
吸收光谱
当特定频率的光通过原子蒸汽时,会被吸收并产生原子吸收光谱。
定量关系
摩尔吸光系数
表示物质对光的吸收能力。
线性范围
在一定浓度范围内,吸光度与浓度成正比。
03
原子吸收分光光度法实验技术
样品前处理
1 2
样品采集
采集具有代表性的样品,保证样品的新鲜度和 无污染。
用于食品、药品和化妆品等产品中 重金属元素的测定
化学化工
用于化学反应过程控制、产品质量 检测等领域
医学与生物
用于生物样品中微量元素的分析, 以及药物代谢、疾病诊断等方面的 研究

原子吸收

原子吸收

第十三章紫外-可见分光光度法第一节概述一种建立在电磁辐射与物质相互作用基础上,测定物质性质、结构及含量的分析方法。

不同分类方法可分为:1.光谱法与非光谱法(spectrscopy)光谱法:受辐射或其他能量时,物质内部发生跃迁,有吸收光谱、发射光谱及散射光谱。

非光谱法:不涉及物质内部能级的跃迁,根据光的反射、折射、干涉、衍射、和偏振等基本性质建立起来的分析方法,有折射法、旋光法、浊度法,X-衍射法等。

2. 原子光谱和分子光谱(atomic spectroscopy molecular spectroscopy)原子光谱:核外电子不同电子能级间跃迁产生的光谱。

分子光谱:分子中电子能级、振动能级和转动能级的变化产生的光谱。

3. 吸收光谱和发射光谱(absorption spectroscopy 、emission spectroscopy)吸收光谱:分子或原子吸收能量后由低能级跃迁至较高能级产生的吸收光谱。

发射光谱:分子或原子吸收能量后由基态或低能态跃迁至高能态,返回基态或低能态产生的光谱。

紫外-可见分光光度法使用的波长范围: 200nm~400nm,400nm~760nm。

第二节电磁辐射及其与物质的相互作用一、电磁辐射与电磁波谱光是一种电磁辐射(electromagnetic radiation),是以巨大的速度通过空间传播的光量子流,基本单位是光子,具微观粒子的波动性和粒子性。

电磁波谱(electromagnetic spectrum):电磁辐射按波长顺序排列,范围:0.005nm~1000m。

二、电磁辐射与物质的相互作用涉及物质内能的变化:吸收:辐射通过透明介质时,电磁辐射的交变电场导致分子或原子的外层电子相对核振荡,使其周期性极化,若入射能量恰与基态和激发态的能量差相等,则物质分子或原子选择性吸收辐射能,从基态跃迁至激发态。

发射:上述过程中,分子或原子吸收辐射能后以光子的形式释放能量的过程称为发射。

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法1 简述供试品在高温下经原子化产生原子蒸气时,如有一光辐射作用于原子,当辐射频率相应于原子中电子从基态跃迁到较髙能态所需要的能量时,即引起原子对特定波长的吸收。

