数列分组求和法

合集下载

专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题【高考真题】 2022年没考查 【方法总结】 分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.(1)若a n =b n ±c n ,且{b n },{c n }为可求和的数列(等差或等比数列),可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是可求和的数列(等比数列或等差数列),可采用分组求和法求和.【题型突破】1.已知数列{a n }为等差数列,其中a 5=3a 2,a 2+a 3=8. (1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.1.解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *.(2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3,从而等比数列{c n }的公比为3,因此c n =1×3n -1=3n -1. 另一方面,c n =a bn =2b n -1,所以2b n -1=3n -1,因此b n =3n -1+12.记{b n }的前n 项和为S n ,则S n =(1+31+…+3n -1)+n 2=3n +2n -14.2.已知递增等比数列{a n }的前三项之积为8,且这三项分别加上1,2,2后又成等差数列. (1)求等比数列{a n }的通项公式;(2)记b n =a n +2n ,求数列{b n }的前n 项和T n .2.解析 (1)设等比数列前三项分别为a 1,a 2,a 3,公比为q ,则a 1+1,a 2+2,a 3+2成等差数列.依题意得⎩⎪⎨⎪⎧a 1a 2a 3=8,2(a 2+2)=(a 1+1)+(a 3+2),即⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=8,2(a 1q +2)=a 1+1+a 1·q 2+2,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=4,q =12(舍去).∴数列{a n }的通项公式为a n =2n -1.(2)由b n =a n +2n ,得b n =2n -1+2n ,∴T n =b 1+b 2+…+b n =(20+21+22+…+2n -1)+2×(1+2+3+…+n )=20(1-2n )1-2+2×n (1+n )2=2n +n 2+n -1.3.已知数列{a n }是等差数列,S n 是其前n 项和,且a 1=2,S 3=12. (1)求数列{a n }的通项公式;(2)设b n =a n +4n ,求数列{b n }的前n 项和T n .3.解析 (1)∵数列{a n }是等差数列,S n 是其前n 项和,a 1=2,S 3=12, ∴S 3=3×2+3×22d =12,解得d =2,∴a n =2+(n -1)×2=2n .(2)∵b n =a n +4n =2n +4n , ∴T n=2(1+2+3+…+n )+(4+42+43+…+4n )=2×n (n +1)2+4(1-4n )1-4=n 2+n +4n +13-43. 4.已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4=32⎝⎛⎭⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .4.解析 (1)设等比数列{a n }的公比为q (q >0),则a n =a 1q n -1,且a n >0,由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3=32⎝⎛⎭⎫1a 1q 2+1a 1q 3,化简得⎩⎪⎨⎪⎧ a 21q (q +1)=2(q +1),a 21q 5(q +1)=32(q +1),即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32,又∵a 1>0,q >0,∴a 1=1,q =2,∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知b n =a 2n +log 2a n=4n -1+n -1, ∴T n=(1+4+42+…+4n -1)+(0+1+2+3+…+n -1)=4n -14-1+n (n -1)2=4n -13+n (n -1)2.5.已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和T 2n .5.解析 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列. ∴⎩⎪⎨⎪⎧a 6=a 1+5d =6,a 1+d 2=a 1a 1+3d ,d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 6.由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4. (1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.6.解析 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3, 所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2) =2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.7.若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .7.解析 (1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.8.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .8.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).9.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .9.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).10.在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2n b(n ∈N *).(1)求数列{b n }的通项公式;(2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n .10.解析 (1)设等比数列{a n }的公比为q ,且q >0,由a n >0,a 1a 3=4,得a 2=2,又a 3是a 2-2与a 4的等差中项,故2a 3=a 2-2+a 4,∴2·2q =2-2+2q 2, ∴q =2或q =0(舍).∴a n =a 2q n -2=2n -1, ∴a n +1=2n =2n b,∴b n =n (n ∈N *).(2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n +12⎝⎛⎭⎫12n -1-12n +1,∴数列{}c n 的前n 项和S n =2+22+…+2n +12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2(1-2n )1-2+12⎝⎛⎭⎫1-12n +1=2n +1-2+n 2n +1(n ∈N *). 11.(2019·天津)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).11.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=⎣⎡⎦⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ).记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).12.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .12.解析 (1)由a 1=-3S 1+4=-3a 1+4,得a 1=1,由a n =-3S n +4,知a n +1=-3S n +1+4,两式相减并化简得a n +1=14a n ,∴数列{a n }是首项为1,公比为14的等比数列,∴a n =⎝⎛⎭⎫14n -1,b n =-log 2a n +1=-log 2⎝⎛⎭⎫14n=2n . (2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n2n +1=1-n +22n +1.∴H n =2-n +22n .又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n +nn +1.13.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .13.解析 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n , 所以a n =11221,21 2n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩,为奇数,为偶数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n =21233, 2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩,为偶数,为奇数.14.(2021·新高考Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.14.解析 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3,所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *.(2)因为a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n+2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1,即a 2k =a 2k -1+1,①,a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③ 所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列. 所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300.15.已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .15.解析 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2.综上可知,T n =(-1)n n (n +1)2.16.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .16.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1.由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 17.已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.17.解析 (1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n }的公差为d ,∵2a 1=2,a 5=5(a 4-a 3),∴a 1+4d =5(a 1+3d -a 1-2d ),∴a 1=d =1.∴a n =1+(n -1)×1=n . 设等比数列{b n }的公比为q .由b 1=2,且b 5=4(b 4-b 3),得b 1q 4=4(b 1q 3-b 1q 2).∴q 2-4q +4=0,解得q =2.所以{b n }是首项为2,公比为2的等比数列.故b n =2×2n -1=2n (n ∈N *). 若选条件②,b n +1=S n +2.令n =1,得b 2=S 1+2=b 1+2=4.∴公比q =b 2b 1=2.∴数列{b n }是首项为2,公比为2的等比数列.从而b n =2×2n -1=2n (n ∈N *). (2)由(1)知a n -b n =n -2n ,∴T n =(1+2+3+…+n )-(21+22+23+…+2n ), ∴T n =n (1+n )2-2(1-2n )1-2,∴T n =2-2n +1+n 22+n 2.18.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.18.解析 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1. (2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n 1+2n -12=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.19.已知等比数列{a n }为递增数列,且a 4=23,a 3+a 5=209,设b n =log 3a n2(n ∈N *).(1)求数列{b n }的前n 项和S n ;(2)令T n =b 1+b 2+b 22+…+b 2n -1,求使T n >0成立的最小值n .19.解析 (1)设等比数列{a n}的公比为q ,由题意知,⎩⎨⎧a 1q 3=23,a 1q 2+a 1q 4=209,两式相除,得q 1+q 2=310, 解得q =3或q =13,∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1q n -1=281·3n -1=2·3n -5.∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n (-4+n -5)2=12(n 2-9n ).(2)T n =b 1+b 2+b 22+…+b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0, 即2n >5n +1,∵24<5×4+1,25>5×5+1,∴n min =5.20.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值.20.解析 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2.记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=n 2(n +2), 记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12,从而T n =n 2(n +2)+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1,则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.。

