【全国百强校】北京101中学2017-2018学年下学期高一年级期中考试数学试题
北京101中学-年下学期高一年级期中考试数学试卷及答案
北京101中学2017-2018学年下学期高一年级期中考试数学试卷一、选择题:本大题单选,共8小题,每小题5分,共40分.1. 在ABC ∆中,4,60,45a A B ==︒=︒,则边b 的值为( ) A.364B. 222+C. 62D.132+2. 已知等差数列}{n a 的公差为2,若431,,a a a 成等比数列,则2a 等于( ) A. 9 B. 3 C. -3 D. -63. 下列结论正确的是( )A. 若bc ac <,则b a < B . 若22a b <,则b a < C. 若0,<>c b a ,则bc ac <D. 若b a <,则b a >4. 若不等式022>-+bx ax 的解集为}21|{<<x x ,则实数b a ,的值为( ) A. 3,1==b a B. 3,1=-=b a C. 3,1-=-=b aD. 3,1-==b a5. 在ABC ∆中,2,2,cos b ac c a B ==的值为 ( )A. 14B. 34C. 4D. 36. 点)1,(a 在直线042=+-y x 的右下方,则a 的取值范围是( ) A. ),2(+∞-B. )2,(--∞C. ),1(+∞D. )1,(-∞7. 为维护国家主权和领土完整,我海监船310号奉命赴钓鱼岛海域执法巡航,当我船航行到A 处时测得钓鱼岛在我船北偏东45o方向上,我船沿正东方向继续航行20海里到达B 处后,又测得钓鱼岛在我船北偏东15o 方向上,则此时B 处到钓鱼岛的距离为( )A. 10海里B. 20海里8. 已知1)1,1(=f ,*),(N n m f ∈(m 、*)N n ∈,且对任意m 、*N n ∈都有: ①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+.给出以下三个结论:(1)9)5,1(=f ;(2)16)1,5(=f ;(3)26)6,5(=f . 其中正确的个数为( ) A. 0 B. 1 C. 2 D. 3二、填空题:本大题共6小题,每小题5分,共30分.9. 在等差数列{}n a 中,39741=++a a a ,27963=++a a a ,则前9项之和9S= .10. 已知1x >,函数41y x x =+-的最小值是 . 11.111133557+++⨯⨯⨯1(21)(21)n n +=-+ .12.变量,x y 满足约束条件1y x x y x a ≤⎧⎪+≥⎨⎪≤⎩,若2z x y =-的最大值为5,则a 的值是 .13. 把形如nM m =*(,)m n N ∈的正整数表示成各项都是整数、公差为2的等差数列的前m 项和,称作“对M 的m 项分划”. 例如,把9表示成293135==++,称作“对9的3项分划”,把64表示成364413151719==+++,称作“对64的4项分划”. 据此,对324的18项分划中最大的数是_________________;若3M m =的m 项分划中第5项是281,则m 的值是_________________. 14.给出下列命题: ①ba b a 11,0<<<则若; ②已知0,0a b >>,则2a b aba b+≥≥+; ③22,0b ab a b a >><<则若; ④lg9lg111⋅<; ⑤11,a b a b>>若,则0,0a b ><; ⑥正数,x y 满足111x y+=,则2x y +的最小值为6; 其中正确的命题序号是 .三、解答题:本大题共6小题,共50分.15. (本小题满分8分)在等比数列{}n a 中,141.5,96,a a =-=求,n q S . 16. (本小题满分8分)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且105,30c A C ==︒=︒,求:(1)b 的值;(2)ABC ∆的面积.17. (本小题满分8分)已知函数21()(1)(1)2f x a x a x =-+--(1)若54a =,求使()0f x <成立的x 的取值范围; (2)若函数()0f x <对任意x R ∈恒成立,求a 的取值范围.18. (本小题满分8分)某公司计划用不超过50万元的资金投资B A ,两个项目,根据市场调查与项目论证,B A ,项目的最大利润分别为投资额的80%和40%,而最大的亏损额为投资额的40%和10%,若要求资金的亏损额不超过8万元,问投资者对B A ,两个项目的投资各为多少万元,才能使利润最大?最大利润为多少?19. (本小题满分8分)设数列{}n a 的前n 项和为22,n S S n n =,数列{}n b 为等比数列,且11,a b =()2211b a a b -=.(1)求数列{}n a 和{}n b 的通项公式; (2)设nnn b a c =,求数列{}n c 的前n 项和n T . 20. (本小题满分10分)已知点(,)n n a ()n N *∈在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项.(1)求数列{}n b 的通项公式;(2)设83n n c b n =++,数列{}n d 满足11d c =,1n n d d c +=(*)n ∈N . 求数列{}n d 的前n 项和n D ;(3)在(2)的基础上,又设()g x 是定义在正整数集上的函数,对于任意的正整数12,x x ,恒有12()g x x 1221()()x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列1()21n n d g d +⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是否为等差数列,并说明理由.【试题答案】1. A2. D3. C4. B5. B6. A7. C8. D9. 99 10. 5 11. 21nn +12. 2 13. 35,17 14. ②③④⑤15. 4q =-,3(1(4))10n n S =---16. 2=b ,231+=S . 17.(1){|21}x x -<<(2)当1a =时,显然()0f x <成立, 当1a <时,由10a <⎧⎨∆<⎩得{|11}a a -<<,综上,{|11}a a -<≤ 18. 解:设投资者对A 、B 两个项目的投资分别为y x ,万元。
2018北京101中学高一(下)数学期中考试试卷
2018北京101中学高一(下)期中数 学一、选择题共10小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 在等差数列{a n }中,如果a 1+a 2=25,a 3+a 4=45,则a 1=( )A. 5B. 7C. 9D. 10 2. tan (α-4π)=31,则tan α=( ) A. 2 B. -2 C. 21 D. -21 3. 在△ABC 中,若bcosA=a sinB ,则∠A 等于( ) A. 30° B. 45° C. 60° D. 90°4. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c. 己知a=5,c=3,cosA=63,则b=( ) A. 1 B. 2 C. 25 D. 65. 设a ,b ∈R ,下列不等式中一定成立的是( )A. a 2+3>2aB. a 2+b 2>0C. a 3+b 3≥a 2b+ab 2D. a+a1≥2 6. 数列{a n }为公比为q (q ≠1)的等比数列,设b 1=a 1+a 2+a 3+a 4,b 2=a 5+a 6+a 7+a 8,…,b n =a 4n -3+a 4n -2+a 4n -1+a 4n ,则数列b n ( )A. 是等差数列B. 是公比为q 的等比数列C. 是公比为q 4的等比数列D. 既非等差数列也非等比数列 7. 在超市中购买一个卷筒纸,其内圆直径为4cm ,外圆直径为12cm ,一共卷60层,若把各层都视为一个同心圆,令π=3.14,则这个卷筒纸的长度(精确到个位)为( )A. 17mB. 16mC. 15mD. 14m8. 已知数列{a n }是等差数列,S n 为其前n 项和. 若6193=S S ,则126S S =( ) A. 101 B. 103 C. 105 D. 107 9. 下列函数中,最小值为4的函数是( )A. y=x 3+34xB. y=sinx+x sin 4C. y=log 3 x+log x 81D. y=e x+4e -x 10. 某商品的价格在近4年中价格不断波动,前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是( )A. 不增不减B. 约增1.4%C. 约减9.2%D. 约减7.8%二、填空题共6小题。
北京市海淀101中学2016-2017学年高一数学下学期期中试题(含解析)
北京101中学2016-2017学年下学期高一年级期中考试数学试卷(本试卷满分120分,考试时间100分钟)一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项. 1.在ABC △中,4a =,60A =︒,45B =︒,则边b 的值为().A .364 B .2+ C . D .1【答案】A【解析】根据正弦定理sin sin a b A B =,可得4sin60sin 45b=︒︒,∴4sin 45sin 60b ︒==︒, ∴A 项正确.2.已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于().A .9B .3C .3-D .6-【答案】D【解析】∵1a ,3a ,4a 成等比数列,所以有214ba a a =⋅, 21(2)a d ⇒+,11(3)a a d =+, 1a d ⇒⋅,24d =-,又∵2d =,∴18a =-, ∴2826a =-+=-, 故选D .3.下列结论正确的是().A .若ac bc <,则a b <B .若22a b <,则a b <C .若a b >,0c <,则ac bc <D ,则a b >【答案】C【解析】对于A ,若0c <,不成立,对于B ,若a ,b 均小于0或0b <,不成立,对于D ,其中0a ≥,0b >,平方后有a b <,不成立,故选C .4.已知13a -≤≤,24b ≤≤,则2a b -的取值范围是().A .[]6,4-B .[]0,10C .[]4,2-D .[]5,1-【答案】A【解析】∵[1,3]a ∈-,∴2[2,6]a ∈-, ∵[2,4]b ∈,∴[4,2]b -∈--, 则2[6,4]a b -∈-, 故选A .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若2b a c =,且2c a =,则cos B =().A .41B .43C .42 D .32 【答案】B【解析】将2c a =代入得:222b ac a ==,即b =,∴2222222423cos 244a c b a a a B ac a +-+-===, 故选B .6.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:1si c )s (n o f x x x =+,2()f x x =3()sin f x x =,则().A .1()f x ,2()f x ,3()f x 为“同形”函数B .1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数C .1()f x ,3()f x 为“同形”函数,且它们与2()f x 不为“同形”函数D .2()f x ,3()f x 为“同形”函数,且它们与1()f x 不为“同形”函数 【答案】B【解析】∵1()sin cos f x x x =+, π4x ⎛⎫=+ ⎪⎝⎭,2()f x x =+3()sin f x x =,则1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数, 选B .7.已知函数21()(2cos 1)sin2cos42f x x x x =-+,若π,π2α⎛⎫∈ ⎪⎝⎭且()f α=α的值是().A .5π8B .11π16C .9π16D .7π8【答案】C【解析】1()cos2sin 2cos42f x x x x =+,11sin 4cos422x x =+, 1(sin 4cos4)2x x =+,π44x ⎛⎫=+ ⎪⎝⎭, ∴π,π2α⎛⎫∈ ⎪⎝⎭,∴π9174π,π444α⎛⎫+∈ ⎪⎝⎭,若()f αππ42π()42x k k +=+∈Z ,ππ162kα=+,当1k =时, 9π16α=, 故选C .8.已知(1,1)1f =,(,)(,)f m n m n ∈∈N N **,且对任意m ,n ∈N *都有: ①(,1)(,)2f m n f m n +=+;②(1,1)2(,1)f m f m +=.以下三个结论:①(1,5)9f =;②(5,1)16f =;③(5,6)26f =. 其中正确的个数为().A .0B .1C .2D .3【答案】D【解析】∵(,1)(,)2f m n f m n +=+,(1,1)1f =,∴{}(,)f m n 是以1为首项,2为公差的等差数列, ∴(1,)21f n n =-. 又∵(1,1)2(,1)f m f m +=,∴{}(,1)f m 是以1为首项2为公比的等比数列, ∴(,1)21f n n =-, ∴(,1)2?12f m n m n +=-+. 由(1,5)2519f =⨯-=,故(1)正确. 由(5,1)2416f ==,故(2)正确. 由(5,6)242626f =+⨯=,故(3)正确. 故答案为3.二、填空题共6小题.9.在等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则前9项之和9S =__________. 【答案】99【解析】在等差数列中,14739a a a ++=, 36927a a a ++=,∴413a =,69a =,∴4622a a +=,又4619a a a a +=+, ∴数列{}n a 的前9项之和199()92a a S +⨯=, 2292⨯=, 99=.10.已知1x >,函数41y x x =+-的最小值是__________. 【答案】5 【解析】∵1x >, ∴41y x x =+-, 411151x x =+-+=-≥, 当且仅当3x =时,“=”成立,故最小值为5.11.计算:1111133557(21)(21)n n ++++=⨯⨯⨯-+__________.【答案】21nn + 【解析】原式111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭111221n ⎛⎫=- ⎪+⎝⎭ 21nn =+.12.在等比数列{}n a 中,12a =-,454a =-,则数列{}n a 的前n 项和n S =__________. 【答案】13n -【解析】∵14254a a =-⎧⎨=-⎩,∴327q =+,即3q =+, ∴12(3)n n a -=⨯+, ∵1(1)1n n a q S q-=-,2(13)13n --=-,13n =-.13.在ABC △中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,则ABC △的形状为__________. 【答案】等边三角形【解析】∵lgsin A ,lgsin B ,lgsin C 成等差数列, 得lgsin lgsin 2lgsin A C B +=,即2sin sin sin B A B =①, 又三内角A 、B 、C 也成等差数列, ∴60B =︒, 代入①得3sin sin 4A B =②, 设60A α=︒-,60B α=︒+, 代入②得3sin(60)sin(60)4αα︒+︒-=,22313cos sin 444αα⇒-=, 即2cos 1α=, ∴0α=︒, ∴60A B C ===︒, ∴为等边三角形.14.给出下列命题:①若0a b <<,则11a b <;②若0a >,0b >,则2a b ab a b++;③若0a b <<,则22a ab b >>;④lg9lg111⋅<;⑤若a b >,11a b>,则0a >,0b <;⑥正数x ,y 满足111x y+=,则2x y +的最小值为6.其中正确命题的序号是__________. 