11齿轮传动解析
机械设计基础11章齿轮传动
![机械设计基础11章齿轮传动](https://img.taocdn.com/s3/m/1549d587ba4cf7ec4afe04a1b0717fd5360cb2ef.png)
优点
• 传动效率高 • 精度高,传动平稳 • 调整方便
缺点
• 噪音较大,振动大 • 制造和维修成本高 • 使用温度限制
齿轮传动的应用领域
1 汽车领域
齿轮传动广泛应用于汽车变速箱以及其他部件中,如转向、制动等系统。
2 机械加工
在机械加工领域,齿轮传动是一种常见的工具传动方式,如钻床、铣床、数控机床等都 采用齿轮传动。
机械设计基础11章齿轮传 动
齿轮传动是机械传动重要的一种形式,本章将介绍齿轮传动的原理、分类、 工作原理、应用等方面的知识。
齿轮的分类和结构
直齿轮
齿轮依照拒合的直线方向分为直 齿轮和斜齿轮两类,其中最常用 的是直齿轮。
斜齿轮
斜齿轮主要用于高速和高载荷的 传动,它与直齿轮相比具有噪音 小、传动平稳和精度高的优点。
锥齿轮
锥齿轮是用于互相垂直的轴的传 动,它通过多个齿轮的嵌合形成 和从动齿轮
齿轮传动是通过一个主齿轮带动一个或多个从动齿轮,从而实现传递动力和转矩。
速比和转差
齿轮传动的速比可以根据主齿轮和从动齿轮的齿数比值计算,同时转差也是齿轮传动需要考 虑的一个因素。
齿轮传动的优点和缺点
齿轮长期存放或使用在潮湿环境 中,会导致齿轮生锈,影响齿轮 传动的使用寿命。
3 风力发电
齿轮传动广泛应用于风力发电机组中,可将机械能转化为电能,实现电网供电。
齿轮传动的设计考虑因素
1
齿轮传动比
齿轮传动比需要根据传动的要求进行计
齿轮的材料选择
2
算,以确保传动效率和减少传动误差。
齿轮的材料选择需要考虑到传动的环境、
载荷、运行温度等因素,以确保齿轮传
动的寿命和工作稳定性。
3
机械设计基础复习精要:第11章 齿轮传动
![机械设计基础复习精要:第11章 齿轮传动](https://img.taocdn.com/s3/m/91ade4146c85ec3a87c2c5b3.png)
133第11章 齿轮传动11.1考点提要11.1.1 重要的术语及概念软齿面、硬齿面、许用应力、弯曲疲劳强度、接触疲劳强度、接触应力、弯曲应力、点蚀、胶合、载荷系数、齿宽系数、齿形系数、应力集中系数、应力循环次数、齿轮精度等级。
11.1.2 许用应力的计算接触疲劳强度的许用应力为: HH HN H S K lim ][σσ= (11—1) 式中:HN K 称为寿命系数,由应力循环次数确定;lim H σ是齿面材料的接触疲劳极限;H S 为安全系数。
即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数HN K 不同,因此许用应力也不同。
只有两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数HN K 并取相同的安全系数H S ,许用应力才相同。
弯曲疲劳强度的许用应力为:FFE FN F S K σσ=][ (11—2) 式中:环次数确定)为寿命系数(由应力循FN K ;FE σ为齿面材料的弯曲疲劳极限;F S 为安全系数。
即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数FN K 不同,因此许用应力也不同。
如果两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数FN K 并取相同的安全系数F S ,许用应力才会相同。
为实现等强度设计,如果采用软齿面(HBS 350≤),一般小齿轮比大齿轮硬度高30-50HBS,小齿轮对大齿轮有冷作硬化作用。
如采用硬齿面(HBS 350>),在淬火处理中难以做到如此的硬度差,设计时按同样硬度设计。
要注意:如果是开式齿轮传动,则极限应力要乘以0.7,由于极限应力是按单向转动所获得的数据,如果是双向转动,则也要乘以0.7。
11.1.3齿轮的失效形式和计算准则齿轮的失效形式有五种:(1)轮齿折断。
减缓措施:增大齿根的圆角半径,提高齿面加工精度,增大轴及支承的刚度。
第十一章 齿轮传动
![第十一章 齿轮传动](https://img.taocdn.com/s3/m/ec9d96cbd5bbfd0a79567366.png)
强度计算方法
当量齿轮法,强度当量。 接触强度计算公式
校核公式
H
ZEZH Z
KT 1 u 1 bd 1
2
u
H
H lim
N / mm
2
设计公式
d1 2 KT
3 1
SH
2
d
u 1 ZEZ u
H
Z
H
mm
Z
cos 螺旋角系数
H
[
H
]
σH ——齿面啮合点最大接触应力 [σH]——齿轮材料的许用接触应力
圆柱面的最大接触应力σH的计算
赫兹公式:
H
4
Fn 2 ab
Fn
1
1
1 1 E1
2
1
2
1 21 E2
2
b
σH ——最大接触应力
与法向力Fn成正比; 与接触变形宽度2a成反比 与曲率半径ρ1 、ρ2成反比。 与宽度b成反比。
增加中心距a; 减小外载荷T1; 选σHlim高的材料和热处理。
336 ( u 1) u
3
提高许用接触应力[σH] :
KT 1 ba
2
H
H
H lim
SH
11-6 直齿圆柱齿轮传动的轮 齿弯曲强度计算
轮齿相当于一个悬臂 梁,受载后会发生弯 曲。 两个问题:
计算时载荷的作用点 及大小 危险截面的位置
齿轮传动(第11章)
![齿轮传动(第11章)](https://img.taocdn.com/s3/m/6262a80ffc4ffe473368ab1c.png)
K F FtYFa1YSa1Y F1 F 1 bm K F FtYFa 2YSa 2Y F2 F 2 bm
② 应力和许用应力的关系 两齿轮弯曲应力是否相同?许用应力呢?