数列分组求和法

数列分组求和法

数列分组求和法
数列分组求和法是一种将一个数列分成若干个小组,并对每个小组进行求和的方法。

具体的步骤如下:
1. 将给定的数列按照一定的规则分成若干个小组。

规则可以是根据奇偶数、按照某个数字的大小等。

2. 对每个小组进行求和。

将每个小组中的数字相加得到该小组的和。

3. 将每个小组的和相加,得到最终的结果。

这种方法可以用于对数列中的数字进行分类、分析和比较。

举例说明:
假设有一个数列:1, 2, 3, 4, 5, 6, 7, 8, 9, 10
按照奇偶数进行分组,可以得到两个小组:
奇数组:1, 3, 5, 7, 9
偶数组:2, 4, 6, 8, 10
对每个小组进行求和,奇数组的和为:1 + 3 + 5 + 7 + 9 = 25
偶数组的和为:2 + 4 + 6 + 8 + 10 = 30
最终的结果为:25 + 30 = 55
这种方法可以对数列进行更深入的分析,比如可以计算出奇数组和偶数组之间的差距,或者比较两个小组的总和等。

怎样运用分组求和法求数列的和

怎样运用分组求和法求数列的和
(1)求数列 {an} 的通项公式; (2)设数列 {bn - an} 是首项为 1,公差为 2 的等差 数列,求数列 {bn} 的前 n 项和.
解:(1)an = 2n - 1 ;(过程略)
(2)因为 {bn - an} 是首项为1、公差为2的等差数列,

an + 2
=
1 2
an
+
1
.

n
=
1
时,S1
=
1
-
2a2
,即
a1
=
1 2,a2=1 2 Nhomakorabeaa1
=
1 4

所以数列
{an}
是以
1 2
为首项、21
为公比的等比数
列,

an
=
21∙(
1 2
)n
-1
=(
1 2
)n
,则
log0.5an
=
log0.5(
1 2
)n
=
n
.
ìn (n为奇数),

bn
=
ï
íîï(
1 2
)n
(n为偶数),
所以 T2n =(b1 + b3 + ⋯ + b2n - 1) +(b2 + b4 + ⋯ + b2n)
+
1 4
éê1 ë
-
æ è
1 4
öønùûú
1
-
1 4
= n2 +
1 3
-
1 3 × 4n
.
数列 {bn} 的奇数项和偶数项的通项公式不同,需
采用分组求和法求解.将数列分为两组,即所有的奇数

专题十一数列求和的常用方法

专题十一数列求和的常用方法

专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。

四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。

高中数学数列分组求和法题型

高中数学数列分组求和法题型

高中数学数列分组求和法题型
数列分组求和法是一种将多组数列的元素分成一个个子组,然后求出每一组的和,再求整体的和的算法,它是高中数学中常见的一类题型,要想做好这类题目,从下列几点可以作为思路:
(1)首先要熟悉掌握分组求和的运算方法以及相关知识,以便更好地解决题目。

(2)其次,在解题之前,要把多组数列整理成二维数组,记录其中的每组元素及其和,然后对于每一组元素进行分组求和,最后求出整体的和。

(3)最后,在解答这类题目的过程中,要多思考、用笔记录,以便更加准确地解答。

经过以上几条提示思考,我们可以发现,数列分组求和的解题法并不只是限定在高中数学题型中,它也有很多其他令人着迷的应用。

比如在填空题、解答问题等中,
我们还有可能采用分组求和中的各种运算法,来辅助我们解答题目。

总而言之,数列分组求和在高中数学中是一种常见的解题方法,它也可以在填空题、解答问题等中得到应用。

要想解答这类题型,除了要掌握分组求和的相关知识外,还应当注重仔细观察,多思考、多记录,以便更好解决问题。

专题06 数列求和(分组法、倒序相加法)(解析版)

专题06 数列求和(分组法、倒序相加法)(解析版)

数列专题六 :数列求和(分组法、倒序相加法)一、知识储备1、倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.2、分组求和法,如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法. 二、例题讲解1.(2021·全国高三专题练习)定义在R 上的函数()442xx f x =+,121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2,3,n =⋅⋅⋅,求n S . 【答案】12n - 【分析】由已知条件推导出()(1)1f x f x +-=,因此111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,由此能求出结果. 【详解】函数4()42xx f x =+,114(1)42xxf x ---=+, 可得()(1)1f x f x +-=, 即有: 121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=++⋯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又121n n n S f f f n n n --⎛⎫⎛⎫⎛⎫=++⋯+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可得:1122n n S ff fn n n ⎡⎤⎡-⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎝⎭⎣⎦⎣211n n f f f n n n ⎤⎡⎤--⎛⎫⎛⎫⎛⎫+⋯++ ⎪ ⎪ ⎪⎥⎢⎥⎝⎭⎝⎭⎝⎭⎦⎣⎦, 1n =-,即有12n n S -=.故答案为:12n -. 2.(2021·全国高三专题练习)()221xf x x =-,利用课本中推导等差数列前n 项和的公式的方法,可求得122020202120212021f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值。

【答案】2021 【分析】先证得()()12f x f x +-=,利用倒序相加法求得表达式的值. 【详解】解:由题意可知()()()()()2122121=22121-121x x xf x f x x x x --+-=+=---, 令S=122020 202120212021⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 则S=202020191 202120212021⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 两式相加得,220202S =⨯2020S ∴=.故填:2020 【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到()()12f x f x +-=的规律.3.(2022·全国)已知等比数列{}n a 中,11a =,且22a 是3a 和14a 的等差中项.数列{}n b 满足,且171,13b b ==.212n n n b b b +++=.(1)求数列{}n a 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 【答案】(1)12n n a ;(2)221n n T n =+-.【分析】(1)设等比数列{}n a 的公比为q ,由等差中项的性质建立等量关系,求解q ,从而求出数列{}n a 的通项公式;(2)由等差中项的性质可知{}n b 为等差数列,求出{}n b 通项公式,分组求和即可.【详解】解:(1)设等比数列{}n a 的公比为q 因为11a =,所以222131,a a q q a a q q ====.因为22a 是3a 和14a 的等差中项, 所以23144a a a =+, 即244q q =+, 解得2,q =所以1112n n n a a q --==.(2)因为212n n n b b b +++=, 所以{}n b 为等差数列. 因为171,13b b ==, 所以公差131271d -==-. 故21n b n =-.所以1122n n n T a b a b a b =++++⋯++()()1212n n a a a b b b =++⋅⋅⋅++++⋯+21212121()n n n n n -+-=+=+- 三、实战练习1.(2021·陕西渭南市·(文))已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求。

数列分组求和法(新)

数列分组求和法(新)