【答案】②③④⑤【解析】①令2a =-,1b =-,112a =-,11b=-, 11a b>,不符合. ②若0a >,0b >,则2a bab +(当且仅当a b =时,取等号),11ab ab a b =-+⎭,00=>≥,ab a b+,综上,2a b aba b ++. ③若0a b <<,则20a ab >>,20ab b >>, 因此,22a ab b >>,故③正确. ④2lg9lg11lg9lg112+⎛⎫⋅< ⎪⎝⎭,22lg99lg100122⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭, 故④正确. ⑤若a b >,111100b a a b a b ab->⇔->⇔>, ∴0a bab-<,则0ab <, ∴0a >,0b <,⑤正确.⑥正数x ,y 满足111x y +=,则112(2)x y x y x y ⎛⎫+=++ ⎪⎝⎭,2123y xx y=++++≥ ⑥错,∴②③④⑤正确.三、解答题(共5小题,分值分别为8分、8分、10分、12分、12分,共50分)15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且c =105A =︒,30C =︒.求: (1)b 的值. (2)ABC △的面积. 【答案】(1)2(2【解析】(1)∵105A =︒,30C =︒,∴45B =︒,又C =1sin 2C =, ∴由正弦定理sin sin b c B C =得:sin 221sin 2C Bb C===.(2)2b =,c =sin sin105A =︒, sin(6045)=︒+︒,sin60cos45cos60sin45=︒︒+︒︒,=∴1sin 2ABC S bc A =△,122=⨯,16.某工厂生产的某种产品,当年产量在150吨至250吨之间时,年生产总成本y (万元)与年产量x (吨)之间的关系可近似地表示成230400010xx y +=-,问年产量为多少时,每吨的平均成本最低?并求出该最低成本.【答案】年产量为200吨时,每吨的平均成本最低,最低为10万元. 【解析】设每吨的平均成本W (万元/t ),则400030301010y x W x x ==+-=≥, 当且仅当400010x x=,200x =(t )的每吨平均成本最低,且最低成本为10万元.17.已知函数ππ()sin 2sin 2cos 266f x x x x a ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭(a ∈R ,a 为常数).(1)求函数的最小正周期. (2)求函数的单调递减区间.(3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2-,求a 的值.【答案】见解析【解析】(1)ππ()2sin 2cos cos 23sin 2cos 22sin 266f x x x a x x a x a ⎛⎫=++=++=++ ⎪⎝⎭, 所以()f x 的最小正周期2ππ2T ==. (2)单调递减区间为2ππ,π()63k k k π⎡⎤++∈⎢⎥⎣⎦Z .(3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,所以当π7π266x +=即π2x =时,()f x 取得最小值.所以ππ2sin 2226a ⎛⎫⋅++=- ⎪⎝⎭,所以1a =-.18.设数列{}n a 的前n 项和为n S ,22n S n =,数列{}n b 为等比数列,且11a b =,2211()b a a b -=. (1)求数列{}n a 和{}n b 的通项公式. (2)设nn na cb =,求数列{}n c 的前n 项和n T .【答案】(1)42n a n =-,1124n n b -⎛⎫= ⎪⎝⎭(2)565499n n n T -=+ 【解析】19.已知点(,)()n n a n ∈N *在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项. (1)求数列{}n b 的通项公式.(2)设83n n c b n =++,数列{}n d 满足11d c =,()n n l d c n d +∈=N *.求数列{}n d 的前n 项和n D .(3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是否为等差数列,并说明理由. 【答案】见解析【解析】(1)依题意得22n a n =--,故14a =-. 又268n n T S n =+,即34n n T S n =+,所以,当2n ≥时,113()43462n n n n n n b T T S S a n --=-=-+=+=--. 又111134348b T S a ==+=+=-也适合上式, 故62n b n =--.(2)因为83628321n n c b n n n n =++=--++=+, 121n n d n d c d +==+,因此112(1)(*)n n d d n ++=+∈N .由于113d c ==,所以{}1n d +是首项为114d +=,公比为2的等比数列. 所以111422n n n d -++=⨯=,所以121n n d +=-.所以23124(21)2222421n n n n D n n n ++-=++⋯+-=-=---(). (3)方法一:111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 则111111111(2)2(2)2(2)(2)221224241n n n n n n n n n n n d d g g g g g a g a d d ----++-++⎛⎫⎛⎫ ⎪ ⎪+⎝⎭⎝⎭===+=+++.所以111122114n n n n d d g g a d d --++⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=++. 因为已知a 为常数,则数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.方法二:因为121221()()()g x x x g x x g x =+成立,且(2)g a =, 所以111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 1221222(2)22(2)2(2)22(2)2(2)n n n n n g g g g g -----⎡⎤=++=⨯+⎣⎦, 123313322(2)22(2)2(2)32(2)2(2)n n n n n g g g g g -----⎡⎤⎣⎦=⨯++=⨯+,1111(1)2(2)2(2)2(2)2n n n n n g g n g an ----==-⨯+=⋅=⋅,所以11122124n n n n d g an a n d -++⎛⎫⎪⋅⎝⎭==+. 所以数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.。
【精准解析】北京市101中学2017-2018学年高一下学期期末考试数学试题
卷
一、选择题共 10 小题.在每小题列出的四个选项中,选出符合题目要求的一项.
1.不等式
x x
1 2
0
的解集是(
)
A. x 1 x 2
B. x 1 x 2
C. x x 2 或 x 1 D.
x x 2
【答案】B
【解析】
故选:C. 【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题.
7.如图是正方体的平面展开图,在这个正方体中,有以下四个命题:① BM 平面 ADNE; ② CN / / 平面 ABFE;③平面 BDM P 平面 AFN;④平面 BDE 平面 NCF.其中正确命题的
2.设等差数列 an 的前 n 项和 Sn ,若 a4 a10 4 ,则 S13 ( )
A. 13
B. 14
C. 26
Hale Waihona Puke D. 52【答案】C【解析】
【分析】
由已知结合等差数列的性质求得 a7,再由等差数列的前 n 项和得答案.
【详解】解:在等差数列{an}中,由 a4+a10=4,得 2a7=4,即 a7=2.
正确;
由 BD∥FN,BE∥CN,且 BD∩BE=B,证明平面 BDE∥平面 NCF,判断④错误.
【详解】解:把正方体的平面展开图还原成正方体 ABCD﹣EFMN,如图 1 所示;
对于①,平面 BCMF∥平面 ADNE,BM⊂平面 BCMF, ∴BM∥平面 ADNE,①错误;
对于②,平面 DCMN∥平面 ABFE,CN⊂平面 DCMN, ∴CN∥平面 ABFE,②正确;
【分析】
由正弦定理得 a2
北京市101中学2018_2019学年高一数学下学期期中试题(含解析)
北京101中学2018-2019学年下学期高一年级期中考试数学试卷一、选择题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.函数sin 3cos3y x x =+的最小正周期是( ) A. 6π B. 2πC.23πD.3π 【答案】C 【解析】 【分析】逆用两角和的正弦公式,把函数的解析式化为正弦型函数解式,利用最小正周期公式求出最小正周期.【详解】sin 3cos32(3))224y x x y x x x π=+⇒=+=+, 223T ππω==,故本题选C. 【点睛】本题考查了逆用两角和的正弦公式、以及最小正周期公式,熟练掌握公式的变形是解题的关键.2.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A. 72B. 60C. 48D. 36【答案】B 【解析】 【分析】由等差数列的性质可知:由51340a a +=,可得9240a =,所以可求出920a =,再次利用此性质可以化简8910a a a ++为93a ,最后可求出8910a a a ++的值.【详解】根据等差数列的性质可知:513994024020a a a a +=⇒=⇒=,89109992360a a a a a a ==++=+,故本题选B.【点睛】本题考查了等差数列下标的性质,考查了数学运算能力.3.在ABC ∆中,已知sin 2sin()cos C B C B =+,那么ABC ∆一定是( ) A. 等腰直角三角形 B. 等腰三角形 C. 直角三角形 D. 等边三角形【答案】B 【解析】试题分析:利用正余弦定理将sinC =2sin (B +C )cosB 转化为22222a c b c a a b ac+-=⨯∴=,三角形为等腰三角形 考点:正余弦定理4.00sin15cos15-的值等于( )B. -C. 2-D.2【答案】C 【解析】 【分析】因为000154530=-,所以可以运用两角差的正弦公式、余弦公式,求出00sin15cos15-的值.【详解】0sin(4530)c sin15cos os(43)5501=----,00000000sin 45cos30cos 45sin 30(cos 45cos3sin15co 0sin s1545sin 30)︒︒⇒=--+-,001122sin15cos 221522222⇒=⨯---⨯=--,故本题选C. 【点睛】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:00sin15cos15==-,00sin15cos125⇒==--.5.已知,,a b c 依次成等比数列,那么函数2()f x ax bx c =++的图象与x 轴的交点的个数为( ) A. 0 B. 1 C. 2 D. 1或2【答案】A 【解析】 【分析】由,,a b c 依次成等比数列,可得2b ac =,显然,,0a b c ≠,二次方程20ax bx c ++=的判别式为22430b ac b =-∆-<=,这样就可以判断出函数2()f x ax bx c =++的图象与x 轴的交点的个数.【详解】因为,,a b c 依次成等比数列,所以2b ac =,显然,,0a b c ≠,二次方程20ax bx c ++=的判别式为22430b ac b =-∆-<=,因此函数2()f x ax bx c =++的图象与x 轴的交点的个数为零个,故本题选A.【点睛】本题考查了等比中项的概念、一元二次方程根的判别式与相应二次函数与x 轴的交点个数的关系.6.在ABC ∆中,若45,B b c ===A =( ) A. 15B. 75C. 75或105D. 15或75【答案】D 【解析】分析:先根据正弦定理求C ,再根据三角形内角关系求A.详解:因为sin sin b B c C =,所以πsin sin c B C b === 所以π2π,33C = 因此5ππ,1212A =, 选D.点睛:在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.7.在ABC ∆中,已知sin :sin :sin 1:1:A B C =12ABC S ∆=,则AB BC BC CA CA AB ⋅+⋅+⋅的值是( )A. 2C. 2-D.【答案】C 【解析】 【分析】在ABC ∆中,根据正弦定理,可以把sin :sin :sin A B C =可以进一步判断三角形的形状,利用12ABC S ∆=和三角形的形状,可以求出三角形的三条边,最后利用平面向量的数量积公式求出AB BC BC CA CA AB ⋅+⋅+⋅的值. 【详解】在ABC ∆中,设内角,,A B C 所对边,,a b c ,根据正弦定理,可知sin sin sin a b cA B C==,已知sin :sin :sin 1:1:A B C =::a b c =然ABC ∆是等腰直角三角形,即,a b c ==,12ABC S ∆=11122b b b ⇒⋅=⇒=,因此有1,a b c ===cos()cos()cos()2424AB BC BC CA CA AB cb ab bc ππππππ⋅+⋅+⋅=⋅-+⋅-+⋅-=-,故本题选C.【点睛】本题考查了正弦定理、三角形面积公式、三角形形状的识别,以及平面向量的数量积运算,平面向量的夹角是解题的关键也是易错点.8.数列{}n a 满足n a =123...nn ++++,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A.2nn + B.22nn + C.1n n + D.21nn + 【答案】B 【解析】 【分析】利用等差数列的前n 项和公式,化简数列{}n a 的通项公式,再利用裂项相消法求出数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】(1)123...12,2n n n n n n n a ++++++===114(1)(2)n n a a n n +=++,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为11114()233445(1)(2)S n n =+++⨯⨯⨯++,111111111124()4()23344512222nS n n n n ⇒=-+-+-+++-=-=++++,故本题选B.【点睛】本题考查了等差数列的前n 项和,利用裂项相消法求数列的前n 项和.二、填空题共6小题,每小题5分,共30分.9.在等比数列{}n a 中,253,81a a ==,则n a =_________. 【答案】3n -1【解析】因为在等比数列{}n a 中,1254133,81,{81a q a a a q ===∴=,解得111,3,3n n a q a -==∴= ,故答案为13n - .10.已知1sin cos 5αα-=,则sin 2α=____________.【答案】2425【解析】因为1sin cos5αα-=,所以221sin cos 2sin cos 25αααα+-=,即11sin225α-=,则24sin225α=.11.在ABC ∆中,若cos (3)cos b C a c B =-,则cos B = _________. 【答案】13【解析】 【分析】运用正弦定理实现边角转化,然后逆用二角和的正弦公式、三角形内角和定理、以及诱导公式,化简cos (3)cos b C a c B =-,最后求出cos B 的值. 【详解】根据正弦定理,可知sin sin sin a b cA B C==,由cos (3)cos b C a c B =-,可得 sin cos 3sin cos sin cos B C A B C B ⋅=⋅-⋅sin cos sin cos 3sin cos B C C B A B⇒⋅+⋅=⋅,sin()3sin cos B C A B ⇒+=⋅,sin()3sin cos sin 3sin cos A A B A A B π⇒-=⋅⇒=⋅,(0,)sin 0A A π∈∴≠,所以1cos .3B =【点睛】本题考查了正弦定理、逆用二角和的正弦公式、诱导公式,考查了公式恒等变换能力.12.