F
K F Ft YFaYSaY [ F ] bm
39
③
设计计算时,因为 m 3
8
§11.2
齿轮传动的失效形式
1.轮齿折断
原因: • 齿根弯曲应力大; • 齿根应力集中。
9
1、轮齿折断
★ 疲劳折断 ★ 过载折断
全齿折断—常发生于齿宽较小的直齿轮
局部折断—常发生于齿宽较大的直齿轮,和斜齿轮
措施:选用合适的材料及热处理方法,使齿根芯部 有足够的韧性;采用正变位齿轮以增大齿根的厚度; 增大齿根圆角半径,消除齿根加工刀痕;对齿根进 行喷丸、碾压等强化处理; 提高齿面精度、增大 模数等
d1 sin 2
cos d1 d1 cos
O2
d N 2C 2 2 sin 2
1 1 1 2
d 2 z2 2 d2 u 1 d1 d1 z1
②
d'2 2
'
(从动)
2
②
u 1 1 2 d1 cos tan u
23
§11.4 齿轮传动的计算载荷
名义载荷:
Fn p L
pca K Fn L
计算载荷:
载荷系数:K K A Kv K K
24
1.使用系数KA
考虑齿以外的其他因素对齿轮传动 的影响,主要考虑原动机和工作机的影响
原动机 载荷状况 均匀平稳 轻微冲击 中等冲击 严重冲击 工作机器 … … … … 电机 1.0 … 1.1 … 1.25 1.5 1.75 2.0 内燃 机… 1.5 1.75 2.0 2.25 25
11章-齿轮传动解析
![11章-齿轮传动解析](https://img.taocdn.com/s3/m/bb25f55603020740be1e650e52ea551810a6c90e.png)
材料、热处理、精度 1、设计 模数、齿数
2、准则:
闭式软齿面——按齿面接触强度设计, 后按轮齿弯曲强度校核
解: 1.选择材料并确定许用应力
小齿轮:40MnB、调质—— HB241-286,σHlim=680-760 ,σFE=580-610 取: σHlim=730 ,σFE=600 大齿轮:ZG35SiMn、调质—— HB241-269,σHlim=590-640 ,σFE=500-520 取: σHlim=620 ,σFE=510
模数: m=d1/z1=2.8(取m=3mm) 中心距: a=m( z1+z2)/2=225mm 齿宽:b=dd1=71.8mm(取b2=75, b1=80) 其它几何参数:……
3.验算轮齿弯曲强度
F
2KT1YFaYSa bm2 z1
[ F ]
齿形系数:YFa1=2.56,YFa2=1.63 应力校正系数:YSa1=2.13,YSa2=1.81
矩。
O1
Fn
γ
P
rb
O
O2
危险截面:齿根圆角30˚ 切线两切点连线处。
Fn
F1
γ
FF21
Fn Fn
cos sin
弯矩:M=F1 ·hF
= Fn cos ·hF
Fn
F2
hF
= KFn cos ·hF
A 30˚ 30˚ B
弯曲截面系数:W = b ·sF2/6
弯曲应力:
SF
F
M W
KFn coshF
齿宽系数d:
d=b/d1: d越大,则b越大
若结构的刚性不够,齿轮制造、安装不准确, 则容易发生载荷集中现象,使轮齿折断。
对称布置取大值; 刚性大时取大值; 齿面软时取大值;
第11章齿轮传动
![第11章齿轮传动](https://img.taocdn.com/s3/m/623e7f68011ca300a6c39009.png)
一对钢制齿轮:
弹性模量:E1=E2=2.06×105 MPA 泊松比:μ 1=μ 2= 0.3, α=20
(u(u )3 3 KT1 11) KT1 H 285 335 335 [ H ] 代入赫兹公式得: H250 22 uba uba
引入齿宽系数:ψa=b/a
285 KT1 335 250 a (u 1) 3 得设计公式: [ ] u H a
d2 2
中心距 : a=(d2 ± d1)/2 = d1(u ±1)/2 或 : d1 = 2a /(u ±1)
1 1 ( 2 1 )
得: 1 2
1 2
2(d 2 d1 ) u 1 2 (u 1) 2 d1d 2 sin u d1 sin ua sin
Ft 2T1 F 在节点处,载荷由一对轮齿来承担: n cos d1 cos
轮齿折断 齿面点蚀 齿面胶合 齿面磨损
跑合磨损,磨粒磨损.
跑合磨损 磨粒磨损
设计:潘存云
措施:1.减小齿面粗糙度
2.改善润滑条件
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损 齿面塑性变形
主动齿
设计:潘存云
从动齿
§11-2
齿轮材料及热处理
优质碳素钢 常用齿轮材料 合金结构钢 铸钢 铸铁 表面淬火 ----高频淬火,火焰淬火 渗碳淬火 调质 热处理方法 正火 渗氮 1.表面淬火 一般用于中碳钢和中碳合金钢,如45,40Cr等.表面 淬火后轮齿变形小,可不磨齿,硬度可达52~56HRC, 面硬芯软,能承受一定冲击载荷.