分组求和法1典题导入[例1] (2021山东高考)等比数列{a n}中,a i, a2, a3分别是下表第一、二、三行中的某一个数,且a i, a2, a3中的任何两个数不在下表的同一列.A列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18(1)求数列{a n}的通项公式;(2)假设数列{b n}满足:b n=a n+(—1)n ln a n,求数列{b n}的前2n项和S2n.[自主解答](1)当a1 = 3时,不合题意;当a1=2时,当且仅当a2=6, a3=18时,符合题意;当a1=10时,不合题意.因此a1 = 2, a2= 6, a3=18.所以公比q=3,故a n= 2 3n 1.(2)由于b n=a n+(—1)n ln a n=2 3n 1+(-1)n ln(2 3n1)= 2 3n〔+(—1)n(ln 2- In 3)+(— 1)n nln 3,所以S2n= b〔 +b2+…+ b2n= 2(1 + 3+…+ 32n〔)+[ —1 + 1 —1+ …+ (— 1)2n](ln 2-ln 3), 1 — 32n o+ [ —1 + 2 —3+…+ ( — 1)2n]ln 3 = 2X------------------- +nln 3 =32n + nln 3-1.1-32由题悟法分组转化法求和的常见类型(1)假设a n= b ni c n,且{ b n} , {C n}为等差或等比数列, 可采用分组求和法求{ a n}的前n项和.b n, n为奇数,(2)通项公式为a n= ,沙山的数列,其中数列{b n}, {C n}是等比数列或等差数C n, n为偶数列,可采用分组求和法求和.3以题试法1. (2021威海模拟)数列{X n}的首项X1 = 3,通项X n = 2n p+ nq(nC N*, p, q为常数), 且X1 , X4 , X5成等差数列.求:(1)p, q 的值;(2)数列{ x n}前n项和S n的公式.解:⑴由 x i = 3,得 2p+q=3,又由于 x 4=24p+4q, x 5=25p+5q,且 xi+x 5=2x 4,得 3 + 25p+5q = 25p+8q, 解得 p= 1, q=1.n n+1(2)由(1),知 x n=2n+n,所以 S n= (2+22+…+ 2n)+(1+2+…+n) = 2n+〔一2+-2-11112 .数列12-, 3], 5g, 7,,…白向刖n 项和&为( ).21B . n + 2—2n21D . n + 2—2n —11解析 由题息知数列的通项为an=2n —1+2T ,,答案 C3 .等差数列{a n }的前n 项和为S,且a 3 = 5, Ss= 225. ⑴ 求数列{a n }的通项公式;(2)设b n=2a n+2n ,求数列{b n }的前n 项和T n .解析:(1)设等差数列{a n }的首项为公差为d,a1 +2d=5,a 1 二 1,解得,a n = 2n —1.d=2,1 n 一(2) .• b n=2a n +2n=2 ・ 4 + 2n, Tn=b1+b2+-- -+ bn= 2(4+42+―+4n ) + 2(1 +2+…+ n)A. n 2+ 1 - 2n-r21C. n+1 — 2n那么 Sn= —1 +2n — 1215a1 + 15X 14 2d = 225,n 2+n = | . 4n+n 2+ n-|. 3 34 .设{a n }是公比为正数的等比数列,a i = 2, a 3 = a 2 + 4.⑴ 求{a n }的通项公式;〔2〕设{b n }是首项为1,公差为2的等差数列,求数列{a n+b n }的前n 项和S n .解析〔1〕设q 为等比数列{a n }的公比,那么由a i = 2, a 3 = a 2+ 4得2q 2 = 2q+4,即 q 2— q —2=0,解得 q = 2 或 q= — 1〔舍去〕,因此 q = 2.所以{a n }的通项为 a n = 2 • 2nT = 2n (nC N*).一 1 1 . 1 . 1,1, , 15 .求和 Sn=1+ 1+2 + 1+2+4 +…+ 1+2+4 +….解和式中第k 项为 1 d 1 2 1 二 2n11-26.数列{an }的前 n 项和为 S n, a 1 = 1, a 2= 2, a n+2—a n= 1 + (—1)n (n C N ),那么 S 100 =答案 2 600斛析 由 3n+ 2 — a n =1+( — 1)知 32k+ 2— 32k= 2 ,a 2k+1 — a2k 1 = 0, a 1 = a 3= a 5= 11• = a2n 1 = 1, 数列{a 2k }是等差数列,a 2k= 2k.600= (a 1 + a 3+ a 5+ …+ a 99)+ (a 2+ a 4+ a 6+ …+ a [00)100 +2 X 50= 50+(2 + 4+6+ ••+ 100)=50 + ---------------- 2 --------- = 2 600.「 小力 小c 39 25 65 n 2n + 17.求和:(1)S n=3+9+25+65+…+ —;H —; 24 o 16 2 (2)S n= X+12+ X 2+W 2+…+ X n +)2. X X Xn 2n +1 1解 (1)由于 an=-2-=A+|K,1••S n= 1+21 + 2+ 22 + 3+ 23 +…+ n + 2n“-八 、111,,工= (1 + 2+3+ - +n)+ 2+ 22+23+ (2)/+1 /4 -4 =^6~~c 2 (2) S = _n1-2 1-2n nx 1 + -n-1 2X2=2n +1+n 2 —2.1.1.. ak=1 + 2+4+…+1 — 1k 12 =1k 112 1 __ 12 =2 ,1 1 -2k .=2[(1 + 1+…+ 1 .11 — 22 +…+1 1 一 2n=2 n — —n-1 + 2n — 2. 2 nH^(2 +। 1 …+2n )]1 1n n+ 1 2 1 — 2n n n+ 1 1 = 2 + 1 - = 2 一才+1.1 -- (2)当 x= + 时,S n=4n.当 xw 十 时, S n= X+[ 2+ X2 + ±2+…+ X n + J 2 X X X = X 2+2 + / + X 4 + 2 + $ + …+ X 2n +2 + , =(X 2+X 4+…+ X 2n )+2n+ ]+]+…+ J x 2--1 x 21 —x 2nX2-1 + 1 -x 2 x 2n —1 x 2n +2+1x 2n —1 x 2n+2+18 .数列{a n }中,a 1 = -60, a n+1 = a n+3,那么这个数列前30项的绝对值的和是 .答案 765解析 由题意知{a n }是等差数列,a n=- 60+3(n-1)=3n-63,令a n>0,解得n>21. 「• |a 1|+ |a 2|+ |a 3|+ …+ |a 30|=—(a 〔+ a2+ …+ a 20)+ (a 21 + …+a 3.)-60 + 90-63 x 30=S30- 2S 20= --------------------------- 2 --------------— ( — 60+ 60- 63) X 20 = 765. 9 .数列{a n }的前n 项和S n=n 2-4n+2,那么冏|+标|+…+ |a 〔0| =答案 66解析 当 n= 1 时,a1=S1=— 1. 当 n>2 时,a n=S n — S n —1= 2n — 5.—1 n= 1 a n = .2n-5 n>2 5 令 2n- 5< 0,得 nW 2,・•・当 nw 2 时,a n <0,当 n>3 时,a n >0,「• |a 1|+ |a 2|+ …+ |a 10|=一 (a 〔 + a 2) + (a 3 + a 4 + …+ a [0) = S 10— 2s2= 66. 10 .数列{a n }的通项公式为a n=( —1)广1 (4n —3),那么它的前100项之和S 100等于()A. 200B. - 200C. 400D. - 400答案 B解析 S 100= (4X 1 -3)-(4X 2-3)+(4X 3-3) - - - -(4X 100—3)=4X [(1 -2)+ (3-4) + …+ (99- 100)] =4X (-50) = - 200.11 .(2021课标全国)数列{a n }满足a n+1+(-1)n a n=2n-1,那么{a n }的前60项和为.+ 2n+ 2n.x 2n x 2— 1+ 2n xw =y .4n答案 1 830解析-an+i+(-1)n an=2n-1,••a2=1+a i, a3=2—a i, a4 = 7 — a i, a5=a i, a6=9+a i, a7=2 —a i, a8= 15 — a i, a9 =ai, a io=i7+a i, a ii=2 —a i, a i2 = 23 —ai,…,a57= a i, a58=ii3+a i, a59= 2 — a i, a60= ii9 — a i,「• a i + a2+…+ a60= (a i+ a2+ a3 + a4)+ (a5+ a6+ a7+ a8)+ …+ (a57+ a58 + a59+ a6o)= io+ 26 + 42+ …+234 i5X i0+234 = 2 = i 830.12 .数列2 008,2 009,i , -2 008, -2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,那么这个数列的前 2 0i3项之和S2 0i3等于()A. iB. 2 0i0C. 4 0i8D. 0答案C解析由得a n = a n i+a n+i (n>2),,a n+i=a n—a n i.故数列的前8项依次为2 008,2 009,i , - 2 008, - 2 009, - i, 2 008,2 009.由此可知数列为周期数列,周期为6,且Ss= 0./2 0i3=6X335+3,,S2 0i3 = S3=4 0i8., i ........... .......................................... ~ ...................13 .设f (x) ――,利用课本中推导等差数列前n项和公式的方法,可求2x 2f( 5) f( 4) f(0) ... f(5) f(6)的值为A. 3<2B. 22C. 2v12D.—2解:由于f(x) f (i x) —,那么原式I{[ f( 5) f(6)] [f( 4) f (5)]2 2[f(6) f( 5)]}- i2 — 3石,选A2 2i4.数列{a n}的前n 项和为S n,满足:a i i , 3tS n (2t 3)& i 3t,其中t 0,n N且n 2 (i)求证:数列{an}是等比数列;i ............ ............... .(n)设数列{a n}的公比为f (t),数列{b n}满足b i i,b n f (——)(n 2),求b n的通项b ni〔出〕记T n b i b2 b2b3 b3b4 b4b5 b2ni b2n b2n b2ni,求证:「20 92 时,3tS n(2t 3)S ni 3t ①,3tS ni (2t 3)S n3t ②+ a 4+a 8+…+ a2n ,那么 T n =解析:设{a n }的公差为dw0,由a 1, a 2, a 5成等比数列,得 a2=a 1a 5, 即(7 — 2d)2= (7 — 3d)(7 + d) . .d = 2 或 d = 0(舍去)..-,an=7+(n-4)X2=2n-1.又 a 2n = 2 2n — 1 =2n +1—1, .•T n=(22— 1)+(23— 1)+(24— 1)+ …+ (2n +1 —1)= (22+ 23+ ••• +2n+1)-n=2n+2-n- 4.②一①得:3ta n 1 (2t 3)a n 0a n 1 a n2t 3 - ------ (n 2) 3t又a 1 1,3t(a i a ?) (2t 3)4 3t ,解得: a 22t 3 3ta 2 a n a ia 2a n2t 3 3t {a n }是首项为2t 3 ,2~^的等比数列.3t-33 h b n1-,b n --------------n 3b n 13b n1 3 2b nb n b n(n 1) 3(m)T n b 2(b 1b 4(b 3b 5)b 2n (b 2n 1b 2n1)4(b 2 b 4 3b 2n ) 当n 2时,2n 23n 为增,4n3 2 51) 2n(4n 96)4 2(2n 2 3n)915.1002 99298297222A. 2525B. 5050C. 解:原式(100 99) (98 97)20 912的值是10100(2 1) D. 202105050 ,选 B16.等差数列{a n }的公差不为零,a 4=7, a 1,a 5成等比数列,数列{T n }满足条件 T n=a 2。