在数列{}n a 中,111,21n n a a a n +=-=+,则数列通项n a = ________. 【答案】2n 【解析】 【分析】根据递推公式特征,可以采用累加法,利用等差数列的前n 项和公式,可以求出数列{}n a 的通项公式.【详解】当2n ≥时,1122332211()()()()()n n n n n n n a a a a a a a a a a a a -----=-+-+-++-+-+,2(211)(21)(23)(25)5312n n n a n n n n -+⇒=-+-+-++++==,当11,n a =也适用,所以2n a n =.【点睛】本题考查了累和法求数列通项公式、等差数列的前n 项和公式,考查了数学运算能力.13.如图,点P 是单位圆上的一个动点,它从初始位置0P (单位圆与x 轴正半轴的交点)开始沿单位圆按逆时针方向运动角02παα⎛⎫<< ⎪⎝⎭到达点1P ,然后继续沿单位圆逆时针方向运动3π到达点2P ,若点2P 的横坐标为45-,则cos α的值等于_________.【解析】 【分析】由三角函数的定义可以求出2P ,判断点2P 的位置,由已知点2P 的横坐标为45-,利用同角的三角函数关系,可以求出点2P 的纵坐标,可以得到4cos()35πα+=-, 3sin()35πα+=,再利用二角差的余弦公式求出cos α的值.【详解】由三角函数的定义可知:点2P 的坐标为(cos(),sin())33ππαα++,因为02πα<<,所以5336πππα<+<,所以点2P 在第二象限,已知点2P 的横坐标为45-,即4cos()35πα+=-,所以3sin()35πα+==,因此有413cos[()]cos()cos sin()sin 333333525os c ππππππαααα+-=+++=-⨯+==.【点睛】本题考查了三角函数定义、同角的三角函数关系、以及二角差的余弦公式,考查了数学运算能力.14.设等差数列{}n a 满足22222244484857sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差()1,0d ∈-,若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是________. 【答案】9,8ππ⎛⎫ ⎪⎝⎭【解析】 【分析】由同角三角函数关系,平方差公式、逆用两角和差的正弦公式、等差数列的性质,可以把已知等式22222244484857sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+, 化简为sin(4)1d -=,根据()1,0d ∈-,可以求出d 的值,利用等差数列前n 项和公式和二次函数的性质,得到对称轴所在范围,然后求出首项1a 的取值范围.【详解】22222244484857sin cos cos cos sin sin sin()a a a a a a a a -+-+2222484857sin (1sin )cos (1cos )sin()a a a a a a ---=+2222484857sin cos cos sin sin()a a a a a a ⋅-⋅=+4848484857(sin cos cos sin )(sin cos cos sin )sin()a a a a a a a a a a ⋅-⋅⋅⋅+⋅=+484857sin()sin()sin()a a a a a a -⋅+=+,数列{}n a 是等差数列,所以4857a a a a +=+,484a a d -=-,所以有sin(4)1d -=,而()1,0d ∈-,所以4(0,4)d -∈,因此428d d ππ-=⇒=-,2111(1)(1)2281616n n n n n n S na d na a n πππ--⎛⎫=+=-⨯=-++ ⎪⎝⎭,对称轴为:1162a n ππ+=,由题意可知:当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值, 所以1168.59.52a ππ+<<,解得198a ππ<<,因此首项1a 的取值范围是9,8ππ⎛⎫⎪⎝⎭. 【点睛】本题考查了同角三角函数关系,两角和差的正弦公式,考查了等差数列的性质、前n 项和公式,以及前n 项和n S 取得最大值问题,考查了数学运算能力.三、解答题共5小题,共50分,解答应写出文字说明、演算步骤或证明过程. 15.已知12cos θ13=,()θπ,2π∈,求πsin θ6⎛⎫- ⎪⎝⎭以及πtan θ4⎛⎫+ ⎪⎝⎭的值.【答案】127;2617- 【解析】 【分析】根据同角三角函数,求出sin θ,tan θ;再利用两角和差公式求解. 【详解】12cos 013θ=>,(),2θππ∈ 3,22πθπ⎛⎫∴∈⎪⎝⎭5sin 13θ∴==-,sin 5tan cos 12θθθ==-5121sin sin cos cos sin 66613132πππθθθ⎛⎫⎛⎫∴-=-=--⨯= ⎪ ⎪⎝⎭⎝⎭5tan tan17412tan 54171tan tan 11412πθπθπθ+-+⎛⎫+=== ⎪⎛⎫⎝⎭---⨯ ⎪⎝⎭【点睛】本题考查同角三角函数和两角和差公式,解决此类问题要注意在求解同角三角函数值时,角所处的范围会影响到函数值的正负.16.已知等差数列{}n a 满足12 23n n a a n +-=+. (1)求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为l ,公比为2的等比数列,求数列{}n b 的前n 项和. 【答案】(Ⅰ)21n a n =-;(Ⅱ)221n n --. 【解析】分析:(Ⅰ)设等差数列{}n a 的公差为d , 由 1223n n a a n +-=+ ,令 12n =、可得11+2537.a d a d =⎧⎨+=⎩,解得112.a d =⎧⎨=⎩,从而可得结果;(Ⅱ)由数列{}n n ab +是首项为1,公比为2的等比数列,可得12n n n a b -+=,结合(1)可得()1221n n b n -=--,利用等差数列与等比数列的求和公式,根据分组求和法可得数列{}n b 的前n 项和. 详解:设等差数列{}n a 的公差为d , 因为1223n n a a n +-=+,所以21322527.a a a a -=⎧⎨-=⎩所以11+2537.a d a d =⎧⎨+=⎩所以112.a d =⎧⎨=⎩所以()()11211,2,3,n a a n d n n =+-=-=.(Ⅱ)因为数列{}n n a b +是首项为1,公比为2的等比数列,所以12n n n a b -+=因为21n a n =-, 所以()1221n n b n -=--.设数列{}n b 的前n 项和为n S , 则()()1124213521n n S n -⎡⎤=++++-++++-⎣⎦()12112122n n n +--=-- 221n n =--所以数列{}n b 的前n 项和为221.n n --点睛:本题主要考查等差数列及等比数列的通项公式与求和公式和利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积是30,12cos 13A =. (1)求AB AC ⋅;(2)若1c b -=,求a 的值. 【答案】(1)144;(2)5. 【解析】 【分析】(1)由同角的三角函数关系,由12cos 13A =,可以求出sin A 的值,再由面积公式可以求出bc 的值,最后利用平面向量数量积的公式求出AB AC ⋅的值;(2)由(1)可知bc 的值,再结合已知1c b -=,可以求出,b c 的值,由余弦定理可以求出a 的值.【详解】(1)5(0,)sin 13A A π∈∴==,又因为ABC ∆的面积是30,所以 1sin 301562bc A bc ⋅=⇒=,因此12cos 156144;13AB AC cb A ⋅=⋅=⨯= (2)由(1)可知156bc =,与1c b -=联立,组成方程组:1561bc c b =⎧⎨-=⎩,解得1312c b =⎧⎨=⎩或1213c b =-⎧⎨=-⎩,不符合题意舍去,由余弦定理可知:5a ===. 【点睛】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求a ,可以不求出,b c 的值也可以,计算如下:5.a ====18.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【答案】(1)(2【解析】 【分析】(1)利用同角的三角函数关系,可以求出sin C 的值,利用三角形内角和定理,二角和的正弦公式可以求出sin A ,最后利用正弦定理求出BC 长;(2)利用余弦定理可以求出AB 的长,进而可以求出BD 的长,然后在BCD ∆中,再利用余弦定理求出AB 边上中线CD 的长.【详解】(1)(0,)sin C C π∈∴==,sin sin()sin cos cos sin 10A B C B C B C π=--=⋅+⋅=,由正弦定理可知中: sinsin sin sin BC AC AC ABC A B B⋅=⇒== (2)由余弦定理可知:2AB ===,D 是AB 的中点,故1BD =,在CBD ∆中,由余弦定理可知:CD===【点睛】本题考查了正弦定理、余弦定理、同角的三角函数关系、以及三角形内角和定理,考查了数学运算能力.19.若对任意的正整数n,总存在正整数m,使得数列{}n a的前n项和n mS a=,则称{}n a 是“回归数列”.(1)①前n项和为2nnS=的数列{}n a是否是“回归数列”?并请说明理由;②通项公式为2nb n=的数列{}n b是否是“回归数列”?并请说明理由;(2)设{}n a是等差数列,首项11a=,公差0d<,若{}n a是“回归数列”,求d的值;(3)是否对任意的等差数列{}n a,总存在两个“回归数列”{}n b和{}n c,使得()n n na b c n N*=+∈成立,请给出你的结论,并说明理由.【答案】(1)①是;②是;(2)1-;(3)见解析.【解析】【分析】(1)①利用公式11(2,)(1)n nnS S n n NaS n*-⎧-≥∈=⎨=⎩和2nnS=,求出数列{}n a的通项公式,按照回归数列的定义进行判断;②求出数列{}n b的前n项和,按照回归数列的定义进行判断;(2)求出{}n a的前n项和,根据{}n a是“回归数列”,可得到等式,通过取特殊值,求出d的值;(3)等差数列{}n a的公差为d,构造数列111(1),(1)()n nb a n ac n a d=--=-+,可证明{}nb、{}n c是等差数列,再利用等差数列前n项和,及其通项公式,回归数列的概念,即可求出.【详解】(1)①当2,n n*≥∈N时,111222n n nn n na S S---=-=-=,当1n=时,112a S==,当2,n n*≥∈N时,1n nS a+=,1m n∃=+,所以数列{}n a是“回归数列”;②因为2n b n =,所以前n 项和2n S n n =+,根据题意22n n m +=, 因为2(1)n n n n +=+一定是偶数,所以存在(1)2n n m +=,使得n m S a =, 所以数列{n b }是“回归数列”; (2)设{}n a 是等差数列为1(1)(1)22n n n n n S na d n d --=+=+,由题意可知:对任意的正整数n ,总存在正整数m ,使得数列{}n a 的前n 项和n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =,得1(1)d m d +=-,解得12m d=+,公差0d <,所以2m ∴<,又*,1,1m N m d ∈∴=∴=-;(3)设等差数列n a =1(1)a n d +-,总存在两个回归数列111(1),(1)()n n b a n a c n a d =--=-+,显然{}n b 和{}n c 是等差数列,使得()n n n a b c n N*=+∈,证明如下:111(1)(1)(1)n n n b c a n a n a n d a +=--+-+-=, 数列{n b }前n 项和11(1)2n n n B ma a -=-,1,1;2,1n m n m ==== 3n ≥时,(3)22n n -+为正整数,当(3)22n nm -=+时,m n b B =, 所以存在正整数(3)22n nm -=+,使得m n b B =,所以{n b }是“回归数列”,数列{n c }前n 项和n C =1(1)()2n n a d -+,存在正整数(1)12n n m -=+,使得n m C c =,所以{n c }是“回归数列”,所以结论成立.【点睛】本题考查了公式11(2,)(1)n n n S S n n N a S n *-⎧-≥∈=⎨=⎩,等差数列的前n 项和、通项公式,考查了推理能力、数学运算能力.。
北京市海淀区101中学2017-2018学年高一下学期期末考试数学试题(解析版)
北京市海淀区101中学2017-2018学年高一下学期期末考试数学试题一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.不等式102x x +≤-解集是( )A. {}12x x -≤≤B. {}12x x -≤<C. {2x x >或}1x ≤-D. {}2x x <『答案』B『解析』根据题意,102x x +≤-可以变形为(x +1)(x ﹣2)≤0且x ﹣2≠0, 解得﹣1≤x <2,即不等式的解集为{x |﹣1≤x <2}, 故选:B2.设等差数列{}n a 的前n 项和n S ,若4104a a +=,则13S =( ) A. 13B. 14C. 26D. 52『答案』C『解析』在等差数列{a n }中,由a 4+a 10=4,得2a 7=4,即a 7=2.∴S 13=()11371313262a a a+⨯==.故选:C.3.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A. 钝角三角形 B. 直角三角形 C. 锐角三角形D. 不能确定『答案』A『解析』因为在ABC ∆中,满足222sin sin sin A B C +<,由正弦定理知sin ,sin ,sin 222a b c A B C R R R===,代入上式得222a b c +<, 的又由余弦定理可得222cos 02a b c C ab+-=<,因为C 是三角形的内角,所以π(,π)2∈C ,所以ABC ∆为钝角三角形,故选A.4.已知直线1l 的方程为3470x y +-=,直线2l 的方程为3410x y ++=,则直线1l 和2l 的距离为( ) A.85B.95C.45D.910『答案』A『解析』∵已知直线l 1的方程为3x +4y ﹣7=0,直线l 2的方程为3x +4y +1=0,则直线l1和l 2的距离为d =85, 故选:A.5.设某直线的斜率为k ,且k ⎛∈ ⎝⎭,则该直线的倾斜角α的取值范围是( )A. π5π,36⎛⎫⎪⎝⎭ B. π2π,63⎛⎫⎪⎝⎭C. 50ππ,,36π⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭D. 20ππ,,63π⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭『答案』D『解析』直线l 的斜率为k ,倾斜角为α,若k ,tan α20,,6ππ3πα⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭. 故选:D6.对于直线,m n 和平面,αβ,能得出αβ⊥的一组条件是( ) A. m n ⊥,m α,n β B. m n ⊥,m αβ=,n β⊂C. m n ,n β⊥,m α⊂D. m n ,m α⊥,n β⊥『答案』C『解析』A 选项中,根据m n ⊥,m α,n β,得到αβ⊥或αβ∥,所以A 错误;B 选项中,m n ⊥,m αβ=,n β⊂,不一定得到αβ⊥,所以B 错误;C 选项中,因为m n ,n β⊥,所以m β⊥. 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据m n ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C.7.