公式中:"+"用于外啮合,"-"用于内啮合. 计算时取: 且m≥ 1.5
第11章 齿轮传动PPT课件
![第11章 齿轮传动PPT课件](https://img.taocdn.com/s3/m/d8dd01850912a21615792971.png)
主要内容: 齿轮传动的失效、材料及热处理 齿轮传动的受力分析、计算载荷 标准直、斜、锥齿轮的强度计算 齿轮的构造、润滑和效率
本章重点: 失效形式、受力分析及强度计算
本章难点: 齿轮传动的受力分析
前言
介绍直齿圆柱、斜齿圆柱、直齿圆锥齿轮传动的设计。
齿轮传动的分类:
按工作 条件
分类
闭式传动 开式传动
软齿面 硬齿面
HBS≤350 HBS>350
按载荷 情况 分类
低速轻载: V≤1~3m/S ; Fn≤5~10KN 中速中载: 3m/S<V<10m/S ;
10KN≤Fn<50KN 高速重载: V≥10m/S ; Fn≥50KN
§11-1 轮齿的失效形式及计算准则
一.轮齿的失效形式
疲劳折断→ 过载折断
全齿折断(齿根)(直齿) 局部折断(斜齿受载不均)
齿面点蚀: σH反复→裂纹→扩展→麻点状脱落
齿
→靠近节线的齿根表面
面 失 效
齿面胶合: 润滑失效→表面粘连→沿运动方向撕裂 齿面磨粒磨损: 磨粒磨损→齿形破坏
齿面塑性变形: 齿面沿摩擦力方向塑性变形
二.各种场合的主要失效形式
闭式传动 开式传动
硬齿面(折断) 按弯曲强度设计(先求m )
→按齿面强度校核
开式传动: 按弯曲强度设计(求m ) →
(磨损)
考虑磨损将[σF] ×(0.7~0.8)
(许用弯曲应力)
§11-2 齿轮的材料
一.对齿轮材料的基本要求 1.齿面要硬, 齿芯要韧 2.易于加工及热处理 二.常用的齿轮材料
三.常用热处理
四.钢制齿轮加工工艺过程
2.作用力的大小
Ft
2T1 d1
机械设计基础习题11-2
![机械设计基础习题11-2](https://img.taocdn.com/s3/m/0d76f6cb4693daef5ff73d11.png)
第11章 齿轮传动精选例题与解析例11-1 二级圆柱齿轮减速器,其中一级为直齿轮,另一级为斜齿轮。
试问斜齿轮传动应置于高速级还是低速级?为什么?若为直齿锥齿轮和圆柱齿轮组成减速器,锥齿轮传动应置于高速级还是低速级?为什么?答:在二级圆柱齿轮传动中,斜齿轮传动放在高速级,直齿轮传动放在低速级。
其原因有三点:1)斜齿轮传动工作平稳,在与直齿轮精度等级相同时允许更高的圆周速度,更适于高速。
2)将工作平稳的传动放在高速级,对下级的影响较小。
如将工作不很平稳的直齿轮传动放在高速级,则斜齿轮传动也不会平稳。
3)斜齿轮传动有轴向力,放在高速级轴向力较小,因为高速级的转矩较小。
由锥齿轮和斜齿轮组成的二级减速器,一般应将锥齿轮传动放在高速级。
其原因是:低速级的转矩较大,齿轮的尺寸和模数较大。
当锥齿轮的锥距R 和模数m 大时,加工困难,制造成本提高。
例11-2 一对齿轮传动,若按无限寿命考虑,如何判断其大小齿轮中哪个不易出现齿面点蚀?哪个不易发生齿根弯曲疲劳折断?答:一对齿轮的接触应力相等,哪个齿轮首先出现点蚀,取决于它们的许用接触应力][H σ,其中较小者容易出现齿面点蚀。
通常,小齿轮的硬度较大,极限应力lim σ较大,按无限寿命设计,小齿轮的许用接触应力][H σ 1 较大,不易出现齿面点蚀。
判断哪个齿轮先发生齿根弯曲疲劳折断,即比较两轮的弯曲疲劳强度,要比较两个齿轮的111][F Sa Fa Y Y σ和222][F Sa Fa YY σ,其比值较小者弯曲强度较高,不易发生轮齿疲劳折断。
、例11-3 图示双级斜齿圆柱齿轮减速器,高速级:m n =2 mm ,z 1=22,z 2 =95,︒=20n α,a =120,齿轮1为右旋;低速级:m n = 3 mm ,z 3 =25,z 4=79,︒=20n α,a =160。
主动轮转速n 1=960 r/min ,转向如图,传递功率P = 4 kW ,不计摩擦损失,试:(1) 标出各轮的转向和齿轮2的螺旋线方向; (2) 合理确定3、4轮的螺旋线方向;(3) 画出齿轮2、3 所受的各个分力; (4) 求出齿轮3所受3个分力的大小。
齿轮传动(11版)
![齿轮传动(11版)](https://img.taocdn.com/s3/m/8417061bfc4ffe473368ab84.png)
1.00
1.10
1.50
1.75
轻微冲击
1.50
1.35 1.60 1.85
中等冲击
1.50
1.60
1.75
2.00
1.75
1.85
2.00
严重冲击
2.25 或更 大
2、动载荷系数Kv 考虑齿轮制造精度、运转速度对齿 轮内部附加动载荷影响的系数。
进行齿顶修缘可以减小动载荷
3、齿向载荷分布系数K 考虑齿宽方向载荷分布不均匀 对轮齿强度影响的系数
Kv------与v 有关。
初选:
K t d1t or mt v K v K d1 d1t 3 K , Kt m mt 3 K Kt
思考各齿轮应力种类及受载次数
主动
被动
主动
被动
例6-1
已知:P=28kW, n1 970r/min, i 3.2
、z 2 材料: 40 MnB ,表面淬火 HRC=48--55 精度:8-8-7
§10-2 齿轮的材料
一、钢
锻钢 ( 中、小尺寸的齿轮) 铸钢(尺寸较大的齿轮)