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳1.公式法:即直接用等差、等比数列的求和公式求和。

主要适用于等差,比数列求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(等差数列推导用到特殊方法:倒序相加)(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)(3)222221(1)(21)1236nk n n n k n =++=++++=∑L (不作要求,但要了解)例:(1)求=2+4+6+ (2)(2)求=x+++…+(x )2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。

例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2)1(2)(11-+=+=(2)2222sin 1sin 2sin 3sin 89++++ooooL L .3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

例:(1)求和:(1)321ΛΛ个n n S 111111111++++=81109101--+n n(2)22222)1()1()1(n n n x x x x x x S ++++++=Λ当1±≠x 时,n x x x x S n n n n 2)1()1)(1(22222+-+-=+当n S x n 4,1=±=时4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

(分式求和常用裂项相消)常见的拆项公式:111)1(1+-=+n n n n ,)121121(21)12)(12(1+--=+-n n n n , 1111()(2)22n n n n =-++,)12)(12(11)12)(12()2(2+-+=+-n n n n n ,2=例:(1)求和:1111,,,,,132435(2)n n ⨯⨯⨯+L L.(2)求和)12)(12()2(534312222+-++⋅+⋅=n n n S n Λ12)1(2++=n n n S n5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ(适用于:等差数列乘以等比数列的通项求和)例:求和:23,2,3,,,na a a na L L当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,212(1)(1)n n n na n a aS a ++-++=-6.合并求和法:如求22222212979899100-++-+-Λ的和。

分组求和法——精选推荐

分组求和法——精选推荐

分组求和法前⾔适⽤范围把数列中的每⼀项都能拆分成两项或者⼏项之代数和,然后有效分组[⽐如所有奇数项为⼀组,所有偶数项为另⼀组],转化为等差求和或等⽐求和类型,或能知道求和公式[不⼀定是等差或等⽐]的类型;⽐如数列{a n }的通项公式为a n =(2n −1)+13n ,此时需要我们具备将数列竖⾏看的能⼒;a 1=(2×1−1)+131a 2=(2×2−1)+132⋯,⋯a n =(2×n −1)+13n ⇑此列等差⇑此列等⽐相关公式①等差数列的S n =n (a 1+a n )2=na 1+n (n −1)⋅d2②等⽐数列的S n =na 1,q =1a 1⋅(1−q n )1−q=a 1−a n q 1−q ,q ≠1③1+2+3+⋯+n =n (n +1)2;④1+3+5+⋯+(2n −1)=[1+(2n −1)]⋅n2=n 2,注意求和项数为n 项;⑤2+4+6+⋯+2n =(2+2n )⋅n 2=n 2,注意求和项数为n 项;⑥12+22+32+⋯+n 2=n ⋅(n +1)⋅(2n +1)6;公式来源⑦13+23+33+⋯+n 3=[n (n +1)2]2;⑧由a n +2−a n =2可知,数列中奇数项成等差,公差为2;偶数项成等差,公差为2;⑨由a n +2a n =2可知,数列中奇数项成等⽐,公⽐为2;偶数项成等⽐,公⽐为2;运算技巧①指数运算:4n =(22)n =(2n )2;2n +2n =2n +1;2n +1−2n =2n ;2n −2n −1=2n −1;2n +1+2n =3⋅2n ;2−(n +1)⋅2=2−n ;2n ⋅2n =22n ;3n −1−3n =−2⋅3n −1;2n +1÷2n =2;12n +12n +1=32n +1;3n −1⋅3n =32n −1;2n +1⋅2n =22n +1;②利⽤等差数列求项数:由a n =a 1+(n −1)⋅d ,可得项数n =a n −a 1d +1,推⼴得到项数n =a n −a m d +m ,如数列21,23,25,⋯,22n −1的项数的计算,其项数可以利⽤上标来计算,其上标刚好成等差数列,项数r =a n −a 1d +1=(2n −1)−13−1+1=n ;典例剖析{Processing math: 76%№1求数列的前n项和Sn=112+314+518+7116+⋯+[(2n−1)+12n]分析:必须先能认出其通项公式a n=(2n−1)+12n,从⽽应该和分组求和法建⽴关联。

数列求和的几种方法

数列求和的几种方法

数列求和数列求和的常见方法有:1、 公式法:(1)等差等比数列的求和公式,(2)22221123(1)(21)6n n n n ++++=++ 2、分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和(如:通项中含n (-1)因式,周期数列等等)3、倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,则可用把正着写和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法。

特征:a n +a 1=a n-1+a 2通常,当数列的通项与组合数相关联时,那么常可考虑选用倒序相加法,(等差数列求和公式)4、错项相减法:如果一个数列的各项是由一个等差数列与一个等比数列的对应项相乘所组成,此时求和可采用错位相减法。