如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM ⊥平面ADNE ;②//CN 平面ABFE ;③平面BDM 平面AFN ;④平面BDE ⊥平面NCF .其中正确命题的序号是( )A. ②③B. ①②③C. ②③④D. ①②③④『答案』A『解析』把正方体的平面展开图还原成正方体ABCD ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①错误;对于②,平面DCMN ∥平面ABFE ,CN ⊂平面DCMN , ∴CN ∥平面ABFE ,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN , ∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B , ∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,同③可得平面BDE ∥平面NCF ,④错误. 综上,正确的命题序号是②③.故选:A8.某几何体的三视图如图所示,则该几何体的体积是( )A. 83B.23C. 2D. 4『答案』B『解析』由几何体的三视图得该几何体是三棱锥P﹣ABC,如图是长方体的一部分,由三视图的数据,AB=BC=2,P到底面的距离为1,∴该几何体的体积:V=1122132⨯⨯⨯⨯=23.故选:B.9.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA为底面矩形的一边,则这样的阳马的个数是( )A. 8B. 12C. 16D. 18『答案』C『解析』根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.10.如图,四棱锥S ABCD-的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD且SO=E是边BC的中点,动点P在四棱锥表面上运动,并且总保⊥,则动点P的轨迹的周长为( )持PE ACA. B. C. 1+ D. 1+『答案』D『解析』分别取CD、SC的中点F、G,连接EF、FG和EG,如图所示;则EF ∥BD ,EF ⊄平面BDS ,BD ⊂平面BDS ∴EF ∥平面BDS 同理FG ∥平面BDS又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG ,, ∴平面EFG ∥平面BDS ,由AC ⊥BD ,AC ⊥SO ,且AC ∩SO =O , 则AC ⊥平面BDS , ∴AC ⊥平面EFG ,∴点P 在△EFG 的三条边上;又EF =12BD =12=1,FG =EG =12SB =122,∴△EFG 的周长为EF +2FG =故选:D.二、填空题共6小题.11.直线:cos106π-+=l x y 的斜率为________.『答案』2『解析』直线l :x cos6π﹣y +1=0,即为直线l ﹣y +1=0,即为y +1,故『答案』.12.设等比数列{}n a 满足24a =,34128a a =,则6a =________.『答案』64『解析』设公比为q ,∵a 2=4,a 3a 4=128,∴4q ×4q 2=128, ∴q 3=8, ∴q =2,∴a 6=a 2q 4=4×24=64, 故『答案』为:64.13.若0a >,0b >,1a b +=,一定有1144ab ab +≥,()22221144ab ab ⎛⎫+≥+ ⎪⎝⎭成立,请将猜想结果填空:1n nn na b a b+≥________. 『答案』144nn +『解析』由a >0,b >0,a +b =1,一定有ab +1ab ≥4+14,(ab )2+(1ab )2≥42+214成立, 可以猜想:1144n n nn n n a b a b +≥+,故『答案』为:144nn +.14.如图,在长方体ABCD A B C D ''''-中,1BC =,2AB =,3BB '=,M 为AB 的中点,点P 在线段C M '上,点P 到直线BB '的距离的最小值为________.『答案』2『解析』连接MC ,由BB '∥CC ',BB '⊄平面MCC ',CC '⊂平面MCC ',可得BB '∥平面MCC ',由点P 到直线BB '的距离的最小值为异面直线BB '和直线C 'M 的距离, 即有直线BB '和平面MCC '的距离即为异面直线BB '和MC '的距离, 也即B 到平面MCC '的距离, 过B 在底面AC 内作BH ⊥MC , 由CC '⊥底面AC ,可得CC '⊥BH , 即有BH ⊥平面MCC ',由BC =BM =1,且BC ⊥BA ,可得BH =2.故『答案』为:2. 15.已知ABC 中,点()1,1A ,()4,2B ,()4,6C -.则ABC 的面积为________.『答案』10『解析』由两点式的直线BC 的方程为262y --=444x ---,即为x +2y ﹣8=0,由点A 到直线的距离公式得BC 边上的高dBC =∴△ABC 的面积为1210, 故『答案』为:10.16.已知()11,A x y ,()22,B x y 两点,满足:22111x y +=,22221x y +=,121212x x y y +=,+的最大值为________.『解析』设A (x 1,y 1),B (x 2,y 2),OA =(x 1,y 1),OB =(x 2,y 2), 由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12, 可得A ,B 两点在圆x 2+y 2=1上, 且OA OB ⋅=1×1×cos ∠AOB =12, 即有∠AOB =60°,即三角形OAB 为等边三角形,AB =1,的几何意义为点A ,B 两点到直线x +y ﹣1=0的距离d 1与d 2之和,显然A ,B 在第三象限,AB 所在直线与直线x +y =1平行, 可设AB :x +y +t =0,(t >0), 由圆心O 到直线AB 的距离d, 可得1,解得t=2,1+,+故『答案』三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{}n a 中,22a =,748a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 解:(1)∵等比数列{a n }中,a 2=2,a 7=8a 4. ∴2×q 5=8×(2×q 2), 解得q =2,当q =2时,a n =2n ﹣1,∴{a n }的通项公式为,a n =2n ﹣1,(2)记S n 为{a n }的前n 项和,a 2=2,q =2, 则a 1=1,则S n =1212n--=2n ﹣1,由S m =63,得S m =2m ﹣1=63,m ∈N , 解得m =6.18.设ABC ∆的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos 45B =,3b =. (1)当6A π∠=时,求a 的值;(2)当ABC ∆的面积为3时,求a c +的值. 解:(1)∵cos 45B =,∴3sin 5B =, 由正弦定理可知:sin sin a bA B=, ∵A =30°,∴sin A =sin30°=12, ∴sin 5sin 2b A a B ==; (2)∵1sin 2ABC S ac B =△,△ABC 的面积为3, ∴3310ac =,∴ac =10, 由余弦定理得:b 2=a 2+c 2﹣2ac cos B ,∴222249210165a c a c =+-⨯⨯=+-,即a 2+c 2=25, 则(a +c )2=a 2+c 2+2ac =25+20=45,故a c +=19.如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足//BC AD ,AB AD ⊥,1AB BC ==.E 为侧棱PB 的中点,F 为侧棱PC 上的任意一点.(1)若F 为PC 的中点,求证://EF 平面P AD ;(2)求证:平面AFD ⊥平面P AB ;(3)是否存在点F ,使得直线AF 与平面PCD 垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.解:(1)因为E ,F 分别为侧棱PB ,PC 的中点,所以//EF BC ,因为//BC AD ,所以//EF AD ,而EF ⊄平面P AD ,AD ⊂平面P AD ,所以//EF 平面P AD ;(2)因为平面ABCD ⊥平面P AC ,平面ABCD平面PAC AC =, 且PA AC ⊥,PA ⊂平面P AC ,所以PA ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PA AD ⊥.又因为AB AD ⊥,PA AB A =,所以AD ⊥平面P AB ,而AD ⊂平面AFD ,所以平面AFD ⊥平面P AB ;(3)在棱PC 上显然存在点F 使得AF PC ⊥.由已知,AB AD ⊥,//BC AD ,1AB BC ==,2AD =.由平面几何知识可得CD AC ⊥.由(2)知,PA ⊥平面ABCD ,所以PA CD ⊥,因为PA AC A =,所以CD ⊥平面P AC .而AF ⊂平面P AC ,所以CD AF ⊥.又因为CD PC C =,所以AF ⊥平面PCD .在PAC ∆中,2PA =,AC =90PAC ∠=︒,可求得,PC =PF =可见直线AF 与平面PCD 能够垂直,此时线段PF 的长为3. 20.如图,Rt OAB ∆的直角边OA 在x 轴上,顶点B 的坐标为()6,8,直线CD 交AB 于点()6,3D ,交x 轴于点()12,0C .(1)求直线CD 的方程;(2)动点P 在x 轴上从点()10,0-出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l 垂直于x 轴,设运动时间为t .①点P 在运动过程中,是否存在某个位置,使得PDA B ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为一边,O ,B ,M ,Q 为顶点的四边形为菱形,并求出此时t 的值.解:(1)直线CD 过点C (12,0),D (6,3),直线方程为030y --=12612x --, 化为一般形式是x +2y ﹣12=0;(2)①如图1中,作DP ∥OB ,则∠PDA =∠B ,由DP ∥OB 得,PA AO =AD AB ,即6PA =38,∴P A =94;∴OP=6﹣94=154,∴点P(154,0);根据对称性知,当AP=AP′时,P′(334,0),∴满足条件的点P坐标为(154,0)或(334,0);②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q,则直线OB的『解析』式为y=43 x,直线PQ的『解析』式为y=43x+403,由440332120y xx y⎧=+⎪⎨⎪+-=⎩,解得48xy=-⎧⎨=⎩,∴Q(﹣4,8);∴PQ10,∴PQ=OB,∴四边形OPQB是平行四边形,又OP=OB,∴平行四边形OPQB是菱形;此时点M与点P重合,且t=0;如图3,当OQ=OB时,设Q(m,﹣12m+6),则有m2+2162m⎛⎫-+⎪⎝⎭=102,解得m;∴点Q;设M的横坐标为a,则62a+=652+或62a+=652+,解得a或a;又点P是从点(﹣10,0)开始运动,则满足条件的t ; 如图4,当Q 点与C 点重合时,M 点的横坐标为6,此时t =16;综上,满足条件的t 值为0,或16,或925+或925-.。
北京101中2017-2018学年高一下学期期末数学试卷Word版含解析.pdf
位置; ( II )求平面 α把该长方体分成的两部分体积的比值.
17.已知函数 f( x )= sinxcosx﹣ cos2x + ,△ ABC 三个内角 A , B,C 的对边分别为 a, b,
c 且 f( A) =1 . ( I) 求角 A 的大小; (Ⅱ)若 a=7, b=5,求 c 的值. 18.某超市随机选取 1000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成 如下统计表,其中 “√表”示购买, “×”表示未购买.
6.在梯形 ABCD 中,∠ ABC= , AD ∥ BC,BC=2AD=2AB=2 ,将梯形 ABCD 绕 AD 所在
的直线旋转一周而形成的曲面所围成的几何体的体积为(
)
A.
B.
C.
D .2π
7.某三棱锥的三视图如图所示,则该三棱锥的表面积是(
)
A .2+
B. 4+
C. 2+2
D.5
8.对于集合 { a1, a2, …, an} 和常数 a0,定义
14.已知函数 f( x)=
.
( 1)若 f ( x)> k 的解集为 { x| x<﹣ 3 或 x>﹣ 2} ,则 k 的值等于 ______; ( 2)对任意 x>0, f( x)≤ t 恒成立,则 t 的取值范围是 ______ .
三、解答题:本大题共 5 小题,共 50 分 .
15.海关对同时从 A , B, C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此商
w=
为集合 { a1, a2, …, an} 相对
a0 的 “正弦方差 ”,则集合 { ,
,
} 相对 a0 的 “正弦方差 ”为(
)
2017-2018学年北京市海淀区高一(下)期中数学试卷-含详细解析.
2017-2018学年北京市海淀区高一(下)期中数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.sin18°cos12°+cos18°sin12°=()A. −√32B. −12C. √32D. 122.在△ABC中,已知a=3,b=4,sinB=23,则sin A=()A. 34B. 16C. 12D. 13.函数f(x)=sin x cosx的最大值为()A. 1B. 12C. √2 D. 324.某几何体的三视图如图所示,其中俯视图为正方形,那么该几何体的体积为()A. 3B. 6C. 6√2D. 125.如图,飞机飞行的航线AB和地面目标C在同一铅直平面内,在A处测得目标C的俯角为30°,飞行10千米到达B处,测得目标C的俯角为75°,这时B处与地面目标C的距离为()A. 5千米B. 5√2千米C. 4千米D. 4√2千米6.如图1,直线EF将矩形纸ABCD分为两个直角梯形ABFE和CDEF,将梯形CDEF沿边EF翻折,如图2,在翻折的过程中(平面ABFE和平面CDEF不重合)下面说法正确的是()A. 存在某一位置,使得CD//平面ABFEB. 存在某一位置,使得DE⊥平面ABFEC. 在翻折的过程中,BF//平面ADE恒成立D. 在翻折的过程中,BF⊥平面CDEF恒成立7.在△ABC中,A<B<C,则下列结论中不正确的是()A. sinA<sinCB. cosA>cosCC. tanA<tanBD. cosB<cosC8.在△ABC中,若AC=2,∠B=60°,∠A=45°,点D为AB边上的动点,则下列结论中不正确的是()A. 存在点D使得△BCD为等边三角形B. 存在点D使得cos∠CDA=13C. 存在点D使得BD:DC=√2:√3D. 存在点D使得CD=1二、填空题(本大题共6小题,共24.0分)9.计算:cos215°-sin215°=______.10.已知tanα2=3,则tanα的值为______.11.已知正四棱柱底面边长为1,高为2,则其外接球的表面积为______.12.在△ABC中,已知A=60°,a=√7,b=3,则c=______.13.若α,β均为锐角,且满足cosα=45,cos(α+β)=35,则sinβ的值是______.14.如图,棱长为√6的正方体ABCD-A1B1C1D1绕其体对角线BD1逆时针旋转θ(θ>0),若旋转后三棱锥D1-DC1A1与其自身重合,则θ的最小值是______;三棱锥D1-DC1A1在此旋转过程中所成几何体的体积为______.三、解答题(本大题共4小题,共44.0分)15.已知函数f(x)=2sin x(cos x-sin x)+1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[−π8,3π8]上的最大值.16.如图,在△ABC中,点D在边AB上,BD=2AD,∠ACD=45°,∠BCD=90°.(Ⅰ)求证:BC=√2AC;(Ⅱ)若AB=√5,求BC的长.17.