吸收通常发生在真空紫外、紫外及可见光区。

原子吸收光谱为线光谱,通过测定该特征波长光谱线的吸光度可以计算出该待测元素的含量。

原子吸收一般遵守吸收分光光度法的比尔定律。

实验条件固定时特定波长处的吸光度值与样品中原子浓度成正比。

但实验参数的变化会影响结果值。

原子吸收分光光度法测量对象是成原子状态的金属元素和部分非金属元素。

测定的样品一般经高温破坏成原子态,在气态下利用自由原子的光谱性质进行测量,常用在药物中无机元素的测定。

1 . 1 仪器原子吸收分光光度计主要由光源、原子化器、单色器、检测器、记录显示系统和数据处理系统等部分组成。

1 . 1 . 1 光源由于原子光谱为线光谱,原子吸收分光光度计的光源应能在窄的光谱范围内有高强度的辐射,否则检测器得不到准确测量信号。

因此,需要应用能满足上述要求的线光源。

原子吸收分光光度计常用的光源为空心阴极灯。

灯的阴极由待分析元素的物质构成,工作时使该元素激发并发射特征光谱。

被测元素只能用该元素的空心阴极灯进行分析。

1 . 1 . 2原子化器常用的原子化器有火焰型、电热型、氢化物发生型和冷蒸气型四种。

火焰型原子化器样品溶液导人雾化器中使试样溶液雾化成气溶胶,并与燃气和助燃气充分混合后在燃烧器上成火焰燃烧,不同物质需要不同能量使其离子态转变成基态的原子。

人射光通过基态原子时部分能量被吸收,并由传感器转变为电信号,用记录仪进行记录。

改变燃气和助燃气种类及比例可以控制火焰温度,以提供使供试品转变成原子状态所需的能量。

最常用的混合气体为空气一乙炔。

电热型原子化器又称无火焰原子化器,其中又以石墨炉应用最广。

石墨炉原子化器为用电流控制温度的炉子,其中放人可置放样品的石墨管或其他合适的样品置放装置。

在测定过程中炉内通入氩或其他保护气体,以防止炉的氧化。

原子吸收分光光度法ppt

原子吸收分光光度法ppt

原子吸收分光光度计的安装与调试
安装
按照说明书和实验室要求,正确安装原子吸收分光光度计,确保仪器稳定、 安全。
调试
在安装完成后,对仪器进行调试,确保仪器各项功能正常,测量结果准确可 靠。
原子吸收分光光度计的维护与保养
日常维护
定期检查仪器的工作状态,如光源是否稳定、光 学系统是否清洁等。
定期保养
按照厂家推荐的保养计划,对仪器进行定期保养 ,如清洗光学系统、更换消耗铅、汞、砷等。
详细描述
首先,采集一定量的食品样品,经过化学处理后,加入特定的原子吸收剂, 通过测定吸光度,可以计算出食品中重金属离子的浓度。该方法具有准确度 高、灵敏度高等优点,能够满足食品安全检测的需求。
案例四:大气中污染物的测定
总结词
原子吸收分光光度法可用于大气中污染物的测定,如二氧化硫、氮氧化物等。
原子吸收分光光度法
xx年xx月xx日
目录
• 原子吸收分光光度法简介 • 原子吸收分光光度法实验技术 • 原子吸收分光光度法仪器设备 • 原子吸收分光光度法样品处理 • 原子吸收分光光度法应用案例
01
原子吸收分光光度法简介
原子吸收分光光度法的基本原理
1 2
原子能级
原子吸收分光光度法的基础是原子能级,原子 能级是原子能吸收特定波长光子的能量,从低 能级跃迁到高能级的过程。
案例二:土壤中重金属离子的测定
总结词
原子吸收分光光度法可用于土壤中重金属离子的测定,如镉 、铬、汞等。
详细描述
首先,采集一定量的土壤样品,经过化学处理后,加入特定 的原子吸收剂,通过测定吸光度,可以计算出土壤中重金属 离子的浓度。该方法操作简便,能够满足土壤质量检测的需 求。
案例三:食品中重金属离子的测定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章原子吸收分光光度法
一、选择题
1.钠原子的基态能级用光谱支项32S1/2表示,其具体含义是()
A、n=3,L=0,S=0,J=0
B、n=3,L=l,S=l/2,J=1/2
C、n=3,L=0,S=l/2,J=1/2
D、n=3,L=0,S=l/2,J=3/2
2.原子吸收分光光度计中,目前最常用的光源是()
A、火焰
B、空心阴极灯
C、氖灯
D、交流电弧
3.原子吸收分光光度分析中光源的作用是()
A、提供试样蒸发和激发所需的能量
B、产生紫外光
C、发射待测元素的特征谱线
D、产生具有足够强度的散射光
4.关于原子吸收光谱,下列叙述不正确的是()
A、由原子外层电子能级跃迁而产生
B、测定样品必须是气态
C、不仅反映原子或离子的性质,而且与分子结构有关
D、可确定样品的元素组成
5.关于原子吸收分光光度计下列叙述错误的是()
A、光源是空心阴极灯
B、原子化器为石墨炉或火焰原子化器
C、分光系统在原子化器前面
D、检测器为光电倍增管
6.空心阴极灯中对发射线宽度影响最大的因素是()
A、阴极材料
B、填充气体
C、灯电流
D、阳极材料
7.原子化器的主要作用是()
A、将试样中的待测元素转化为气态的基态原子
B、将试样中的待测元素转化为激发态原子
C、将试样中的待测元素转化为中性分子
D、将试样中的待测元素转化为离子
8.由原子无规则运动所产生的谱线变宽称为()
A、自然变宽
B、电场变宽
C、劳仑茨变宽
D、多普勒变宽
9.产生原子吸收光谱线的多普勒变宽的原因是()
A、原子在激发态时所停留的时间
B、原子的热运动
C、外部电场对原子的影响
D、原子与其他原子或分子的碰撞10.非火焰原子化法的主要优点为()
A、谱线干扰小
B、操作简单
C、稳定性好
D、试样用量少
11.原子吸收的定量方法一标准加入法,消除了()干扰
A、分子吸收
B、背景吸收
C、光散射
D、基体效应
12.采用测量峰值吸收系数的方法代替测量积分吸收的方法必须满足的条件是()
A、发射线半宽度小于吸收线半宽度
B、发射线半宽度大于吸收线半宽度
C.发射线的中心频率大于吸收线中心频率
D、发射线的中心频率小于吸收线中心频率
13.在原子吸收分析中,加人消电离剂可以抑制电离干扰。

一般来说,消电离剂的电离电位()
A、比待测元素高
B、比待测元素低
C、与待测元素相近
D、与待测元素相同
14.原子吸收分析法测定铷(Rb)时,加入1%钠盐溶液的作用是()
A、减少背景
B、提高火焰温度
C、减少Rb的电离
D、提高Rb的浓度
15.测定Ca时,若试样中有PO43-存在,则使结果偏低,消除的办法是()
A、加保护剂
B、加消电离剂
C、降低火焰温度
D、加基体改进剂
16.若组分较复杂且被测组分含量较低时,为了简便准确地进行分析,一般选则的方法是()
A、校正曲线法
B、内标法
C、标准加人法
D、外标法
二、填空题
1.空心阴极灯是一种--------光源,它的发射光谱具有---------特点。