特征:所给数列{a n },其中a n =c n ·b n {c n }是一个等差数列,{b n }是一个等比数列。

(“等比数列”的求和)5、裂项相消法: 把一个数列的各项拆成两项之差,即数列的每一项均可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项之和变成首尾若干少数项之和,这一求和方法称为裂项相消法。

常见的拆项公式:(1)1a n a n+m =1md (1a n -1a n+m)(其中{a n }是一个公差为d 的等差数列; ba +1 = 1a-b ( a - b ); n ·n!=(n+1)! - n!; ⑵ 1111()()n n k k n n k =-++; ⑶ 2211111()1211k k k k <=---+ ⑷ 1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ⑸ ()()111!!1!n nn n =-++⑹<< ⑺ 1--=n n n S S a (2)n ≥。

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法数列求和是数学中的一个基本问题,我们经常会在数学课上遇到。

在解决数列求和的问题时,我们可以使用多种方法来计算数列的和。

下面我将介绍七种常见的方法。

第一种方法是等差数列求和。

等差数列的特点是每一项与前一项的差值都相等,我们可以使用等差数列求和公式来计算其和。

如果一个等差数列的首项为a,公差为d,有n项,则等差数列的和可以表示为Sn = (n/2)(2a + (n-1)d)。

通过这个公式,我们可以快速计算等差数列的和。

第二种方法是等比数列求和。

等比数列的特点是每一项与前一项的比值都相等,我们可以使用等比数列求和公式来计算其和。

如果一个等比数列的首项为a,公比为r,有n项,则等比数列的和可以表示为Sn = a(1 - r^n)/(1 - r)。

通过这个公式,我们可以方便地计算等比数列的和。

第三种方法是求和公式法。

对于一些特殊的数列,我们可以找到一个求和公式来计算其和。

例如,等差数列和等比数列都有对应的求和公式。

在解决数列求和的问题时,我们可以通过寻找求和公式来简化计算过程。

第四种方法是换元法。

有时候,我们可以通过将数列中的项进行变量替换来简化计算过程。

例如,我们可以将数列中的项表示为一个多项式,并对该多项式进行求和。

通过变量替换和多项式求和,我们可以迅速得出数列的和。

第五种方法是递推法。

对于一些没有明显规律的数列,我们可以使用递推法来计算其和。

递推法的思想是通过前几项的和来求解后一项的值。

通过不断累加并递推,我们可以得到数列的和。

第六种方法是分组求和法。

对于一些复杂的数列,我们可以将其划分为多个子数列,并分别计算每个子数列的和。

然后将所有子数列的和相加,即得到整个数列的和。

这个方法常常在解决难题时使用,可以将复杂问题化简为简单问题。

第七种方法是利用数学工具求和。

在现代数学中,我们有各种各样的数学工具可以用来辅助求和。

例如,我们可以使用微积分中的积分来计算一些复杂数列的和。

通过利用数学工具,我们可以更加高效地求解数列求和的问题。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

数列分组求和法乐乐课堂

数列分组求和法乐乐课堂

数列分组求和法乐乐课堂
【最新版】
目录
1.数列分组求和法的概念
2.数列分组求和法的应用
3.乐乐课堂对数列分组求和法的解读
正文
1.数列分组求和法的概念
数列分组求和法是一种求解数列和的方法,它通过将数列分组,然后对每组求和,最后将各组和相加得到数列的和。

分组求和法能够简化数列求和的问题,使得求和过程更加简便。

2.数列分组求和法的应用
数列分组求和法广泛应用于各种数列求和问题,例如等差数列、等比数列、斐波那契数列等。

通过运用分组求和法,可以有效地解决这些数列求和问题。

3.乐乐课堂对数列分组求和法的解读
乐乐课堂是一家知名的在线教育平台,专注于提供优质的数学教学资源。

在乐乐课堂中,数列分组求和法被视为一种重要的数学方法,被广泛应用于数列求和的教学中。

乐乐课堂通过详细的讲解和丰富的例题,帮助学生深入理解数列分组求和法的原理和应用,从而提高学生的数学能力。

总结来说,数列分组求和法是一种实用的数学方法,能够有效地解决各种数列求和问题。

第1页共1页。

数列求和的九种方法

数列求和的九种方法
当a≠1时,S =1+3a+5a +…+(2n-1)a ……①,
两边分别乘以公比a得:
aS =a+3a +5a +…+(2n-3)a +(2n-1)a …………②
①-②得:(1-a)S =1+2a+2a +2a +…+2a -(2n-1)a
=1-(2n-1)a + ,
于是S = - +
五:裂项求和法
数列求和的九种方法
汉川二中数学组万小艳
数列是高中代数的重要内容。在高考和各种数学竞赛中都占有重要地位。数列求和是数列的重要内容之一,除了等差数和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。下面介绍求一个数列的前 n 项和的几种方法:运用公式法,倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法,通项分析法,分类讨论法,数学归纳法等。
四、错位相减法求和
这种方法主要用于数列{a ·b }的前n项和,其中{a },{b }分别是等差数列和等比数列,且{b }的公比不为1。
例4、求和:1+3a+5a +7a +…+(2n-1)a (a≠0)
解:数列{(2n-1)·a }是由等差数列{2n-1}和等比数列{a }的相应项乘积组成。
当a=1时,S =1+3+5+…+(2n-1)= = n
下面我们再来看一下并项求和法与分类讨论法
求和时,先分n为奇,偶数进行讨论,后考虑并合。
所以:
当n≤601时;
此类题需根据通项确定各项的正、负,再去掉绝对值。
上面讨论的八种方法灵活运用,多样结合就可解决常见的数列求和问题。对于数学归纳法求和,涉及到观察、猜想、归纳、证明等步骤,并且其关键在于猜想得出和式,在此就不作论述了。在数列求和过程中,根据数列的特点,采用适当的 方法,定能较快、准确的解题。

分组求和法经典例题

分组求和法经典例题

分组求和法经典例题分组求和法是一种常见的数学方法,可以用于解决多种问题,例如计算数列的和、统计数据的总和等。

下面是一个经典的例题,我们将通过分组求和法来解决它。

例题,计算数列1+2+3+...+100的和。

解答:首先,我们可以将这个数列分成多个组,每组包含相同数量的连续整数。

这样,我们可以将数列分成以下几组:1. 第一组,1。

2. 第二组,2+3。

3. 第三组,4+5+6。

4. 第四组,7+8+9+10。

...以此类推,直到最后一组。

现在,我们来计算每组的和,并将它们相加,即可得到最终的结果。

第一组的和是1。

第二组的和是2+3=5。

第三组的和是4+5+6=15。

第四组的和是7+8+9+10=34。

...我们可以观察到每组的和可以用以下公式表示,组号× (组号+ 1) / 2。

根据这个公式,我们可以得到第一组到第n组的和的公式,n × (n + 1) / 2。

现在,我们来计算一下最后一组的组号n。

由于数列中的最大值是100,我们可以通过求解以下不等式来得到n的值:n × (n + 1) / 2 ≤ 100。

将不等式化简,得到:n^2 + n 200 ≤ 0。

解这个二次不等式,我们得到n ≤ 13.651。

因此,最后一组的组号n等于13。

现在,我们可以使用组号n的值来计算数列的和:1+2+3+...+100 = 第一组的和 + 第二组的和 + ... + 第13组的和。

根据公式n × (n + 1) / 2,我们可以得到:1+2+3+...+100 = 1 + 2 + 3 + ... + 13 = 13 × (13 + 1) /2 = 13 × 14 / 2 = 91.因此,数列1+2+3+...+100的和等于91。