1. 软齿面齿轮材料及热处理: 中碳钢:45,40Cr,38SiMnMo;ZG310-570 热处理:正火,调质; 软齿面齿轮应使小齿轮的齿面硬度大 于大齿轮的齿面硬度(30~50)HBS。 2.硬齿面齿轮材料及热处理: 中碳钢:表面淬火
二、设计准则
对中、低速齿轮传动:
闭式软齿面齿轮: 按接触疲劳强度设计, 验算弯曲疲劳强度。 闭式硬齿面齿轮: 按弯曲强度设计, 验算接触强度。 开式齿轮传动:按弯曲疲劳强度设计. 开式齿轮传动: 按弯曲强度设计,用增大 对于高速重载闭式齿轮传动,由于易发生 模数考虑磨损的影响。 胶合失效,在保证不发生轮齿折断和齿面 点蚀失效条件下,还应进行胶合能力计算
机械设计基础之齿轮传动详解
![机械设计基础之齿轮传动详解](https://img.taocdn.com/s3/m/e48e4426cfc789eb172dc89e.png)
2) 提出防止齿轮失效的措施;
3) 分析齿轮传动失效的机理和特征,为 失效的预报和诊断提供信息。
§11-1 轮齿的失效形式
齿轮轮齿的失效与工作条件、材料性能及热处理工艺有关,常 见的有以下五种失效形式:
(载荷、速度和润滑条件)
轮齿折断 失效形式
一般发生在齿根处,严重 过载突然断裂、疲劳折断。
1
齿轮的失效形式-轮齿折断
齿宽小直齿圆柱齿轮:全齿折 齿宽大直齿圆柱齿轮、斜齿圆柱齿轮、 人字齿:局部折断
(b)
§11-1 轮齿的失效形式
轮齿折断
失效形式
齿面点蚀
齿面接触应力按脉动循环变 化当超过疲劳极限时,表面 产生微裂纹、高压油挤压使 裂纹扩展、微粒剥落。点蚀 首先出现在节线处,齿面越 硬,抗点蚀能力越强。软齿 面闭式齿轮传动常因点蚀而 失效。
第11章 齿轮传动
§11-1 §11-2 §11-3 轮齿的失效形式 齿轮材料及热处理 齿轮传动的精度
§11-4
§11-5 §11-6 §11-7 §11-8 §11-9
直齿圆柱齿轮传动的作用力及计算载荷
直齿圆柱齿轮传动的齿面接触强度计算 直齿圆柱齿轮传动的弯曲强度计算 斜齿圆柱齿轮传动 直齿圆锥齿轮传动 齿轮的构造
齿面抗点蚀能力主要与齿面硬度有 关,齿面硬度越高,抗点蚀能力越强。
软齿面(HBS350)的闭式齿轮传 动常因齿面点蚀而失效。在开式传动中, 由于齿面磨损较快,点蚀还来不及出现 或扩展即被磨掉,所以一般看不到点蚀 现象。
摩擦力方向
节点处齿廓相对滑移速度小, 油膜不易形成,摩擦力大
齿轮的失效形式-齿面点蚀
§11-2
常用齿轮材料
齿轮材料及热处理
优质碳素钢 合金结构钢 铸钢 铸铁
机械设计基础课件第十一章齿轮传动
![机械设计基础课件第十一章齿轮传动](https://img.taocdn.com/s3/m/3ea7e621cbaedd3383c4bb4cf7ec4afe04a1b134.png)
齿轮传动的计算和设计
计算
根据传动比、转速和扭矩要求,确定齿轮的模数、 齿数和啮合角,以满足设计需求。
设计
基于计算结果,绘制齿轮的剖面图、齿形曲线,并 选择合适的材料和制造工艺。
齿轮传动的应用领域
汽车工业
齿轮传动广泛用于变速器、差速 器和传动系统,实现不同速度和 扭矩的转换。
工业机械
齿轮传动在机床、起重设备、工 厂生产线等领域中被广泛应用, 实现精确的运动控制。
齿轮传动的工作原理
齿轮传动通过齿面的啮合转动相邻齿轮,改变速度和扭矩。合理的模数和齿 数设计以及精准的制造工艺是实现高效传动的关键。
齿轮传动的优点和局限性
1 优点
高传动效率、精确的传动比、可靠性高、能承受大扭矩、使用寿命长。
2 局限性
容易产生噪音和振动、对工作环境要求高、制造成本较高、需要润滑和维护。
风力发电
齿轮传动在风力发电机组中用于 将风轮转动的风能转化为发电机 的高速旋转。
结论和总结
通过对齿轮传动的学习,我们了解了它的基本概念、工作原理、优点和局限 性以及计算和设计方法,同时认识了齿轮传动在各个应用领域的重要性。
机械设计基础课件第十一 章齿轮传动
欢迎大家来到本课件的第十一章,我们将一起探索齿轮传动的基本概念、常 见类型、工作原理、优点和局限性、计算和设计、应用领域等内容。
齿轮传动的基本概念轮之间的啮合实现动力和运动传递的机械装置。
2
组成
由多个齿轮组成,其中一般有一个驱动齿轮和一个被动齿轮。
3
原理
齿轮之间的齿面啮合使得驱动齿轮的旋转传递给被动齿轮,改变速度和扭矩。
常见的齿轮类型
直齿轮
齿面平行于齿轴直线,传动效率高,但噪音和振 动较大。
机械设计第11章斜齿与圆锥齿轮传动
![机械设计第11章斜齿与圆锥齿轮传动](https://img.taocdn.com/s3/m/ea50462f1ed9ad51f01df2b5.png)
(8-44)
4. 公式应用中的参数选择和注意事项
(1) 软齿面闭式齿轮传动在满足弯曲强度的条件下,为提 高传动的平稳性,小齿轮齿数一般取z1=20~40,速度较高时 取较大值;硬齿面的弯曲强度是薄弱环节,宜取较少的齿数, 以便增大模数,通常取z1 =17~20。
(2)为保证减小加工量,也为了装配和调整方便,大齿轮 齿宽应小于小齿轮齿宽。取b2=φdd1,则b1=b2+(5~10)。
图8-43表示一斜齿圆柱齿轮传动,取主动小齿轮作为研究对 象,设法向力Fn集中作用在分度圆柱上的齿宽中点P处。在法向 平面内的Fn可分解为径向力Fr、切向力Ft和轴向力Fa,F′是Ft和Fa 的合力,是Fn在P点分度圆柱切平面上的分力。