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,AC⊥CB,侧面B1BCC1⊥底面ABCD,E,F分别是AB,C1D的中点.(Ⅰ)求证:EF∥平面B1BCC1;(Ⅱ)求证:EF⊥AC;(Ⅲ)在线段EF上是否存在点G,使得AC⊥平面C1D1G?并说明理由.18.正四棱锥S-ABCD的展开图如图所示,侧棱SA长为1,记∠ASB=α,其表面积记为f(α),体积记为g(α).(Ⅰ)求f(α)的解析式,并直接写出α的取值范围;(Ⅱ)求g(α)f(α),并将其化简为√acos2α+bcosα+c1+sinα的形式,其中a ,b ,c 为常数;(Ⅲ)试判断g(α)f(α)是否存在最大值,最小值?(写出结论即可)答案和解析1.【答案】D【解析】【分析】本题考查了两角和与差的三角函数公式,属于基础题.利用两角和的正弦函数公式计算得结论.【解答】解:sin18°cos12°+cos18°sin12°=sin(18°+12°)=sin30°=.故选D.2.【答案】C【解析】解:△ABC中,a=3,b=4,,由正弦定理得,=,则sinA==.故选:C.利用正弦定理,即可求得sinA的值.本题考查了正弦定理的应用问题,是基础题.3.【答案】B【解析】解:由于函数y=sinxcosx=sin2x,而sin2x的最大值等于1,故函数y的最大值等于,故选:B.由二倍角公式可得函数y=sinxcosx=sin2x≤.本题考查二倍角公式,正弦函数的值域,是一道基础题.4.【答案】B【解析】解:由三视图可知,该几何体是一个底面为正方形的直四棱柱,正四棱柱的底面正方形的对角线长为2,高是3;所以,底面正方形的边长为:,该长方体的体积为:=6.故选:B.由几何体的三视图得出原几何体一个底面为正方形的正四棱柱,结合图中数据求出它的体积.本题考查了由几何体的三视图求表面积的应用问题,也考查了空间想象能力和逻辑思维能力,是基础题.5.【答案】B【解析】解:由题意知,在△ABC中,AB=10,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,解得BC==5.∴B处与地面目标C的距离为5千米.故选:B.由题意,利用正弦定理即可求得BC的值.本题考查了利用正弦定理解答实际应用问题,是基础题.6.【答案】C【解析】解:在A中,∵四边形DEFC是梯形,DE∥CF,∴CD与EF相交,∴CD与平面ABFE相交,故A错误;在B中,∵四边形DEFC是梯形,DE⊥CD,∴DE与EF不垂直,∴不存在某一位置,使得DE⊥平面ABFE,故B错误;在C中,∵四边形AEFB梯形,BF∥AE,BF⊄平面ADE,AE⊂平面ADE,∴在翻折的过程中,BF∥平面ADE恒成立,故C正确;在D中,∵四边形ABFE是梯形,AB⊥BF,∴BF与FE不垂直,在翻折的过程中,BF⊥平面CDEF不成立,故D错误.故选:C.在A中,CD与EF相交,从而CD与平面ABFE相交;在B中,DE与EF不垂直,从而不存在某一位置,使得DE⊥平面ABFE;在C中,BF∥AE,从而在翻折的过程中,BF∥平面ADE恒成立;在D中,BF与FE不垂直,在翻折的过程中,BF⊥平面CDEF不成立.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.【答案】D【解析】解:∵△ABC中,A<B<C,利用大角对大边,可得a<c.不妨C为钝角,则B是锐角,cosB>0,cosC<0,所以cosB<cosC不成立.故选:D.利用三角形中大角对大边可得a<c,再利用特殊值判断可得结论.本题主要考查三角形中大角对大边,特殊值判断法的应用,属于基础题.8.【答案】D【解析】解:若△BCD为边长为x的等边三角形,可得=解得x=<2,满足AC>CD,则A成立;cos∠CDA=<=cos60°,且0°<∠CDA<180°,可得∠CDA>B,AB上存在点D,则B成立;,可得==,可得sin∠BCD=,即有∠BCD=45°<∠BCA=75°,则C成立;若CD=1,在△ACD中可得=,可得sin∠ADC==>1,∠ADC不存在,则D不成立.故选:D.运用三角形的正弦定理和三角形的内角和定理、边角关系,结合正弦函数的性质,对选项一一判断,即可得到结论.本题考查三角形的正弦定理和内角和定理的运用,考查运算能力和推理能力,属于中档题.9.【答案】√32【解析】解:由二倍角的余弦公式可得,cos215°-sin215°=cos30°=.故答案为:.由二倍角的余弦公式可得cos215°-sin215°=cos30°,从而得到结果.本题主要考查二倍角的余弦公式的应用,考查特殊角的三角函数值,属于基础题.10.【答案】−34【解析】解:∵已知,则tanα===-,故答案为:-.由题意利用二倍角的正切公式,求得tanα的值.本题主要考查二倍角的正切公式的应用,属于基础题.11.【答案】6π【解析】【分析】通过正四棱柱的对角线就是外接球的直径,求出直径即可求出球的表面积.本题是基础题,考查球的内接体的特征与球的关系,考查计算能力、空间想象能力.【解答】解:正四棱柱的底面边长为2,高为3,则该正四棱柱的外接球的直径,就是正四棱柱的对角线的长,所以球的直径为:=,所以球的表面积为:4π()2=6π.故答案为6π.12.【答案】1或2【解析】【分析】利用余弦定理列方程求得c的值,再验证c的值是否满足题意即可.本题考查了余弦定理的应用问题,是基础题.【解答】解:△ABC中,A=60°,,b=3,则a2=b2+c2-2bccosA,∴7=9+c2-3c,解得c=1或c=2;经验证,c=1或c=2都满足题意,∴c的值为1或2.故答案为:1或2.13.【答案】725【解析】解:∵锐角α、β满足cosα=,cos(α+β)=,∴sinα==,∴α+β∈(0,π),sin(α+β)==,∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=×-=.故答案为:.由已知及角的范围,利用同角三角函数基本关系式可求sinα,sin(α+β)的值,利用两角差的正弦函数公式即可化简求值.本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式在三角函数化简求值中的应用,属于基础题.14.【答案】2π3;4√2π3【解析】解:如图,连接AC,AB1,B1C,A1D,DC1,A1C1,可得正方体体对角线BD1⊥平面AB1C,BD1⊥平面A1DC1,若是旋转后三棱锥D1-DC1A1与其自身重合,则等边三角形A1DC1旋转后与自身重合,即A1旋转到D,此时θ的最小值是;由正方体棱长为,可得,则D1到平面A1DC1的高为,等边三角形A1DC1的边长为2,则外接圆的半径为2,∴三棱锥D1-DC1A1在此旋转过程中所成几何体为圆锥,其体积为.故答案为:;.连接AC,AB1,B1C,A1D,DC1,A1C1,可得正方体体对角线BD1⊥平面AB1C,BD1⊥平面A1DC1,旋转后三棱锥D1-DC1A1与其自身重合,即等边三角形A1DC1旋转后与自身重合,也就是A1旋转到D,此时θ的最小值是;由正方体棱长求出体对角线长,再求出三角形A1DC1的外接圆的半径,由圆锥体积公式求解.本题考查空间几何体的结构特征,考查空间想象能力与思维能力,是中档题.15.【答案】解:(Ⅰ)f(x)=2sin x(cos x-sin x)+1=2sin x cosx-2sin2x+1=sin2x+cos2x=√2sin(2x+π4)的最小正周期为2π2=π;(Ⅱ)在区间[−π8,3π8]上,2x+π4∈[0,π],故当2x+π4=π2时,f(x)取得最大值为√2.【解析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,可得该函数的最小正周期;(Ⅱ)利用正弦函数的定义域和值域,求得f(x)在区间上的最大值.本题主要考查三角恒等变换,正弦函数的最小正周期、定义域和值域,属于基础题.16.【答案】解:(Ⅰ)在△ACD中,∠ACD=45°,由正弦定理可得:ACsin∠ADC =ADsin∠ACD,可得:AC=AD⋅sin∠ADCsin∠ACD =AD⋅sin∠ADC√22=√2AD•sin∠ADC,在△BCD中,∠BCD=90°.则BC=BD•sin∠BDC,由于:∠BDC+∠ADC=π,BD=2AD,所以:BC=BD•sin∠BDC=2AD•sin∠ADC=√2AC,即:BC=√2AC.(Ⅱ)在△ABC中,∠ACB=∠ACD+∠BCD=135°,BC=√2AC,由余弦定理AB2=AC2+BC2-2AC•BC cos∠ACB,…9分即:5=AC2+(√2AC)2-2AC⋅√2AC×(-√22)=5AC2,因为AC>0,所以:AC=1,BC=√2【解析】(Ⅰ)由已知及正弦定理可得AC=AD•sin∠ADC,在△BCD中,由∠BCD=90°.可得BC=BD•sin∠BDC,由∠BDC+∠ADC=π,BD=2AD,即可代入证明.(Ⅱ)在△ABC中,∠ACB=∠ACD+∠BCD=135°,BC=AC,由余弦定理即可解得BC的值.本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.17.【答案】证明:(Ⅰ)解法一:取BC中点M,连结FM、BM,CD,在△CC1D中,∵F,M分别为C1D、C1C中点,∴FM∥CD,FM=12在平行四边形ABCD中,∴CD∥AB,E为AB中点,CD,∴FM∥EB,FM=12在平行四边形ABCD中,∵CD∥AB,E为AB中点,∴FM∥EB,FM=EB,∴四边形FMBE是平行四边形,∴EF∥BM,∵BM⊂平面B1BCC1,EF⊄平面B1BCC1,∴EF∥平面B1BCC1.解法二:取CD中点M,连结FM、EM,在△CC1D中,∵F,M分别是C1D,CD中点,∴EM∥CB,又∵EM∩FM=M,EM,FE⊂平面EFM,CC1,CB⊂平面B1BCC1,∴平面EFM∥平面B1BCC1,又∵EF⊂平面EFM,∴EF∥平面B1BCC1.(Ⅱ)∵平面B1BCC1⊥平面ABCD,面B1BCC1∩平面ABCD=BC,AC⊥BC,AC⊂平面ABCD,∴AC⊥平面B1BCC1,∵BM⊂平面B1BCC1,∴AC⊥BM,又∵EF∥BM,∴EF⊥AC.解:(Ⅲ)在线段EF上不存在点P,使得AC⊥平面C1D1G.假设存在点P,使得AC⊥平面C1D1G,∵C1D1⊂平面C1D1G,∴AC⊥C1D1,与已知AC与C1D1不垂直矛盾,∴在线段EF上不存在点G,使得AC⊥平面C1D1G.【解析】(Ⅰ)法一:取BC中点M,连结FM、BM推导出四边形FMBE是平行四边形,从而EF∥BM,由此能证明EF∥平面B1BCC1.法二:取CD中点M,连结FM、EM,推导出EM∥CB,从而平面EFM∥平面B1BCC1,由此能证明EF∥平面B1BCC1.(Ⅱ)推导出AC⊥平面B1BCC1,从而AC⊥BM,由此能证明EF⊥AC.(Ⅲ)假设存在点P,使得AC⊥平面C1D1G,假设AC⊥C1D1,推导出AC⊥C1D1,与已知矛盾,从而在线段EF上不存在点G,使得AC⊥平面C1D1G.本题考查线面平行、线线垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.【答案】解:(I )因为正四棱锥S -ABCD 中,SA =SB =1,∠ASB =α, 所以f (α)=4S △SAB +S 底ABCD =4×12SA •SB sin ∠ASB +AB 2 =2sinα+SA 2+SB 2-2SA •SB -cos ∠ASB =2sinα+2-2cosα,其中α∈(0,π2), (Ⅱ)设正方形ABCD 的中心为O ,则OA 2=12AB 2=12(2-2cosα)=1-cosα, 则在Rt △SOA 中,SO 2=SA 2-OA 2=cosα,则g (α)=13S 正方形ABCD •SO =13(2-2cosα)⋅√cosα,则g(α)f(α)=13•2sin 2α2√cosα2sin α2cos α2+2sin 2α2=13⋅sin α2√cosαcos α2+sin α2, 则(g(α)f(α))2=19⋅sin 2α2cosα1+2sin α2cos α2=19•1−cosα2⋅cosα1+sinα=−118cos 2α+118cosα1+sinα, 则g(α)f(α)=√−118cos 2α+118cosα1+sinα,(0<α<π2) (Ⅲ)g(α)f(α)有最大值,无最小值.【解析】(Ⅰ)根据四棱锥的表面积公式进行求解即可;(Ⅱ)求出的表达式,利用三角函数的关系式进行化简即可; (Ⅲ)根据的表达式,直接进行判断最值即可.本题主要考查三角函数的解析式的求解,以及三角函数的化简,利用三角函数的关系式进行转化是解决本题的关键.。
2017-2018年北京市101中学高一(下)期末数学试卷(解析版)
2017-2018学年北京市101中学高一(下)期末数学试卷一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)不等式≤0的解集是()A.{x|﹣1≤X≤2}B.{x|﹣1≤X<2}C.{x|x>2或x≤﹣1}D.{x|x<2} 2.(3分)设等差数列{a n}的前n项和S n,若a4+a10=4,则S13=()A.13B.14C.26D.523.(3分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(3分)已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为()A.B.C.D.5.(3分)设某直线的斜率为k,且k∈(﹣,),则该直线的倾斜角α的取值范围是()A.(,)B.(,)C.[0,)∪(,π)D.[0,)∪(,π)6.(3分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β7.(3分)如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM⊥平面ADNE;②CN∥平面ABFE;③平面BDM∥平面AFN;④平面BDE⊥平面NCF.其中正确命题的序号是()A.②③B.①②③C.②③④D.①②③④8.(3分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.2D.49.(3分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1610.(3分)如图,四棱锥S﹣ABCD中,底面是边长为的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD,且SO=,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为()A.2B.2C.1+D.1+二、填空题共6小题.11.(3分)直线l:x cos﹣y+1=0的斜率为.12.(3分)设等比数列{a n}满足a2=4,a3a4=128,则a6=.13.(3分)若a>0,b>0,a+b=1,一定有ab+≥4,(ab)2+()2≥42+成立,请将猜想结果填空:a n b n+≥.14.(3分)如图,在长方体ABCD﹣A'B'C'D'中,BC=1,AB=2,BB'=3,M为AB的中点,点P在线段C'M上,点P到直线BB'的距离的最小值为.15.(3分)已知△ABC中,点A(1,1),B(4,2),C(﹣4,6).则△ABC的面积为.16.(3分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{a n}中,a2=2,a7=8a4.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.18.设△ABC的内角A,B,C所对应的边长分别是a,b,c,且.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.19.如图,在四棱锥P﹣ABCD中,平面P AC⊥平面ABCD,且P A⊥AC,P A=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.E为侧棱PB的中点,F为侧棱PC 上的任意一点.(1)若F为PC的中点,求证:EF∥平面P AD;(2)求证:平面AFD⊥平面P AB;(3)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.20.如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的方程;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.2017-2018学年北京市101中学高一(下)期末数学试卷参考答案与试题解析一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)不等式≤0的解集是()A.