当灯电流升高时,由于--------的影响,导致谱线轮廓---------测量灵敏度---------,校正曲线--------,灯寿命-----。

2.在原子吸收分析中,干扰效应大致上有--------,---------,----------,----------,---------。

3.在原子吸收光谱法中,当吸收为1%时,其吸光度(A)为-----------。

4.原子吸收分光光度分析方法中,目前应用比较广泛的定量方法有--------,----------,------.
5.在原子吸收变宽的因素中,多普勒变宽是由于--------;洛伦兹变宽是由于--------所引起。

6.Mn的共振线是403.3073um,若在Mn试样中含有Ga,Ga的共振线是403.2982um 将会有干扰,这种于扰属于--------干扰,可采用----------方法加以消除。

7.试样在原子吸收过程中,除离解反应外,可能还伴随着其他一系列反应,在这些反应中较为重要的是--------、----------、----------反应。

8.澳大利亚物理学家瓦尔什提出用--------吸收来代替--------吸收,从而解决测量吸收的困难。

三、简答题
1.原子吸收分析的光源应当符合哪些条件?为什么空心阴极灯能发射半宽度很窄的谱线。

2.有哪几种主要因素可使谱线变宽?
3.什么是原子吸收分析中的化学干扰?用哪些方法可消除此类干扰?
4.简述发射线和吸收线的轮廓对原子吸收分光光度分析的影响。

5.在原子吸收分光光度法中,为什么使用锐线光源?
6.简述原子吸收分光光度法的定量基础及实际测量方法?
四、计算题
1.A、B两个分析仪器厂生产的原子吸收分光光度计,对浓度为0.2µg/ml M g 标准溶液进行测定,吸光度分别为0.042、0.056。

试问哪一个厂生产的原子吸收分光光度计对Mg的特征浓度低。

2.0.050µg/ml的Co标准溶液,用石墨炉原子化器的原子吸收分光光度计,每次以5µ1与去离子水交替连续测定10次,测得的吸光度如下:
测定次数 1 2 3 4 5 6 7 8 9 10
吸光度0.165 0.170 0.166 0.165 0.168 0.167 0.168 0.166 0.170 0.167 求该原子吸收分光光度计对CO的检出限。

3.原子吸收光谱法测定元素M时,由未知试样溶液得到的吸光度读数为0.435,而在9mL未知液中加入1mL浓度为100mg/L的M标准溶液后,混合溶液在相同条件下测得的吸光度为0.835,问未知试样溶液中M的浓度是多少?
参考答案
一、选择题
1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.D 9.B 10. D
ll.D 12. A 13.B 14. C 15. A 16. C
二、填空题
1.锐线;谱线窄和强度大;自吸变宽和热变宽;变宽;下降;线性关系变差;变短2.光学于扰;化学干扰;电离干扰;物理干扰;背景吸收干扰
3.0.0044
4.校正曲线法;标准加人法;内标法
5.原子无规则运动;吸光原子与其他气体分子或原子间碰撞
6.光谱;另选分析线
7.电离;化合;还原
8.峰值;积分
三、简答题
1.原子吸收分析的光源应当符合以下基本条件
⑴谱线宽度窄,有利于提高灵敏度和工作曲线的直线性。

⑵谱线强度大、背景小,有利于提高信噪比,改善检出限。

⑶稳定,有利于提高测量精密度。

⑷灯的寿命长。

从构造上说,它是低压的,故压力变宽小。

从工作条件方面,它的灯电流较低,故阴极强度和原子溅射也低,故热变宽和自吸变宽较小。

由于上述因素使空心阴极灯能发射半宽度很窄的谱线。

2.谱线变宽有两方面因素:一类是由原子性质决定,如自然变宽。

另一类是外界影响所引起的,如热变宽、碰撞变宽。

3.待测元素与共存元素发生化学反应,引起原子化效率的改变所造成的影响统称为化学干扰,影响化学干扰的因素很多,除与待测元素及共存元素的性质有关外,还与喷雾器、燃烧器、火焰类型、温度以及火焰部位有关。

为抑止化学干扰,可加入各种抑制剂,如释放剂、保护剂、缓冲剂等,或采取萃取等化学分离方法来消除干扰。

4.5.6.略
四、计算题
1. 解:S A =
021.0042
.00044.0=⨯c (μg ·mL -1/1% 吸收) S B =016.0056.00044.0=⨯c (μg ·mL -1/1% 吸收) S A >S B
2. 解:A =10
170.02168.02167.02166.02165.02⨯+⨯+⨯+⨯+⨯=0.167 9
)003.0(2)001.0(4)002.0(22
22++=σ=1.83×10-3 D = )167
.01083.1310505.0(33
3--⨯⨯⨯⨯⨯=A cV σ g =8.2×10-6μg = 8.2×10-12g
3. 解:s
x s
s x x x s x x V V V c V c c A A ++=+ 解得 c x =9.8mg/L。

相关文档
最新文档