图8-43 斜齿圆柱齿轮传动的受力分析
切向力 径向力
轴向力 法向力
许用弯曲应力[σ]F:由表8-9得 σFlim1=330+0.45HBS1=(330+0.45×236)MPa=436.2 MPa σFlim2=184+0.74×HBS2=(184+0.74×190)MPa=324.6 MPa
由表8-10得,SFmin=1。所以
F1
Flim
SFmin
436.2MPa436.2MPa 1
法向力Fn分解为切于平均分度圆的切向力Ft和垂直分度圆锥母
线的分力F′,再将F′分解为径向力Fr和轴向力F(8-45)
Fr1=F′cosδ1=Ft1tanα cosδ1
(8-46)
Fa1=F′sinδ1 =Ft1tanαsinδ1
(8-47)
式中:dm1——小齿轮平均分度圆直径, dm1=d1(1-0.5b/R)。
由表8-10得SHmin=1,所以
11-第10章齿轮传动解析
![11-第10章齿轮传动解析](https://img.taocdn.com/s3/m/0dad446eb9f3f90f77c61b6c.png)
一、轮齿的失效形式
疲劳折断
轮齿折断
过载折断
失效形式
局部折断
§10-2 齿轮传动的失效形式及设计准则
提高轮齿抗折断能力的措施:
1)增大齿根过渡圆角半径,消除加工刀痕,减小齿 根应力集中;
2)增大轴及支承的刚度,使轮齿接触线上受载较为 均匀;
3)采用合适的热处理,使齿芯材料具有足够的韧性;
4)采用喷丸、滚压等工艺措施,对齿根表层进行强 化处理。
一、轮齿的失效形式 轮齿折断
齿面点蚀
主主动动齿齿
失效形式
齿面胶合 齿面磨损 塑性变形
从从动动齿齿
表面凸出
表面凹陷
二、齿轮的设计准则
▲ 保证足够的齿根弯曲疲劳强度,以免发生齿根折断。
▲ 保证足够的齿面接触疲劳强度,以免发生齿面点蚀。
▲ 对高速重载齿轮传动,除以上两设计准则外,还应 按齿面抗胶合能力的准则进行设计。
基本要求: 齿面要硬、齿芯要韧
优质碳素钢、合金结构钢、铸钢、铸铁及某些非 金属材料(常见材料及其力学特性见表10-1)
§10-3 齿轮材料及选用原则
二、常用的齿轮材料
钢材的韧性好,耐冲击,通过热处理和化学处理可 改善材料的机械性能,最适于用来制造齿轮。
常用 齿轮 材料
锻钢
含碳量为(0.15 ~ 0.6)%的碳素钢或合金钢。 一般用齿轮用碳素钢,重要齿轮用合金钢。
第十章 齿轮传动
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6 §10-7 §10-8 §10-9 §10-10
概述 齿轮传动的失效形式及设计准则 齿轮材料及其选择原则 齿轮传动的计算载荷 标准直齿圆柱齿轮传动的强度计算 设计参数、许用应力与精度选择 标准斜齿圆柱齿轮传动的强度计算 标准圆锥齿轮传动的强度计算 齿轮的结构设计 齿轮传动的润滑和效率
《机械设计基础》课件 第11章 齿轮传动
![《机械设计基础》课件 第11章 齿轮传动](https://img.taocdn.com/s3/m/c386dec2b9f67c1cfad6195f312b3169a451eac9.png)
H
2
bd1
u
Zβ cos
32
§11-8 斜齿圆柱齿轮传动
2 KT1
F
YFaYSa F
bd1mn
2 KT1 YFaYSa
2
mn 3
cos
2
d z1 F
z
zv
3
cos
33
§11-9 直齿圆锥齿轮传动
34
§11-9 直齿圆锥齿轮传动
35
轴向力:
Fa Ft tan
29
§11-8 斜齿圆柱齿轮传动
力的方向:
圆周力t :主动轮与运动方向相反,
从动轮与运动方向相同
径向力r :两轮都是指向各自的轴心
轴向力a :主动轮的左(右)手法则
30
根据主动轮轮齿的齿向(左旋或右旋)伸左手或右手,四指
沿着主动轮的转向握住轴线,大拇指所指即为主动轮所受的
轮齿会变形,需要磨齿。
二、主要参数
1. 齿数比:一般≤7,同要求的传动比误差≤ (3~5)%
2. 齿数:一般z1>17
3. 齿宽:过大,宽度方向载荷分布不均匀
28
§11-8 斜齿圆柱齿轮传动
一、轮齿上的作用力
轮齿所受总法向力
可分解为:
2T1
圆周力:Ft
d1
Ft tan n
径向力:Fr
cos
开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳
折断。
由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对
其进行抗弯曲疲劳强度计算,并采用适当加大(10%~20%)
模数(或降低许用弯曲应力)的方法来考虑磨粒磨损。
i第11章 齿轮传动(强度计算)
![i第11章 齿轮传动(强度计算)](https://img.taocdn.com/s3/m/0ddca93a31126edb6f1a10d9.png)