{x|﹣1≤X≤2}B.{x|﹣1≤X<2}C.{x|x>2或x≤﹣1}D.{x|x<2}【解答】解:根据题意,≤0可以变形为(x+1)(x﹣2)≤0且x﹣2≠0,解可得﹣1≤x<2,即不等式的解集为{x|﹣1≤x<2},故选:B.2.(3分)设等差数列{a n}的前n项和S n,若a4+a10=4,则S13=()A.13B.14C.26D.52【解答】解:在等差数列{a n}中,由a4+a10=4,得2a7=4,即a7=2.∴S13=.故选:C.3.(3分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【解答】解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cos C=∴∴△ABC是钝角三角形故选:C.4.(3分)已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为()A.B.C.D.【解答】解:∵已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为d==,故选:A.5.(3分)设某直线的斜率为k,且k∈(﹣,),则该直线的倾斜角α的取值范围是()A.(,)B.(,)C.[0,)∪(,π)D.[0,)∪(,π)【解答】解:直线l的斜率为k,倾斜角为α,若k∈(﹣,),所以﹣<tanα≤所以α∈[0,)∪(,π).故选:D.6.(3分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【解答】解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.7.(3分)如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM⊥平面ADNE;②CN∥平面ABFE;③平面BDM∥平面AFN;④平面BDE⊥平面NCF.其中正确命题的序号是()A.②③B.①②③C.②③④D.①②③④【解答】解:把正方体的平面展开图还原成正方体ABCA﹣EFMN,如图1所示;对于①,平面BCMF∥平面ADNE,BM⊂平面BCMF,∴BM∥平面ADNE,①错误;对于②,平面DCMN∥平面ABFE,CN⊂平面DCMN,∴CN∥平面ABFE,②正确;对于③,如图2所示,BD∥FN,BD⊄平面AFN,FN⊂平面AFN,∴BD∥平面AFN;同理BM∥平面AFN,且BD∩BM=B,∴平面BDM∥平面AFN,③正确;对于④,如图3所示,BD∥FN,BE∥CN,BD∩BE=B,且BD、BE⊂平面BDE,∴平面BDE∥平面NCF,∴④错误.综上,正确的命题序号是②③.故选:A.8.(3分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.2D.4【解答】解:由几何体的三视图得该几何体是三棱锥P﹣ABC,如图是长方体的一部分,由三视图的数据,AB=BC=2P到底面的距离为1,∴该几何体的体积:V==.故选:B.9.(3分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.10.(3分)如图,四棱锥S﹣ABCD中,底面是边长为的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD,且SO=,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为()A.2B.2C.1+D.1+【解答】解:分别取CD、SC的中点F、G,连接EF、FG和EG,如图所示;则EF∥BD,FG∥DS,且EF∩FG=F,BD∩DS=D,∴平面EFG∥平面BDS,由AC⊥BD,AC⊥SO,且AC∩SO=O,则AC⊥平面BDS,∴AC⊥平面EFG,∴点P在△EFG的三条边上;又EF=BD=××=1,FG=EG=SB=×=,∴△EFG的周长为EF+2FG=1+.故选:D.二、填空题共6小题.11.(3分)直线l:x cos﹣y+1=0的斜率为.【解答】解:直线l:x cos﹣y+1=0,即为直线l:x﹣y+1=0,即为y=x+1,故直线的斜率为,故答案为:.12.(3分)设等比数列{a n}满足a2=4,a3a4=128,则a6=64.【解答】解:设公比为q,∵a2=4,a3a4=128,∴4q×4q2=128,∴q3=8,∴q=2,∴a6=a2q4=4×24=64,故答案为:6413.(3分)若a>0,b>0,a+b=1,一定有ab+≥4,(ab)2+()2≥42+成立,请将猜想结果填空:a n b n+≥.【解答】解:由a>0,b>0,a+b=1,一定有ab+≥4+,(ab)2+()2≥42+成立,可以猜想:a n b n+≥4n+,故答案为:4n+14.(3分)如图,在长方体ABCD﹣A'B'C'D'中,BC=1,AB=2,BB'=3,M为AB的中点,点P在线段C'M上,点P到直线BB'的距离的最小值为.【解答】解:连接MC,由BB'∥CC',BB'⊄平面MCC',CC'⊂平面MCC',可得BB'∥平面MCC',由点P到直线BB'的距离的最小值为异面直线BB'和直线C'M的距离,即有直线BB'和平面MCC'的距离即为异面直线BB'和MC'的距离,也即B到平面MCC'的距离,过B在底面AC内作BH⊥MC,由CC'⊥底面AC,可得CC'⊥BH,即有BH⊥平面MCC',由BC=BM=1,且BC⊥BA,可得BH=.故答案为:.15.(3分)已知△ABC中,点A(1,1),B(4,2),C(﹣4,6).则△ABC的面积为10.【解答】解:由两点式的直线BC的方程为=,即为x+2y﹣8=0,由点A到直线的距离公式得BC边上的高d==,BC两点之间的距离为=4,∴△ABC的面积为×4×=10,故答案为:10.16.(3分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{a n}中,a2=2,a7=8a4.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a2=2,a7=8a4.∴2×q5=8×(2×q2),解得q=2,当q=2时,a n=2n﹣1,∴{a n}的通项公式为,a n=2n﹣1,(2)记S n为{a n}的前n项和,a2=2,q=2,则a1=1,则S n==2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.18.设△ABC的内角A,B,C所对应的边长分别是a,b,c,且.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.【解答】解:(1)∵,∴,…(2分)由正弦定理可知:,∵A=30°,∴sin A=sin30°=,∴…(6分)(2)∵,△ABC的面积为3,…(7分)∴,∴ac=10…8分由余弦定理得:b2=a2+c2﹣2ac cos B…(9分)∴,即a2+c2=25…(10分)则:(a+c)2=a2+c2+2ac=25+20=45…(11分)故:…(12分)19.如图,在四棱锥P﹣ABCD中,平面P AC⊥平面ABCD,且P A⊥AC,P A=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.E为侧棱PB的中点,F为侧棱PC 上的任意一点.(1)若F为PC的中点,求证:EF∥平面P AD;(2)求证:平面AFD⊥平面P AB;(3)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.【解答】解(1)因为E,F分别为侧棱PB,PC的中点,所以EF∥BC.因为BC∥AD,所以EF∥AD.而EF⊄平面P AD,AD⊂平面P AD,所以EF∥平面P AD.(2)因为平面ABCD⊥平面P AC,平面ABCD∩平面P AC=AC,且P A⊥AC,P A⊂平面P AC,所以P A⊥平面ABCD,又AD⊂平面ABCD,所以P A⊥AD.又因为AB⊥AD,P A∩AB=A,所以AD⊥平面P AB,而AD⊂平面AFD,所以平面AFD⊥平面P AB.(3)在棱PC上显然存在点F使得AF⊥PC.由已知,AB⊥AD,BC∥AD,AB=BC=1,AD=2.由平面几何知识可得CD⊥AC.由(2)知,P A⊥平面ABCD,所以P A⊥CD,因为P A∩AC=A,所以CD⊥平面P AC.而AF⊂平面P AC,所以CD⊥AF.又因为CD∩PC=C,所以AF⊥平面PCD.在△P AC中,P A=2,AC=,∠P AC=90°,可求得,PC=,PF=.可见直线AF与平面PCD能够垂直,此时线段PF的长为.20.如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的方程;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.【解答】解:(1)直线CD过点C(12,0),D(6,3),直线方程为=,化为一般形式是x+2y﹣12=0;(2)①如图1中,作DP∥OB,则∠PDA=∠B,由DP∥OB得,=,即=,∴P A=;∴OP=6﹣=,∴点P(,0);根据对称性知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(,0);②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q,则直线OB的解析式为y=x,直线PQ的解析式为y=x+,由,解得,∴Q(﹣4,8);∴PQ==10,∴PQ=OB,∴四边形OPQB是平行四边形,又OP=OB,∴平行四边形OPQB是菱形;此时点M与点P重合,且t=0;如图3,当OQ=OB时,设Q(m,﹣m+6),则有m2+=102,解得m=;∴点Q的横坐标为或;设M的横坐标为a,则=或=,解得a=或a=;又点P是从点(﹣10,0)开始运动,则满足条件的t的值为或;如图4,当Q点与C点重合时,M点的横坐标为6,此时t=16;综上,满足条件的t值为0,或16,或或.。
北京市一零一中学2017年10月2017~2018学年度高一第一学期期中考试数学试卷及参考答案教师专用
北京一零一中2017年10月2017~2018学年度度第一学期数学期中考试一、选择题1.设全集=R,M={0,1,2,3},N={-1,0,1},则图中阴影部分所表示的集合是( )A.{1}B.{-1}C.{0}D.{0,1}【参考答案】B【试题解析】由图可知阴影部分中的元素属于,但不属于,故图中阴影部分所表示的集合为,由,,得,故选B.2.下列函数中与具有相同图象的一个函数是( ).A. B. C. D.【参考答案】D【试题解析】对于A,与函数的定义域不同,所以函数图像不同;对于B,与函数的对应关系不同,值域不同,所以函数图象不同;对于C,与函数的定义域不同,所以函数图像不同;对于D,与函数的定义域相同,对应关系也相同,所以函数图象相同,故选D.点睛:本题主要考查了判断两个函数是否为同一函数,属于基础题;函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系均相同时才是同一函数,值得注意的是判断两个函数的对应关系是否相同,只要看对于定义域内任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.3.已知为奇函数,当时,,则在上是( )A.增函数,最小值为B.增函数,最大值为C.减函数,最小值为D.减函数,最大值为【参考答案】C【试题解析】试题分析:,图像为开口向下对称轴为的抛物线,所以时在上单调递减.因为位奇函数图像关于原点对称,所以函数在也单调递减.所以在上,.故C正确.考点:1函数的奇偶性;2二次函数的单调性.4.已知函数,则的值等于( ).A. B. C. D.【参考答案】D【试题解析】将代入函数第二段表达式,得到,再代入第二段表达式后得到,此时代入第一段就可以求得函数值.【试题解答】依题意,故选D.本小题主要考查分段函数求值.第一次代入后,还是无法求得函数值,要继续再代入两次才可以.属于基础题.5.若一次函数f(x)=ax+b有一个零点2,则函数g(x)=bx2-ax的图象可能是( )A. B.C. D.【参考答案】C【试题解析】∵一次函数有一个零点2,∴,即;则,令可得和,即函数图象与轴交点的横坐标为0,,故对应的图象可能为C,故选C.6.已知函数y=(),则其单调增区间是( )A.(-,0]B.(-,-1]C.[-1,+)D.[-2,+)【参考答案】B【试题解析】函数可以看作是由和两者复合而成,为减函数,的减区间为,根据“同增异减”的法则可得函数的单调增区间为,故选B.点睛:本题主要考查了复合函数的单调性,属于基础题;寻找函数是由哪两个初等函数复合而成是基础,充分理解“同增异减”的意义是关键,同时需注意当和类似于对数函数等相结合时,要保证单调区间一定在定义域内.7.已知函数,则函数的零点个数为( ).A. B. C. D.【参考答案】A【试题解析】画出函数图像,通过观察与图像的交点个数,得到函数的零点个数. 【试题解答】画出和的图像如下图所示,由图可知,两个函数图像有个交点,故函数有两个零点.所以选A.本小题主要考查分段函数图像的画法,考查函数的零点问题,将函数零点的问题转化为两个函数图像的交点来解决.8.定义在上的函数满足,,,且当时,,则等于( ).A. B. C. D.【参考答案】B【试题解析】∵,,令得:,又,∴当时,;令,由得:;同理可求:;;①,再令,由,可求得,∴,解得,令,同理反复利用,可得;;…②,由①②可得:有,∵时,而,所以有,;故,故选B.点睛:本题考查抽象函数及其应用,难点在于利用,,两次赋值后都反复应用,分别得到关系式两个关系式,结合时,从而使问题解决,实际上是两边夹定理的应用,属于难题.二、填空题9.计算:__________.【参考答案】【试题解析】原式,故答案为.10.已知集合,,则__________.【参考答案】【试题解析】由,得,,则,故答案为.11.已知函数的定义域是,则的定义域是__________.【参考答案】【试题解析】∵函数的定义域为,∴,解得,即函数的定义域为,故答案为.点睛:本题主要考查了抽象函数的定义域,属于基础题;已知的定义域,求的定义域,其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域.12.函数的值域为,则实数a的取值范围是______. 【参考答案】.【试题解析】∵函数的值域为,∴,解得或,则实数a的取值范围是,故答案为.13.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.【参考答案】6【试题解析】先求函数周期,再根据周期以及偶函数性质化简,再代入求值.【试题解答】由f(x+4)=f(x-2)可知,是周期函数,且,所以.本题考查函数周期及其应用,考查基本求解能力.14.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6℃的保鲜时间是8小时;②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是 .【参考答案】①④【试题解析】试题分析:∵食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.∴24k+6=16,即4k+6=4,解得:k=﹣,∴,当x=6时,t=8,故①该食品在6℃的保鲜时间是8小时,正确;②当x∈[﹣6,0]时,保鲜时间恒为64小时,当x∈(0,6]时,该食品的保鲜时间t 随看x增大而逐渐减少,故错误;③到了此日10时,温度超过8度,此时保鲜时间不超过4小时,故到13时,甲所购买的食品不在保鲜时间内,故错误;④到了此日14时,甲所购买的食品已然过了保鲜时间,故正确,故正确的结论的序号为:①④,故答案为:①④.考点:命题的真假判断与应用.三、解答题15.已知集合,,且,,求实数,,的值及集合,.【参考答案】【试题解析】试题分析:由,所以,,代入方程可得和集合A,再由,可得集合B,运用韦达定理即可得到所求,的值.试题解析:因为,且,所以,解得;又,所以,又,,所以,解得,,所以.16.已知是定义在上的奇函数.()若,求,的值.()若是函数的一个零点,求函数在区间上的值域.【参考答案】(1)1;(2)【试题解析】试题分析:(1)由奇函数的定义可得,即可解出的值,将代入解析式即可得到的值;(2)将代入可得的值,化简可得函数,由和的单调性可得函数的单调性,故而可得函数的值域.试题解析:(1)由题意,,所以,所以,因为,所以=3,所以。