通过分组求和法,我们成功地解决了这个经典例题。

这种方法可以帮助我们更好地理解数列求和的原理,并且可以应用于其他类似的问题。

数列分组求和法

数列分组求和法

专业.专注分组求和法i典题导入[例1] (2011山东高考)等比数列{a n}中,a i, a2, a3分别是下表第一、二、三行中的某一个数,且a i,a2,a3中的任何两个数不在下表的同一列(1)求数列{a n}的通项公式;⑵若数列{b n}满足:b n = a n+ (- 1)n ln a n,求数列{b n}的前2n项和S2n.[自主解答](1)当a1 = 3时,不合题意;当a1 = 2时,当且仅当a2= 6, a3= 18时,符合题意;当a1 = 10时,不合题意.因此a1 = 2 , a2= 6, a3= 18.所以公比q = 3,故a n= 2 •-1.⑵因为b n=a n+ (- 1)n ln a n= 2 •-1+ (—1)n In(2 n-3)= 2 • 3 + (—1)n(ln 2 —In 3) + (-1)n n ln3 ,所以S2n = b1 + b2+- + b2n = 2(1 + 3+-+ 32n —1) + [ —1 +1 —1 + -+ (—1)2n](ln 2 —In 3)1—32n+ [ —1 + 2—3+-+ (—1)2n2n]ln 3 = 2 x + n ln 3 = 32n+ n ln 3 —1.1 —3丄由题悟法分组转化法求和的常见类型(1)若a n = b n±C n ,且{b n}, {C n}为等差或等比数列,可采用分组求和法求{a n}的前n项和.专业.专注2A . n 2 + 1 — 1 2门—1C . 1 n 2 + 1 ——1解析由题意知已知数列的通项为a n 二2n - 1+》,1 _ n 1+2n — 1212n1=n 2+ 1 —— 1 2n 1 —_2[bn , n 为奇数,⑵通项公式为 a n = 的数列,其中数列{b n } , {C n }是等比数列或等差C n , n 为偶数数列,可采用分组求和法求和•j 以题试法1 • (2013威海模拟)已知数列{X n }的首项X 1 = 3,通项X n = 2n p + nq (n € N *, p , q 为常 数),且x 1, x 4, x 5成等差数列.求:(1) p , q 的值;⑵数列{x n }前 n 项和S n 的公式.解:(1)由 X 1 = 3,得 2p + q = 3,又因为 X 4 = 24p + 4q ,X 5 = 25p + 5q ,且 X 1+ X 5 = 2X 4,得 3 + 25p + 5q = 25p + 8q ,解得 p = 1 , q = 1.(2) 由(1),知 X n = 2n + n ,所以 S n = (2 + 22 + …+ 2n ) + (1 + 2 + …+ n ) = 2n + 1 — 2 + n n +1 2.11112.数列1彳,34, 58, 7^6,…的前n 项和S n 为( ).答案 C3•已知等差数列{a n}的前n项和为S n,且a3 = 5, S15 = 225.(1)求数列{a n}的通项公式;⑵设b n = 2a n + 2n,求数列{b n}的前n项和T n.解析:(1)设等差数列{a n}的首项为a i,公差为d,a i + 2d = 5,由题意,得15 X 14严 + 丁 d = 225,|a1 = 1,-a n —2n —1.解得d= 2,1(2)°.b n—2a n+ 2n —2n,• T n—b1 + b2 + …+b n1—-(4 + 42+…+4n)+ 2(1 + 2+- + n)4n +1-4 2 2—+ n2+ n ——•l4+ n2+ n —一.6 3 34.设{a n}是公比为正数的等比数列,a1 —2, a3 —a2 + 4.(1)求{a n}的通项公式;⑵设{b n}是首项为1,公差为2的等差数列,求数列{a n+ b n}的前n项和S n.解析(1)设q为等比数列{a n}的公比,则由a1 —2, a3 —a2 + 4得2q2—2q + 4, 即q2—q —2—0,解得q—2或q — - 1(舍去),因此q — 2.所以{a n }的通项为 a n = 2 n 2 = 2n (n € N *)—2nn n -1⑵S n = ^—^+nX1+X2言+ 1+ n2-2.=2[(1 + 1 +…+ 1n 个6.数列{a n }的前 n 项和为 S n , a 1 = 1, a 2 = 2, a n + 2-a n = 1 + (- 1)n (n € N *),贝U Sw o =答案 2 600 解析 由an + 2 — a n = 1 + (— 1)n知a2k + 2— a2k = 2, a 2k +1-a 2k -1 = 0,「£1 = a 3= a 5=・・・ =a 2n -1 = 1 , 数列{a 2k }是等差数列,a 2k = 2k . 「S 100 =(a 1 + a 3 + a 5 + …+ a 99)+ (a 2 + a 4 + a 6 + …+ a 1oo )100 + 2 X50=50 + (2 + 4 + 6 +…+ 100) = 50 +- = 2 600.n • 2+11(p1/1 +一 + 1 + 一+一 +…+ ' < 2丿 k2 4k 项为5.求和 S n = 1 +1 1 1+2+4石f1r 1 \x +一 ■ X 2 ++ ■• + x n + — < X 丿护< X 丿2n⑵Sn = 2解和式中第 1 1a k =1 + 2+ 4+T 2k -1 1已1 1 -_2*2”-21、r qi1- N + ••• +3 9 25 65n •眩+ 17.求和:+ 1厂1 + 2n — 2.=(1 + 2 + 3+・・・ +n )+解(1)由于an = ^^ = n +巧,-S n =(2)当 x =±l 时,S n = 4n .当 X M 土 1时, 1S n = x + 一 + x 2+= F + x n + 二 x=(x 2 + x 4 + ・・・ + x 2n )+ 2n + -2+"7+…+ Ex —21 — x— 2n+1 — x - 2+2n4n••S n =x 2n — 1x 2n +2 + 1.一x 2n x 2— 18•已知数列{a n }中,a 1 = — 60, a n +1 = a n + 3,则这个数列前 30项的绝对值的和是答案 765解析 由题意知{a n }是等差数列,a n =— 60 + 3(n — 1) = 3n — 63 ,令a n >0,解得n >21. •••&|+ 念|+ 念| +…+ |a 3o |=—(a 1+ a 2 + ・・・ + a 2o )+ (a 21 + …+ a 3o )—60 + 90 — 63 X 30=S 30 — 2S 20=2— (— 60 + 60 — 63) X 20 = 765.9. ____________________________________________________________ 数列{a n }的前 n 项和 S n = n 2 — 4n + 2,则內|+ |a 2| +…+ |ae | = _________________________ .答案 66解析当 n = 1 时,a 1 = Si = — 1. 当 n >2 时,a n = S n — S n — 1 = 2 n — 5.—1n = 1•'an =.2n — 5n >25令 2n — 5<0,得 n 「n n +11-1 —— 2+ -------- =2n .丿 n n + 1 1— +1.2 2n( 1 \ f 1f 1 \x 2 + 2 + -T + < x 丿 x 4 + 2 + -4 < x 丿 +…+ <2n+2+0 丿X 2— 1x 2n - 1x 2nx 2— 1x 2n + 2+ 1+ 2 n .+ 2nx =±1X M ±I11 1x 22••当 n w 2 时,a n <0 ,当 n 》3 时,a n >0 ,•'•|a i | + |a 2| + …+ |a io | = — (ai + a 2)+ (a 3+ a 4 + ••• + a io ) = S 10 — 2 S 2= 66.10. 数列{a n }的通项公式为a n = (— 1)n —1 • n — 3),则它的前100项之和Soo 等于( )A . 200B .— 200C . 400D400答案 B解析 S 100 = (4 X i — 3) — (4 X 2 — 3) + (4 X 3 — 3)—…一(4X 100 — 3) = 4X[(1 — 2) + (3 — 4)+ ••• + (99 — 100)] = 4 X( — 50) = — 200.11. (2012课标全国)数列{a n }满足a n +1 + (— 1)n a n = 2n — 1 ,则佃}的前60项和为 ________ 答案 1 830解析• a n +1 + (— 1) n a n = 2 n — 1,•'82= 1 + a 1, a 3 = 2 — a 1, a 4 = 7 — a 1, a 5= a 1, a 6= 9 + a 1, a 7 = 2 — a 1, a 8 = 15 — a 1, a 9 = a 1, a 10 = 17 + a 1, an = 2 — a 1, a 12 = 23 — a 1,…,a 57 = a 1, a 58 = 113 + a 1, a 59 = 2 一 a 1, a 60 = 119 一 a 1,•'31 + a 2 + …+ a 60 = (a 1 + a 2 + a 3 + a 4)+ (a 5 + a 6 + a 7 + a 8)+…+ (a 57 + a 58 + a 59 + a 60)= 10+ 26 + 42 + •••+ 234 15 X 10 + 234 ==1 830.212. 已知数列2 008,2 009,1 , — 2 008,— 2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 013项之和S 2 013等于 () A . 1 B . 2 010C . 4 018D . 0答案 C解析 由已知得 a n =a n —1 + a n + 1 (n >2) ,「.a n + 1 = a n —a n —1.故数列的前 8 项依次为 2 008,2 009,1 , — 2 008 , — 2 009 , — 1 , 2 008,2 009.由此可 知数列为周期数列,周期为6,且S 6 = 0.V2 013 = 6 X 335 + 3,二& 013 = S 3 = 4 018.113.设f(x)=—x,利用课本中推导等差数列前n 项和公式的方法,可求2匕2f(-5) f(-4) f(0)… f(5)f(6)的值为则原式=丄{[ f (-5) f(6)] [ f (-4) f (5)]2[f(6) f(-5)]} J 12 — =3.2,选 A2 2A . 3、 2B .、2 C . 22解: 由于f(x) f(—彳,D .14.数列{a n}的前n 项和为S n ,满足:a1 =1 , 3tS^ (2t 3)S n4 =3t ,其中t 0 ,n • N 且n _ 2 (I)求证:数列{a .}是等比数列;设数列{a n }的公比为f(t),数列{b n }满足b1=1,b n = f( )(n_2),求b n 的通项 b n 」20记T n二b 1b 2-硒3b 3b 4-砧5…b2n」b 2nZ"求证:T^--)当 n_2时,3tS n -(2t - 3)S n A -3t ①,3tS n ^(2t 3)S n -3t ②解:原式二(100 99) (98 97)(2 1^ 5050,16.等差数列{a n }的公差不为零,a 4 = 7, a 1, a 2, a 5成等比数列,数列{T n }满足条件T n = a 2 +a 4 + a 8+-+ a 2n ,则 T n =解析:设佃}的公差为d 丸,由a i , a 2, a 5成等比数列,得a 2= a i a 5, 即(7 — 2d )2= (7- 3d )(7 + d ) .'d(出) 解(I ②一①得:3tan^^(2t 3)an= 0a n 1a n( n 一2)又 a 1 =1,30 a 2) _(2t 3)q =3t ,解得:2t +3a 2 二 -----3t(出) a 2 a 3 a 1a 2a n 12t 3a n3t2t +3{an }是首项为1,公比为"1的等比数列。