§11—3 齿轮传动的精度GB规定:齿轮精度等级有12个按GB10095-88(圆柱齿轮)和GB11365-89(圆锥齿轮)规定:精度等级:高→低1,2,3,4,5,6,7,8,9,10,11,12常用齿轮公差分三个组,反映:传递运动的准确性——第Ⅰ公差组;传动的平稳性——第Ⅱ公差组;载荷分布的均匀性——第Ⅲ公差组;另外考虑齿侧间隙:制造误差、轮齿变形、受热膨胀、便于润滑→14种齿厚偏差精度等级选择,按圆周速度V、用途、工作条件和传动功率来确定,可参考表11-2§11—4 直齿圆柱齿轮传动的作用力及计算载荷一、受力分析忽略摩擦力,法向力F n沿啮合线作用于节点处(将分布力简化为集中力)F n与过节点P的圆周切向成角度α。
F n可分解为F t和F r1、力的大小圆周力F t=2T/d1F t1=-F t2径向力F r=F t tg αF r1=-F r2 大小相等,方向相反法向力F n=F t / cos αF n1=-F n2T1——小齿轮上传递的扭矩Nmm d1—小齿轮上的直径mm, α=20°2、力的方向F t——“主反从同”F r——指轮心齿面接触线上的法向载荷F n——名义载荷(未计及载荷波动,载荷沿齿宽方向的不均匀性和轮齿齿廓曲线误差等)二、计算载荷;KF n载荷系数:K=K A Kν KβKα表11-3K A——工作情况系数Kν——载荷系数Kβ——齿向载荷分布系数Kα——齿间载荷分配系数1、工作情况系数K A考虑了齿轮啮合时,外部因素引起的附加动载荷对传动的影响,它与原动机与工作机的类型与特性,联轴器类型等有关2、动载荷系数Kν——考虑齿轮制造误差和装配误差及弹性变形等内部因素引起的附加动载荷的影响3、齿向载荷分布系数K——考虑轴的弯曲、扭转变形、轴承、支座弹β性变形及制造和装配误差而引起的沿齿宽方向载荷分布不均匀的影响。
4、齿间载荷分配系数K——考虑同时有多对齿啮合时各对轮齿间载荷α分配不均匀的系数。
高等教育出版社第11章机械设计基础第五版 齿轮传动
![高等教育出版社第11章机械设计基础第五版 齿轮传动](https://img.taocdn.com/s3/m/e35247c258f5f61fb73666bb.png)
材料及热处理;增大模数;增大齿根圆角半径; 消除刀痕;喷丸、滚压处理;增大轴及支承刚度。
二、齿面点蚀:
在润滑良好的闭式齿轮传动中,由于齿面材料在 交变接触应力(脉动循环)作用下,因为接触疲劳产 生金属微粒剥落形成凹坑的破坏形式称为点蚀。
则可得到:
2T1 圆周力: Ft d1
经向力:Fr
N N N
Ft tan
Ft 法向力: Fn cos
小齿轮上的转矩:
P T1 9550 ( N m) n1
圆周力Ft的方向在主动轮上与运动方向相反, 在从动轮上与运动方向相同。经向力Fr的方向都是 由作用点指向各自的轮心,与齿轮回转方向无关。
把
b d d1
代入上式得
m3
2 KT1 YFa
FE
SF
试验轮齿失效概率为1/100时的 齿根弯曲疲劳极限,见表11-1。 若轮齿两面工作时,应将数值乘 以0.7倍。 安全系数,见表11-5
在进行弯曲强度验算时,应对大小齿轮分别 进行验算;而在计算m时,应以
§11-5 直齿圆柱齿轮传动的 齿面接触强度计算
直齿圆柱齿轮的强度计算方法是其它各类齿轮
传动计算方法的基础,斜齿圆柱齿轮、直齿圆锥齿
轮等强度计算,可以折合成当量直齿圆柱齿轮来进
行计算。
强度计算的目的在于保证齿轮传动在工作载荷
的作用下,在预定的工作条件下不发生各种失效。
齿轮强度计算是根据齿轮可能出现的失效形式 来进行的。
三、齿面胶合
高速重载的齿轮传动,齿面间的压力大,瞬时 温度高,油变稀而降低了润滑效果,导致摩擦增大, 发热增多,将会使某些齿面上接触的点熔合焊在一 起,在两齿面间相对滑动时,焊在一起的地方又被 撕开。于是,在齿面上沿相对滑动的方向形成伤痕, 这种现象称作胶合。
大连理工 机械设计基础 作业解答:第11章-齿轮传动
![大连理工 机械设计基础 作业解答:第11章-齿轮传动](https://img.taocdn.com/s3/m/6255d148da38376baf1faebc.png)
11-9 两极斜齿圆柱齿轮减速器,(1) 选择低速级的斜齿轮螺旋线 方向如何选择才能使中间轴上两齿轮的轴向力方向相反;(2) 为了 使中间轴上两齿轮的轴向力互相抵消,低速级的螺旋角 β 应是多 少?
11-9 两极斜齿圆柱齿轮减速器,(1) 选择低速级的斜齿轮螺旋线 方向如何选择才能使中间轴上两齿轮的轴向力方向相反;(2) 为了 使中间轴上两齿轮的轴向力互相抵消,低速级的螺旋角 β 应是多 少?
11-4 开式直齿圆柱齿轮传动,i12=3.5, P=3KW,n1=50r/min,用电动机驱动, 单向传动,载荷均匀, Z1=21,小齿轮为45钢调质处理,大齿轮为45钢正火, 请确定合理的d、m值。
较高可靠度
11-4 开式直齿圆柱齿轮传动,i12=3.5, P=3KW,n1=50r/min, 用电动机驱动,单向传动,载荷均匀, Z1=21,小齿轮为 45钢调质处理,大齿轮为45钢正火,请确定合理的d、m值。
第十一章 齿轮传动
11-1 有一直齿圆柱齿轮传动,原设计传动功率为 P,主动轴转 速为 n1。若其它条件不变,轮齿的工作应力也不变,当 主动轴转速提高一倍(即n1'= 2n1 时),求该齿轮传动 能传递的功率P' 。
11-2 有一直齿圆柱齿轮传动,允许传递功率 P。若通过热处理 提高了材料力学性能,使大、小齿轮的许用接触应力[σH2] 、 [σH1]各提高30%,那么在不改变工作条件和其它设计参数 的情况下,抗疲劳点蚀允许传递的扭矩、功率可提高多少?