2017-2018学年北京市高一下学期期中考试数学试题word版解析版
2017-2018学年北京市高一下学期期中考试数学试题一、选择题(每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项,请将答案填在答题纸上)1. 已知数列满足,且,那么()A. 8B. 9C. 10D. 11【答案】C【解析】是公差为2,的等差数列,本题选择C选项.2. 如果,那么下列不等式正确的是()A. B. C. D.【答案】A【解析】若,两边同乘以正数可得,所以,故选.3. 在△ABC中,若∠A=60°,b=3,c=8,则其面积等于()A. 12B.C.D.【答案】B【解析】本题选择B选项.4. 等比数列满足,。
则公比q的值为()A. 2B.C. 1D. 2或【答案】D【解析】等比数列中,,,所以得,即,∴,化简得,解得或,故选.5. 若,则下列不等式:①;②;③;④中,正确的不等式有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】故①错;故②对;,,当且仅当时等号成立,而,故,故③对;,故④对;综上,正确的不等式有3个.本题选择C选项.6. 若变量满足约束条件,则的最大值是()A. B. 0 C. D.【答案】C【解析】作出不等式组所表示的平面区域,如图所示及其内部,其中,,,设,则,作出直线并进行平移,由图可知,当直线经过点时,纵截距最大,从而目标函数又达到最大值,所以,故选.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7. 在R上定义运算⊙:,则满足的实数的取值范围为()A. (0,2)B. (-1,2)C.D. (-2,1)【答案】D【解析】由得∴满足的实数的取值范围为(-2,1).本题选择D选项.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。
【全国百强校】北京四中2017-2018学年下学期高一年级期中考试数学试卷
外…………○…学校:_内…………○…绝密★启用前2018-2019学年度???学校1月月考卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.某影院有40排,每排46个座位,一次新片发布会坐满了记者,会后留下了每排20号的记者进行座谈,这样的抽样方法是A .抽签法B .随机数表法C .系统抽样法D .分层抽样法 2.下列命题中,正确命题的个数是①有三个公共点的两个平面重合 ②梯形的四个顶点在同一平面内 ③三条互相平行的直线必共面 ④四条线段顺次首尾相接,构成平面图形 A .0 B .1 C .2 D .33.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .8π C .12 D .4π 4.△ABC 中,若B =45°,b =43 3,c =2 2,则A = A .15° B .75° C .75°或105° D .15°或75°…………○…………装…………○……※※请※※不※※要※※在※※装※※订※…………○…………装…………○……的概率为A .49B .718C .29D .196.若a ,b 是异面直线,则与a ,b 都平行的平面A .不存在B .有无穷多个C .有且仅有一个D .不一定存在 7.△ABC 中,若∠ABC=4π, 3AB BC ==,则sin∠BAC= A B C D 8.有5个大小相同的球,上面分别标有1,2,3,4,5,现任取两个球,两个球序号相邻的概率是A .25B .35C .45D .3109.为了了解高一年级学生的体锻情况,学校随机抽查了该年级20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是A .B .C .D .10.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 内的地区为危险地区,城市B 在A 的正东40 km 外,B 城市处于危险区内的时间为( ) A .0.5 h B .1 h C .1.5 h D .2 h 11.△ABC 中,给出以下条件,有唯一解的是 A .a =4,b =5,A =30° B .a =5,b =4,A =60°C.a=3,b=2,B=120°D.. a=3,b=6,A=60°12.同时投掷两枚骰子,计算向上的点数之和,则以下各数出现概率最大的是A.5 B.6 C.7 D.813.某科研小组有20个不同的科研项目,每年至少完成一项。
北京101中学2017-2018学年高一下学期期中考试数学试题及答案解析
北京101中学2017-2018学年高一下学期期中考试数学试题一、选择题:共10小题.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 在等差数列{a n }中,如果a 1+a 2=25,a 3+a 4=45,则a 1=( ) A. 5B. 7C. 9D. 102. tan (α-π4)=31,则tan α=( )A. 2B. -2C.21D. -21 3. 在△ABC 中,若b cos A =a sin B ,则∠A 等于( ) A. 30°B. 45°C. 60°D. 90°4. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 己知a =5,c =3,cos A =63,则b =( ) A. 1B. 2C.25D. 65. 设a ,b ∈R ,下列不等式中一定成立的是( ) A.a 2+3>2aB. a 2+b 2>0C.a 3+b 3≥a 2b +ab 2D. a +a1≥2 6. 数列{a n }为公比为q (q ≠1)的等比数列,设b 1=a 1+a 2+a 3+a 4,b 2=a 5+a 6+a 7+a 8,…,b n = a 4n -3+a 4n -2+a 4n -1+a 4n ,则数列b n ( ) A. 是等差数列B. 是公比为q 的等比数列C. 是公比为q 4的等比数列D. 既非等差数列也非等比数列7. 在超市中购买一个卷筒纸,其内圆直径为4cm ,外圆直径为12cm ,一共卷60层,若把各层都视为一个同心圆,令π=3.14,则这个卷筒纸的长度(精确到个位)为( ) A. 17mB. 16mC. 15mD. 14m8. 已知数列{a n }是等差数列,S n 为其前n 项和. 若6193=S S ,则126S S=( ) A.101B.103C.105D.107 9. 下列函数中,最小值为4的函数是( )A. y =x 3+34xB. y =sin x +xsin 4C. y =log 3 x +log x 81D. y =e x +4e -x10. 某商品的价格在近4年中价格不断波动,前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是( ) A. 不增不减B. 约增1.4%C. 约减9.2%D. 约减7.8%二、填空题:共6小题.11. △ABC 中,cos A cos B -sin A sin B =-21,则角C 的大小为_______. 12. 已知sin α·cos α=52,则tan α=_________. 13. 已知数列{a n }的前n 项和为S n ,满足对于任意的n ∈N *,a n =31(2+S n ),则数列{a n }的通项为a n =_________. 14. 定义:称np p p n+++ 21为n 个正数p 1,p 2,…,p n 的“均倒数”,若数列{a n }的前n项的“均倒数”为121-n ,则数列{a n }的通项公式为a n =_________. 15. 北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A 处,图书馆在B 处,为测量A ,B 两地之间的距离,某同学选定了与A ,B 不共线的C 处,构成△ABC ,以下是测量的数据的不同方案:①测量∠A ,AC ,BC ; ②测量∠A ,∠B ,BC ;③测量∠C ,AC ,BC ;④测量∠A ,∠C ,∠B . 其中一定能唯一确定A ,B 两地之间的距离的所有方案的序号是_______.16. 有纯酒精a (a >1)升,从中取出1升,再用水加满,然后再取出1升,再用水加满,如此反复进行,则第九次和第十次共倒出纯酒精_______升. 三、解答题:共4小题.解答应写出文字说明、演算步骤或证明过程. 17. 已知函数f (x )=cos x (3sin x +cos x )-21,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)设α>0,若函数g (x )=f (x +α)为奇函数,求α的最小值.18. 已知公差大于零的等差数列{a n }的前n 项和S n ,且满足a 3·a 5=112,a 1+a 7=22. (1)求等差数列{a n }的第七项a 7和通项公式a n ;(2)若数列{b n }的通项b n =a n +a n +1,{b n }的前n 项和S n ,写出使得S n 小于55时所有可能的b n 的取值.19. 在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,已知a =2c . (1)若∠A =2∠B ,求cos B ;(2)若AC =2,求△ABC 面积的最大值.20. 已知数列{a n }满足:a 1=1,|a n +1-a n |=p n ,n ∈N *,S n 为数列{a n }的前n 项和. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值; (2)若p =21,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式; (3)在(2)的条件下,令c n =n (a n +1-a n ),求数列{c n }的前n 项和T n .【参考答案】一、选择题1. D2. A3. B4. B5. A6. C7. C8. B9. D 10. D 二、填空题 11. 60° 12. 2或5213. (23)n -114. 4n -3.15. ②③16. (1-a 1)8(2-a1)三、解答题17.解:(1)f (x )=cos x (3sin x +cos x )-21=sin (2x +π6),T =π,f (x )单调递增区间为[-π3+k π,π6+k π](k ∈Z ). (2)f (x )=cos x (3sin x +cos x )-21=sin (2x +π6),g (x )=f (x +α)=sin[2(x +α)+π6]=sin[2x +(2α+π6)]. 由函数g (x )=f (x +α)为奇函数,所以g (-x )=-g (x ), 即sin[-2x +(2α+π6)]=-sin[2x +(2α+π6)], 展开整理得cos 2x sin (2α+π6)=0 对∀x ∈R 都成立, 所以sin (2α+π6)=0,即2α+π6=k π,k ∈Z ,且α>0,所以αmin =5π12.18.解:(1)因为{a n }为等差数列,所以a 3+a 5=a 1+a 7=22, 又a 3·a 5=112且d >0,解得a 3=8,a 5=14,则a 7=20. 由⎩⎨⎧=+=+144,8211d a d a 解得a 1=2,d =3,所以a n =3n -1.(2)b n =a n +a n +l =6n +1,S n =2)(1n b b +=3n 2+4n <55, 解得-5<n <311,又n ∈N *,所以n ≤3,n ∈N *. 则b 1=7,b 2=13,b 3=19.19. 解:(1)在△ABC 中,∠A =2∠B ,∠C =π-23A∠且∠A ∈(0,π), 由正弦定理2=c a =CA sin sin =12cos 42cos22cos 2sin 2cos 2sin 2cos 2sin 2sin 2cos cos 2sin 2cos 2sin223sin sin 22-=+=+=A A A A A A A A A A A A A A A A , 解方程4cos 22A -2cos 2A-1=0得cos 2A =22(舍负),所以,∠A =π2,所以cos B =22.(2)方法一:cos B =ac b c a 2222-+=222243c c -,S =∆2ABC (21ac sin B )2=41a 2c 2sin 2B =41a 2c 2(1-cos 2B )=41×2c 4×42481624c c c -+-=16)12(22--c +8,所以当c 2=12即c =23时,S 2ABC ∆取得最大值为8,此时S =∆ABC 22. 方法二:过点B 作角B 平分线BM ,由角平分线定理,x xAM CM c a 22===,则x =222122-=+. 由阿波罗尼奥斯圆定义,点B 在以内外角平分线的分点M ,N 为直径的圆上, △ABC 面积最大时,点B 最高.根据勾股定理:⎪⎩⎪⎨⎧+=--=-222222)2(2)(x R R c x R R c ,所以⎪⎩⎪⎨⎧++=-+-=-,2222,222222222R xR x R c x xR R R c 所以2R 2=22(2+1)xR ,所以R =2(2+1)x =22.所以△ABC 面积最大为22,此时c =23.20.解:(1)因为{a n }是递增数列,所以a n +l -a n =a n +1-a n =p n . 因为a 1=1,a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3, 则3a 3-3a 2=a 2-a 1,即3p 2-p =0,解得p =31或p =0. 当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,所以p =31. (2)由于{a 2n -1}是递增数列,因而a 2n+1-a 2n -1>0, 所以(a 2n +1-a 2n )+(a 2n -a 2n -1)>0. 因为n221<1221-n ,所以a 2n +1-a 2n <a 2n -a 2n -1. 所以a 2n -a 2n -1>0, 因此a 2n -a 2n -1=(21)2n -1=22)1(-n.因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,所以a 2n +1-a 2n =-(21)2n =n n 2122)1(+-. 所以a n +1-a n =n n 2)1(1+-.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=211)21(12111+--⋅+-n =1+21-221+…+2)1(31342)1(-⋅+=-n n所以数列{a n }的通项公式为a n =34+31·12)1(--n n.。
北京海淀101中学2016-2017学年高一下学期期中考试数学试题(含精品解析)
)2=
<
=1,故④正确;
⑤若 a>b, > ⇔ ﹣ >0⇔ >0⇔ <0,则 ab<0,所以 a>0,b<0,故⑤正确;
⑥正数 x,y 满足 + =1,则 x+2y=(x+2y)( + )=1+2+ + ≥3+2 ,故其最小值为 3+2 ,故⑥错 误.
综上所述,正确命题的序号是:②③④⑤,
故答案为:②③④⑤.
点睛:本题考查了等差数列的性质,考查了三角函数的化简与求值,训练了对数的运算性质,是中低档 题.
14. 给出下列命题:①若
,则 ;②若 , ,则
;③若
,则
;④
;⑤若 , ,则 , ;⑥正数 , 满足
为 .其中正确命题的序号是__________.
,则
【答案】②③④⑤
【解析】分析:利用不等式的性质与基本不等式对①②③④⑤⑥逐项判断即可.
∴
.
点睛:(I)当已知条件中含有 sn 时,一般会用结论
来求通项,一般有两种类型:
①所给的 sn=f(n),则利用此结论可直接求得 n>1 时数列{an}的通项,但要注意检验 n=1 是否适合②所给
的 sn 是含有 an 的关系式时,则利用此结论得到的是一个关于 an 的递推关系,再用求通项的方法进行求
∴数列{an}的前 9 项之和 故答案为 99. 点睛:本题考查等差数列的性质,掌握等差数列的性质与前 n 项和公式是解决问题的关键,属于中档题.
10. 已知 ,函数 【答案】5
的最小值是__________.
【解析】分析:由 ,函数
=
-1+1,然后由基本不等式即可求得最小值.