数列前n项和求和方法集锦(错位相加法,分组求和法等)

数列前n项和求和方法集锦(错位相加法,分组求和法等)

一.求和方法大集锦1.分组求和法:就是将数列的项分成二项,而这两项往往是常数或是等差(比)数列,它们的和当然就好求了。

例如:求1/2+3/4+7/8+9/16+......+(2^n-1)/(2^n)的话,可以将通项(2^n-1)/(2^n)写成1-2^(-n)这样就变成每一项都是1-X(X为通项)的公式对于通项-2^(-n)是一个等比数列,这个你就可以直接套用公式了2.数列累加法(1)逐差累加法例3 已知a1=1, an+1=an+2n 求an解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1将以上n-1个式子相加可得an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法求通项公式,特别的,当f(n)为常数时,数列即为等差数列。

(2)逐商叠乘法例4 已知a1=1, an=2nan-1(n≥2)求an解:当n≥2时,=22, =23, =24, (2)将以上n-1个式子相乘可得an=a1.22+3+4+…+n=2当n=1时,a1=1满足上式故an=2 (n∈N*)注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列3.裂项求和当一项可以拆时需要注意是否为了考察裂项求和,最有名的就是分数:1/2+1/6+1/12+……+1/n*(n+1)可拆为1-1/2+(1/2-1/3)+(1/3-1/4)+……+(1/n-1/(n+1))然后你会发现从-1/2 到1/n全部能想消掉,故只剩下首项和末项。

4.倒序相加最简单的是等差数列用倒序相加求和:1到9 1+9=10 2+8=10。

所以便有首项加末项乘以项数除以二。

1+1/1*2+1/2*3+1/3*4+...+1/99*100=1+(1-1/2)+(1/2-1/3)+...+(1/99-1/100) (裂项)=1+1-1/2+1/2-1/3+...-1/99+1/99-1/100 (消元)=2-1/100=199/1005.错位相减这个可以求出和与求通项公式和首相的关系,常用与等比数列,Sn乘上q(等比的比例常数)如:Sn(数列和)=1+2+4+8+……2^(n-1)+2^n 左右乘上2:2Sn=2+4+8+16+……2^n+2^(n+1) 用后式-前式:Sn=2^(n+1)-1 这就得出了总和与通项式的关系。

题型-数列求和之分组求和法

题型-数列求和之分组求和法

数列求和之分组求和法及其他一、题型要求:分组求和法: 在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式 法求和。

二、例题讲解:1、求数列的前 1 17, , 1n 项和: 1 1,4, 2 n 1 3n 2 ,aaa2、求和: S n 1 3 5 7 L( 1)n (2 n 1)三、练习巩固:1、( 2013-潍坊模拟) 已知等差数列 { a n } 的前 n 项和为 S n ,且 a 3= 5, S 15= 225. (1) 求数列 { a n } 的通项公式;(2) 设 bn2 a n2 n n n,求数列 { b } 的前 n 项和 T .2、( 2014-揭阳模拟)设{a n}是公比为正数的等比数列,a1=2, a3= a2+12.(1)求 { a n} 的通项公式;(2) 设 { b n} 是首项为1,公差为 2 的等差数列,求数列{ a n+b n} 的前n项和S n.3、( 2011-北湖区校级月考)设等比数列 { a n } 的前 n 项和为S n,已知3S n 4a3 a1,且a2 a3 20 。