2 230
arccos0.968 1434'21''
d1
mn .Z1
cos
4 21 cos14.57
86.792mm
齿宽
b d d1 1.186.792 95.5mm
第十一章-齿轮传动思维导图
![第十一章-齿轮传动思维导图](https://img.taocdn.com/s3/m/7100c5f1b04e852458fb770bf78a6529647d35a9.png)
齿数z
主要参数
11-7 圆柱齿轮材料和 参数的选取与计算方法
齿宽系数及齿宽
圆周力
径向力 斜齿轮圆柱齿轮的受力分析
轴向力
圆周力、径向力与直齿圆柱齿轮的方向相同
对主动轮:用左、右手法则来判 断,从动轮方向与主动轮相反
轴向力
斜齿圆柱齿轮传动的作用力方向
11-/s,采用油池润滑
精度等级
11-4 直齿圆柱齿轮传动 的作用力及计算载荷
直齿圆柱齿轮传动的受力分析
直齿圆柱齿轮传动的作用力方向
圆周力:“主反从同” 径向力:由作用点指向各自的轮心
直齿圆柱齿轮传动的计算载荷
法向力Fn为名义载荷
齿面最大接触应力可近似用赫兹公式计算
11-5 直齿圆柱齿轮传 动的齿面接触强度计算
齿面接触强度(简化后) 齿面接触疲劳强度的校核公式 齿面接触疲劳强度的设计公式
第十一章齿轮传动
11-1 齿轮的失效形 式和设计计算准则
失效形式
轮齿折断(闭式硬齿面齿轮传动的主要失效形式) 齿面点蚀(闭式软齿面齿轮传动的主要失效形式) 齿面胶合(主要出现在高速重载的闭式齿轮传动) 齿面磨损(开式齿轮传动的主要失效形式) 齿面塑性变形(重载软软齿面齿轮传动的主要失效形式)
设计计算准则
多级传动且大齿轮直径不等时, 采用惰轮蘸油润滑
v>12m/s,采用油泵喷油润滑
减少摩擦磨损,散热和防锈蚀
开式,半闭式,低速齿轮传动采用人工定 期润滑,用润滑油或润滑脂
润滑目的 润滑方式
闭式齿轮传动的润滑方式由圆周速度v决定
查表 润滑油牌号和粘度
功率损耗 传动效率
齿轮传动的效率
11-11 齿轮传动 的润滑和效率
11-2 齿轮材料及热处理
机械设计基础第11章齿轮传动(六-2)
![机械设计基础第11章齿轮传动(六-2)](https://img.taocdn.com/s3/m/a2ff6f06f242336c1fb95e49.png)
2T1 dm1
F F tg ' t
Ft的方向在主动轮上与运动方向 相反,在从动论上与运动方向相
同;
径向力:Fr1 F'cos 1 Ft tg cos 1
径向力指向各自的轴心;
轴向力:Fa Ft tg sin
F’
Fr
δ Fr δ
轴向力Fa的方向对两个齿轮都是背着锥顶。
当δ 1+δ 2 = 90˚ 时,有: sinδ 1=cosδ 2
YFaYSa
[ F ]
mm
MPa
§11-10 齿轮的构造
一、概述 由强度计算只能确定齿轮的主要参数:
如齿数z、模数m、齿宽B、螺旋角、分度圆直径d 等。
其它尺寸由结构设计确定
齿轮结构设计的内容: 主要是确定轮缘,轮辐,轮毂等结构形式及尺寸大小。
Ft tan n cos
Fr
Fn
c α F n
F β a
潘存云教授研制
t
长方体对角面即轮齿法面
Fr
潘存云教授研制
β
Fn αn
F’
潘存云教授研制
T1 F’ ω1
Ft Fr = F’ tanαn
β
d1
Fa
F’ 长方体底面
2
F’=Ft /cosβ
方向判断:
Ft、Fr 方向判断均同直齿圆柱齿轮 Ft:主动轮上与转向相反,从动轮上与转向相同。 Fr:均由作用点指向各自轮心。
dm2 d dm是平均分度圆直径
2
R =0.25 ~ 0.3
当量齿轮分度圆直径:
Re
rv1
dm1
2 cos 1
rv 2
dm2
11齿轮传动解析
![11齿轮传动解析](https://img.taocdn.com/s3/m/6c7db14b58eef8c75fbfc77da26925c52cc59127.png)
11.4 直齿圆柱齿轮传动的强度计算
受力分析:
如果略去摩擦力,把沿着齿宽
的分布力,看成在节点的集中力
。则沿啮合线方向的 可F n分解为
两个分力:圆周力 ; 径向力
FFtr。
圆周力: Ft 2T1 / d1
N
径向力: Fs
N
忽略Ff,法向力Fn作用于齿宽中点。
5. 齿面塑性变形
较多见于重载、起动频 繁(受反复双向工作的冲击载 荷作用) 的机械设备中。
失效形式→相应的计算准则
1、闭式齿轮传动 主要失效为:点蚀、轮齿折断、胶合 软齿面:主要是点蚀,按σH设计,按σF校核
硬齿面:主要是折断,按σF设计,按σH 校核 高速重载还要进行抗胶合计算
2、开式齿轮传动
提高弯曲强度: ↑模数m
对于一对相互啮合的齿轮,在接触线处的接触
应力是相等的,即 H1 H 2
材料不同, H1 H 2
[ H ] Min[ H1 ],[ H2 ]
提高接触强度: ↑d或a 适当提高b ↑制造精度
11.8 斜齿圆柱齿轮传动的强度计算 受力分析:
各分力的方向判断: 1) Ft 的方向在主动轮上
Fa1 Fr 2
各分力的计算:
圆周力: Ft 2T1 / dm1
dm1 d1 b sin 1
径向力: Fr Ft tan cos
轴向力: Fa Ft tan sin
练习:
Fr2
Fr1⊙ Ft1
○Fx aF1Ft2a2
转向: 同时指向或同时背离啮合点
二、强度计算: 1. 齿面接触强度
原因:σH>[σH]
1)齿面受多次交变应力作用,产生接触疲劳裂纹;
2)节线处常为单齿啮合,接触应力大;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、计算载荷
• 名义载荷——沿啮合线作用在齿面上的法向力Fn,理论上
Fn应沿齿宽均匀分布。
• 计算载荷——由于轴和轴承的变形、传动装置的制造和安