详解:由题可得:
北京市海淀101中学2016-2017学年高一数学下学期期中试卷及答案【word版】.doc
北京101中学2016-2017学年下学期高一年级期中考试数学试卷(本试卷满分120分,考试时间100分钟)一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项. 1.在ABC △中,4a =,60A =︒,45B =︒,则边b 的值为().A .364 B .2+ C . D .1【答案】A【解析】根据正弦定理sin sin a b A B =,可得4sin60sin 45b=︒︒,∴4sin 45sin 60b ︒==︒, ∴A 项正确.2.已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于().A .9B .3C .3-D .6-【答案】D【解析】∵1a ,3a ,4a 成等比数列, 所以有214b a a a =⋅,21(2)a d ⇒+,11(3)a a d =+, 1a d ⇒⋅,24d =-,又∵2d =,∴18a =-, ∴2826a =-+=-, 故选D .3.下列结论正确的是().A .若ac bc <,则a b <B .若22a b <,则a b <C .若a b >,0c <,则ac bc <D ,则a b >【答案】C【解析】对于A ,若0c <,不成立, 对于B ,若a ,b 均小于0或0b <,不成立,对于D ,其中0a ≥,0b >,平方后有a b <,不成立, 故选C .4.已知13a -≤≤,24b ≤≤,则2a b -的取值范围是().A .[]6,4-B .[]0,10C .[]4,2-D .[]5,1-【答案】A【解析】∵[1,3]a ∈-,∴2[2,6]a ∈-, ∵[2,4]b ∈,∴[4,2]b -∈--, 则2[6,4]a b -∈-, 故选A .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若2b ac =,且2c a =,则cos B =().A .41B .43C .42 D .32 【答案】B【解析】将2c a =代入得:222b ac a ==,即b =,∴2222222423cos 244a cb a a a B ac a +-+-===, 故选B .6.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:1si c )s (n o f x x x =+,2()f x x =3()sin f x x =,则().A .1()f x ,2()f x ,3()f x 为“同形”函数B .1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数C .1()f x ,3()f x 为“同形”函数,且它们与2()f x 不为“同形”函数D .2()f x ,3()f x 为“同形”函数,且它们与1()f x 不为“同形”函数 【答案】B【解析】∵1()sin cos f x x x =+,π4x ⎛⎫=+ ⎪⎝⎭,2()f x x =+ 3()sin f x x =,则1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数, 选B .7.已知函数21()(2cos 1)sin2cos42f x x x x =-+,若π,π2α⎛⎫∈ ⎪⎝⎭且()f α=α的值是().A .5π8B .11π16C .9π16D .7π8【答案】C【解析】1()cos2sin 2cos42f x x x x =+,11sin 4cos422x x =+, 1(sin 4cos4)2x x =+,π44x ⎛⎫=+ ⎪⎝⎭, ∴π,π2α⎛⎫∈ ⎪⎝⎭,∴π9174π,π444α⎛⎫+∈ ⎪⎝⎭,若()f α=ππ42π()42x k k +=+∈Z ,ππ162kα=+,当1k =时,9π16α=, 故选C .8.已知(1,1)1f =,(,)(,)f m n m n ∈∈N N **,且对任意m ,n ∈N *都有: ①(,1)(,)2f m n f m n +=+;②(1,1)2(,1)f m f m +=.以下三个结论:①(1,5)9f =;②(5,1)16f =;③(5,6)26f =. 其中正确的个数为().A .0B .1C .2D .3【答案】D【解析】∵(,1)(,)2f m n f m n +=+,(1,1)1f =, ∴{}(,)f m n 是以1为首项,2为公差的等差数列, ∴(1,)21f n n =-. 又∵(1,1)2(,1)f m f m +=,∴{}(,1)f m 是以1为首项2为公比的等比数列, ∴(,1)21f n n =-,∴(,1)2?12f m n m n +=-+. 由(1,5)2519f =⨯-=,故(1)正确. 由(5,1)2416f ==,故(2)正确. 由(5,6)242626f =+⨯=,故(3)正确. 故答案为3.二、填空题共6小题.9.在等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则前9项之和9S =__________.【答案】99【解析】在等差数列中,14739a a a ++=,36927a a a ++=,∴413a =,69a =,∴4622a a +=,又4619a a a a +=+, ∴数列{}n a 的前9项之和199()92a a S +⨯=, 2292⨯=, 99=.10.已知1x >,函数41y x x =+-的最小值是__________. 【答案】5 【解析】∵1x >, ∴41y x x =+-,411151x x =+-+=-≥, 当且仅当3x =时,“=”成立,故最小值为5.11.计算:1111133557(21)(21)n n ++++=⨯⨯⨯-+L __________. 【答案】21n n + 【解析】原式111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭L 111221n ⎛⎫=- ⎪+⎝⎭21nn =+.12.在等比数列{}n a 中,12a =-,454a =-,则数列{}n a 的前n 项和n S =__________. 【答案】13n -【解析】∵14254a a =-⎧⎨=-⎩,∴327q =+,即3q =+, ∴12(3)n n a -=⨯+,∵1(1)1n n a q S q-=-,2(13)13n --=-,13n =-.13.在ABC △中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,则ABC △的形状为__________. 【答案】等边三角形【解析】∵lgsin A ,lgsin B ,lgsin C 成等差数列, 得lgsin lgsin 2lgsin A C B +=,即2sin sin sin B A B =①, 又三内角A 、B 、C 也成等差数列, ∴60B =︒,代入①得3sin sin 4A B =②, 设60A α=︒-,60B α=︒+, 代入②得3sin(60)sin(60)4αα︒+︒-=,22313cos sin 444αα⇒-=, 即2cos 1α=, ∴0α=︒, ∴60A B C ===︒, ∴为等边三角形.14.给出下列命题:①若0a b <<,则11ab<;②若0a >,0b >,则2a b aba b++;③若0a b <<,则22a ab b >>;④lg9lg111⋅<;⑤若a b >,11ab>,则0a >,0b <;⑥正数x ,y 满足111x y +=,则2x y +的最小值为6.其中正确命题的序号是__________.【答案】②③④⑤【解析】①令2a =-,1b =-,112a=-,11b=-,11a b>,不符合. ②若0a >,0b >,则2a b+(当且仅当a b =时,取等号),11ab a b =-+⎭,00=>≥, ∴aba b+,综上,2a b aba b ++. ③若0a b <<,则20a ab >>,20ab b >>, 因此,22a ab b >>,故③正确.④2lg9lg11lg9lg112+⎛⎫⋅< ⎪⎝⎭, 22lg99lg100122⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭, 故④正确.⑤若a b >,111100b aababab->⇔->⇔>, ∴0a bab-<,则0ab <, ∴0a >,0b <, ⑤正确.⑥正数x ,y 满足111x y +=,则112(2)x y x y x y⎛⎫+=++ ⎪⎝⎭,2123y xx y=++++≥, ⑥错,∴②③④⑤正确.三、解答题(共5小题,分值分别为8分、8分、10分、12分、12分,共50分)15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且c 105A =︒,30C =︒.求:(1)b 的值. (2)ABC △的面积. 【答案】(1)2(2【解析】(1)∵105A =︒,30C =︒,∴45B =︒,又C =1sin 2C =,∴由正弦定理sin sin b c B C =得:sin 221sin 2C Bb C===.(2)2b =,c =sin sin105A =︒,sin(6045)=︒+︒,sin60cos45cos60sin45=︒︒+︒︒,=∴1sin 2ABC S bc A =△,122=⨯,16.某工厂生产的某种产品,当年产量在150吨至250吨之间时,年生产总成本y (万元)与年产量x (吨)之间的关系可近似地表示成230400010x x y +=-,问年产量为多少时,每吨的平均成本最低?并求出该最低成本.【答案】年产量为200吨时,每吨的平均成本最低,最低为10万元. 【解析】设每吨的平均成本W (万元/t ),则400030301010y x W x x ==+-=≥, 当且仅当400010x x=,200x =(t )的每吨平均成本最低,且最低成本为10万元.17.已知函数ππ()sin 2sin 2cos 266f x x x x a ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭(a ∈R ,a 为常数).(1)求函数的最小正周期. (2)求函数的单调递减区间.(3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2-,求a 的值.【答案】见解析【解析】(1)ππ()2sin 2cos cos 22cos 22sin 266f x x x a x x a x a ⎛⎫=++=++=++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==. (2)单调递减区间为2ππ,π()63k k k π⎡⎤++∈⎢⎥⎣⎦Z . (3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,所以当π7π266x +=即π2x =时,()f x 取得最小值.所以ππ2sin 2226a ⎛⎫⋅++=- ⎪⎝⎭,所以1a =-.18.设数列{}n a 的前n 项和为n S ,22n S n =,数列{}n b 为等比数列,且11a b =,2211()b a a b -=.(1)求数列{}n a 和{}n b 的通项公式.(2)设nn nac b =,求数列{}n c 的前n 项和n T .【答案】(1)42n a n =-,1124n n b -⎛⎫= ⎪⎝⎭(2)565499nn n T -=+【解析】19.已知点(,)()n n a n ∈N *在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项.(1)求数列{}n b 的通项公式.(2)设83n n c b n =++,数列{}n d 满足11d c =,()nn l d c n d +∈=N *.求数列{}n d 的前n 项和n D .(3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是否为等差数列,并说明理由. 【答案】见解析【解析】(1)依题意得22n a n =--,故14a =-. 又268n n T S n =+,即34n n T S n =+,所以,当2n ≥时,113()43462n n n n n n b T T S S a n --=-=-+=+=--. 又111134348b T S a ==+=+=-也适合上式, 故62n b n =--.(2)因为83628321n n c b n n n n =++=--++=+,121n n d n d c d +==+,因此112(1)(*)n n d d n ++=+∈N .由于113d c ==,所以{}1n d +是首项为114d +=,公比为2的等比数列. 所以111422n n n d -++=⨯=,所以121n n d +=-.所以23124(21)2222421n n n n D n n n ++-=++⋯+-=-=---(). (3)方法一:111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 则111111111(2)2(2)2(2)(2)221224241n n n n n n n n n n n d d g g g g g a g a d d ----++-++⎛⎫⎛⎫ ⎪ ⎪+⎝⎭⎝⎭===+=+++.所以111122114n n n n d d g g a d d --++⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=++.因为已知a为常数,则数列121nndgd⎧+⎫⎛⎫⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.方法二:因为121221()()()g x x x g x x g x=+成立,且(2)g a=,所以111(2)2(2)2(2)2n n nndg g g g--+⎛⎫==+⎪⎝⎭,1221222(2)22(2)2(2)22(2)2(2)n n n n ng g g g g-----⎡⎤=++=⨯+⎣⎦,123313322(2)22(2)2(2)32(2)2(2) n n n n ng g g g g-----⎡⎤⎣⎦=⨯++=⨯+,1111(1)2(2)2(2)2(2)2n n n nn g g n g an----==-⨯+=⋅=⋅L,所以11122124nnnndgan and-++⎛⎫⎪⋅⎝⎭==+.所以数列121nndgd⎧+⎫⎛⎫⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【全国百强校】北京101中学2017-2018学年下学期高一年级期中考试数学试题
学校_________ 班级__________ 姓名__________ 学号__________ 一、单选题
1. 在等差数列{a
n }中,如果a
1
+a
2
=25,a
3
+a
4
=45,则a
1
=()
A.5 B.7 C.9 D.10
2. tan(-)=,则tan=()
A.2 B.-2
C.D.-
3. 在△ABC中,若bcosA=a sinB,则∠A等于()
A.30°B.45°C.60°D.90°4. △ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=,cosA=,则b=()
A.1 B.2
C.
D.
5. 设a,b∈R,下列不等式中一定成立的是()
A.a2+3>2a B.a2+b2>0
C.a3+b3≥a2b+ab2
D.a+≥2
6. 数列{a
n }为公比为q(q≠1)的等比数列,设b
1
=a
1
+a
2
+a
3
+a
4
,
b 2=a
5
+a
6
+a
7
+a
8
,…,b
n
=a
4n-3
+a
4n-2
+a
4n-1
+a
4n
,则数列()
A.是等差数列B.是公比为q的等比数列C.是公比为q4的等比数列D.既非等差数列也非等比数列
7. 在超市中购买一个卷筒纸,其内圆直径为4cm,外圆直径为12cm,一共卷60层,若把各层都视为一个同心圆,令=3.14,则这个卷筒纸的长度(精确到个位)为()
A.17m B.16m C.15m D.14m
8. 已知数列{a
n }是等差数列,S
n
为其前n项和. 若,则=
()
A.B.C.D.9. 下列函数中,最小值为4的函数是()
A.y=x3+B.y=sinx+
C.y=log
3 x+log
x
81 D.y=e x+4e-x
10. 某商品的价格前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是()
A.不增不减B.约增1.4%
C.约减9.2% D.约减7.8%
二、填空题
11. △ABC中,cosAcosB-sinA sinB=-,则角C的大小为_______.
12. 已知sin·cos=,则tan=_________.
13. 已知数列{a
n }的前n项和为S
n
,满足对于任意的n∈N*,a
n
=(2+S
n
),则
数列{a
n }的通项为a
n
=_________.
14. 定义:称为n个正数p
1,p
2
,…,p
n
的“均倒数”,若数列
{a
n }的前n项的“均倒数”为,则数列{a
n
}的通项公式为a
n
=_________.
15. 北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;
④测量∠A,∠C,∠
A.其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.
16. 有纯酒精a(a>1)升,从中取出1升,再用水加满,然后再取出1升,再用水加满,如此反复进行,则第九次和第十次共倒出纯酒精_______升.
三、解答题
17. 已知函数f(x)=cosx(sinx+cosx)-,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)设>0,若函数g(x)=f(x+)为奇函数,求的最小值.
18. 已知公差大于零的等差数列{a
n }的前n项和S
n
,且满足a
3
·a
5
=112,
a 1+a
7
=22.
(1)求等差数列{a
n }的第七项a
7
和通项公式a
n
;
(2)若数列{b
n }的通项b
n
=a
n
+a
n+1
,{b
n
}的前n项和S
n
,写出使得S
n
小于55时
所有可能的b
n
的取值.
19. 在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,已知a= c. (1)若∠A=2∠B,求cosB;
(2)若AC=2,求△ABC面积的最大值.
20. 已知数列{a
n }满足:a
1
=1,|a
n+1
-a
n
|=p n,n∈N*,S
n
为数列{a
n
}的前n项和.
(1)若{a
n }是递增数列,且a
1
,2a
2
,3a
3
成等差数列,求p的值;
(2)若p=,且{a
2n-1}是递增数列,{a
2n
}是递减数列,求数列{a
n
}的通项公
式;
(3)在(2)的条件下,令c
n =n(a
n+1
-a
n
),求数列{c
n
}的前n项和T
n
.。