(1)求数列 { a n } 的通项公式;(2)设bn ann ,求数列{ b } 的前 n 项和为T 。

n n4、( 2009-山东模拟)设{ a n}为等差数列,S n为数列 { a n } 的前n项和,已知S7 7, S15 75 ,(1)求数列{ a n}的通项公式;(2)若b n 2 a n 3 ,求数列 { b n } 的前n项和 T n5、( 2015 -中山模拟) 设等差数列 a n }的前 n项和为Sn ,且 a 28, S440错误 ! 未找到引用源。

.数列bn的前 n 项和为Tn ,且T n2b n 3, n N .(1)求数列a n , bn的通项公式;a n 为奇数c nn(2)设 b n为偶数, 求数列 c n 的前 n 项和 Pn .n6 2014 a na 1 1 S nn前 n项和,且 S n S n 1 1(n 2) .、(-汕头二模) 数列中,, 是 a(1) 求数列 a n 的通项公式;(2) 若 b na n 2n 1 ,求数列b n 的前 n 项和 T n ,求 T n ;7、(2013 -威海模拟 ) 已知数列 { x n } 的首项 x 1= 3,通项 x n = 2n p + nq ( n ∈ N * , p ,q 为常数 ) ,且 x 1, x 4, x 5 成等差数列.求:(1) p , q 的值;(2) 数列 { x n } 前 n 项和 S n 的公式.倒序相加法 :若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联, 则常可考虑选用倒序相加法, 发挥其共性的作用求和 (这也是等差数列前n 和公式的推导方法)1、求 sin 2 1sin 2 2 sin 2 3 sin 2 88 sin 2 89 的值x 2 ,则 f (1) f (2)f (3) f (4) f ( 1 ) f ( 1) f ( 1) = ______;2、已知 f ( x)x 2 1234通项转换法 :先对通项进行变形,发现其内在特征,再运用分组求和法求和。

分组求和法

分组求和法

分组求和法
分组求和法:就是将数列的项分成二项,而这两项往往是常数或是等差(比)数列,进而利用等差数列或等比数列的求和方法分别求和,然后再合并,从而得到该数列的和。

扩展资料:
数列求和的七种方法:
1、倒序相加法。

倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法。

分组求和法一个数列的通项公式是由几个等差或等比或可求和
的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法。

错位相减法如果一个数列的各项是由一个等差数列和一个等比
数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法。

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

7、迭加法。

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分组求和法 典题导入[例1] (2011·山东高考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前2n 项和S 2n . [自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n(ln 2-ln3)+(-1)nn ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)+[-1+2-3+…+(-1)2n2n ]ln 3=2×1-32n1-3+n ln 3=32n+n ln 3-1.由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.(2013·威海模拟)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n+n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.2.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -1解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n 1+2n -12+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+1-12n .答案 C3.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225.(1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n . 解析:(1)设等差数列{a n }的首项为a 1,公差为d ,由题意,得⎩⎨⎧a 1+2d =5,15a 1+15×142d =225,解得⎩⎨⎧a 1=1,d =2,∴a n =2n -1.(2)∵b n =2a n +2n =12·4n +2n ,∴T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23·4n +n 2+n -23.4.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 解析 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *)(2)S n =21-2n 1-2+n ×1+n n -12×2=2n +1+n 2-2.5.求和S n =1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+12n -1.解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝ ⎛⎭⎪⎫12k1-12=2⎝ ⎛⎭⎪⎫1-12k . ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-122+…+⎝ ⎛⎭⎪⎫1-12n =2[(1+1+…+1n 个-(12+122+…+12n )]=2⎝ ⎛⎭⎪⎫n -12⎝ ⎛⎭⎪⎫1-12n 1-12=12n -1+2n -2.6.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.答案 2 600解析 由a n +2-a n =1+(-1)n知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k .∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+…+100)=50+100+2×502=2 600.7.求和:(1)S n =32+94+258+6516+…+n ·2n +12n; (2)S n =⎝ ⎛⎭⎪⎫x +1x 2+⎝ ⎛⎭⎪⎫x 2+1x 22+…+⎝ ⎛⎭⎪⎫x n +1x n 2.解 (1)由于a n =n ·2n+12n =n +12n , ∴S n =⎝ ⎛⎭⎪⎫1+121+⎝ ⎛⎭⎪⎫2+122+⎝ ⎛⎭⎪⎫3+123+…+⎝ ⎛⎭⎪⎫n +12n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+122+123+ (12)=n n +12+12⎝ ⎛⎭⎪⎫1-12n 1-12=n n +12-12n +1. (2)当x =±1时,S n =4n .当x ≠±1时,S n =⎝ ⎛⎭⎪⎫x +1x 2+⎝ ⎛⎭⎪⎫x 2+1x 22+…+⎝ ⎛⎭⎪⎫x n +1x n 2=⎝ ⎛⎭⎪⎫x 2+2+1x 2+⎝ ⎛⎭⎪⎫x 4+2+1x 4+…+⎝ ⎛⎭⎪⎫x 2n+2+1x 2n=(x 2+x 4+…+x 2n)+2n +⎝ ⎛⎭⎪⎫1x2+1x4+…+1x 2n=x 2x 2n -1x 2-1+x -21-x -2n 1-x -2+2n =x 2n -1x 2n +2+1x 2n x 2-1+2n .∴S n =⎩⎪⎨⎪⎧4n x =±1,x 2n-1x 2n +2+1x 2n x 2-1+2n x ≠±1.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则这个数列前30项的绝对值的和是________. 答案 765解析 由题意知{a n }是等差数列,a n =-60+3(n -1)=3n -63,令a n ≥0,解得n ≥21. ∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+(a 21+…+a 30)=S 30-2S 20=-60+90-63×302-(-60+60-63)×20=765.9.数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________. 答案 66解析 当n =1时,a 1=S 1=-1. 当n ≥2时,a n =S n -S n -1=2n -5.∴a n =⎩⎪⎨⎪⎧-1 n =12n -5 n ≥2.令2n -5≤0,得n ≤52,∴当n ≤2时,a n <0,当n ≥3时,a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66. 10.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.11.(2012·课标全国)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 ∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =15×10+2342=1 830.12.已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前 2 013项之和S 2 013等于 ( )A .1B .2 010C .4 018D .0 答案 C解析 由已知得a n =a n -1+a n +1 (n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 013=6×335+3,∴S 2 013=S 3=4 018. 13.设221)(+=xx f ,利用课本中推导等差数列前n 项和公式的方法,可求 )0()4()5(f f f ++-+-Λ)6()5(...f f +++的值为A .23B .2C .22D .22 解:由于22)1()(=-+x f x f ,则原式)]5()4([)]6()5({[21f f f f +-++-=)]}5()6([-+++f f Λ23221221=⨯⨯=,选A14.数列}{n a 的前n 项和为n S ,满足:11=a ,t S t tS n n 3)32(31=+--,其中0>t ,+∈N n 且2≥n (Ⅰ)求证:数列}{n a 是等比数列;(Ⅱ)设数列}{n a 的公比为)(t f ,数列}{n b 满足1111,()(2),n n b b f n b -==≥求n b 的通项式.(Ⅲ)记,12221254433221+--++-+-=n n n n n b b b b b b b b b b b b T Λ求证:.920-≤n T 解(Ⅰ)当2≥n 时,t S t tS n n 3)32(31=+--① ,t S t tS n n 3)32(31=+-+②②—①得:0)32(31=+-+n n a t ta 1233n n a t a t++∴=(2≥n ) 又11211,3()(23)3a t a a t a t =+-+=,解得:tt a 3322+=, nn a a a a a a 12312+===∴Λ233t t += }{n a ∴是首项为1,公比为233t t+的等比数列。

相关文档
最新文档