装误差等原因,载荷分布并不均匀,而出现载荷集中现象。
轴和轴承的刚度越小、齿宽越宽,载荷集中越严重。齿轮制
造误差及轮齿变形等原因,还会引起附加动载荷。精度越低、
圆周速度越高,附加动载荷就越大。加之各种原动机和工作
机的特性不同,也会使载荷实际大小发生变化。因此,计算
或: 45、40Cr 1)整体淬火+低温回火后磨齿、研齿。但心部韧 性不好,不适于承受冲击载荷。 2)表面淬火+低温回火。心部韧性较高,适于承 受中等冲击载荷。 2. 铸钢 齿轮尺寸较大或结构复杂,且受力较大时采用。 3. 铸铁 用于低速、轻载、冲击小等不重要的齿轮传动。
常用热处理方法 P166表11-1
原因:σH>[σH]
1)齿面受多次交变应力作用,产生接触疲劳裂纹;
2)节线处常为单齿啮合,接触应力大;
3)节线处为纯滚动,靠近节线附近滑动速度小,油膜不易形成, 摩擦力大,易产生裂纹。
4)润滑油进入裂缝,形成封闭高压油腔,楔挤作用使裂纹扩展。 (油粘度越小,裂纹扩展越快)
3. 齿面磨损
常见于开式齿轮传 动中。通常有磨粒磨损 和跑合磨损两种基本形 式。
(1) 过载折断 受冲击载荷或短时过载作用,突然 折断,尤其见于脆性材料(淬火钢、 铸钢)齿轮。
(2) 疲劳折断
① 轮齿受多次重复弯曲应力作用,齿根受拉一侧产生疲劳裂纹。
② 齿根应力集中(形状突变、刀痕等),加速裂纹扩展→折断
2. 齿面疲劳点蚀
闭式软齿面齿轮传动常见的失 效形式为齿面疲劳点蚀。
齿面疲劳点蚀首先出现在齿根 表面靠近节线处。齿面疲劳点蚀是 由疲劳裂纹引起的失效形式。
cos
N
忽略Ff,法向力Fn作用于齿宽中点。
Ft1
2T1 d1
Fr1
Ft1
tan
2T1 d1
tan
Fn1
Ft1
cos
作用于主、从动轮上各对力的大小方向判断:
1)主、从动轮上的各对力均大小相等,方向相反。
2)圆周力 Ft:在主动轮上与运动方向相反,在从动
轮上与运动 方向相同;
精度等级
6级 7级 8级 9级
圆周速度 / (m/s)
直齿轮 斜齿轮
锥齿轮
≤15
≤25
≤9
≤10 ≤5 ≤3
≤17 ≤10 ≤3.5
≤6 ≤3 ≤2.5
应用
高速重载的齿轮传动,如飞机、汽车 和机床中的重要齿轮;分度机构的齿轮
高速中载或中速重载的齿轮传动,如 标准系列减速器、汽车和机床中的齿轮
机械制造中对精度无特殊要求的齿轮
5. 齿面塑性变形
较多见于重载、起动频 繁(受反复双向工作的冲击载 荷作用) 的机械设备中。
失效形式→相应的计算准则
1、闭式齿轮传动 主要失效为:点蚀、轮齿折断、胶合 软齿面:主要是点蚀,按σH设计,按σF校核
硬齿面:主要是折断,按σF设计,按σH 校核 高速重载还要进行抗胶合计算
2、开式齿轮传动
11.3 齿轮传动的精度
在齿轮精度标准(GB100095-88和GB11365-89)中,规 定了12个精度等级,按精度高低依次为1~12级,常用的是6~9 级。根据对运动准确性、传动平稳性和载荷分布均匀性的要求 不同,将齿轮的各项公差分为第Ⅰ、第Ⅱ和第Ⅲ3个公差组。
考虑到齿轮制造误差以及工作时轮齿变形和受热膨胀,同 时为了便于润滑,需要有一定的齿侧间隙,标准中还规定了 C~S共14种齿厚偏差。
低速及对精度要求低的传动
11.4 直齿圆柱齿轮传动的强度计算
受力分析: 如果略去摩擦力,把沿着齿
宽的分布力,看成在节点的集中
力。则沿啮合线方向的 F n 可分
解为两个分力:圆周力 径向力
Ft
Fr
; 。
圆周力: Ft 2T1 / d1
N
径向力: Fr Ft tan
N
法向力:
Fn
Ft
跑合磨损是必要的, 可提高设备工作性能。
减小齿面粗糙度、良好的润滑均可减少磨损。
4. 齿面胶合
现象:齿面沿滑动方向粘焊、撕脱,形成沟痕。 原因:高速重载——v↑,Δt ↑,油η↓,油膜破坏, 表面金属直接接触,融焊→相对运动→撕裂、沟痕。 低速重载——P↑、v ↓,不易形成油膜→冷胶合。 后果:引起强烈的磨损和发热,传动不平稳,导致齿轮报废。
3)径向力 Fr的方向对两轮都是由作用点指向轮心。
小齿轮上的转矩:
T1
9.55
10 6
P1 n1
Nmm
计算载荷:与齿轮的制造精度,安装形式有关。
Fnc KFn
K :载荷系数,见P169 表11-3
从动轮:Ft2=-Ft1,Fr2=-Fr1,Fn2=-Fn1
方向:
Ft1与ω1反向(阻力)
圆周力Ft Ft2与ω2同向(动力)
典型机械零件设计思路:
分析失效现象 →失效机理(原因、后果、措施) →设计准则 →建立简化力学模型 →强度计算 →主要参数尺寸 →结构设计。
第十一章 齿轮传动
基本内容: 1. 常见的齿轮传动失效形式及计算准则; 2. 常见的齿轮传动受力分析及强度计算; 3. 齿轮传动设计的注意事项。
11.1 轮齿常见的失效形式 1. 轮齿折断
通过各种热处理的方法来改善其力学性能。 (1)用于制造软齿面齿轮 常用材料45、40Cr、35SiMn、38SiMnMo,正
火或调质后切齿。 *常用于对强度、速度及精度要求不高的场合。 *小齿轮=大齿轮+(30~50)HBS。
(2) 用于制造硬齿面齿轮 常用材料: 20Cr、20CrMnTi 表面渗碳后磨齿。
径向力Fr:外齿轮指向各自轮心;内齿轮背离轮心。
练习: n1
Fr1
Ft1
Ft2
Fr2
n2
Ft1⊙○FF×rr12Ft2n1 n2
例1:分析各齿轮受力
1 为主动件: Ft 2
Ft1
Fr1 Fr 2
Ft 2
Ft 3
Ft1Ft 2源自 Ft3 Fr 2
Fr3
Ft 2
2 为主动件:
主要失效为:轮齿折断、磨粒磨损
按σF设计,增大m考虑磨损
3、短期过载传动
过载折断 齿面塑变
静强度计算
11.2 齿轮常用材料和热处理方法 齿轮材料应具有足够的抗折断、抗点蚀、抗胶
合及耐磨损等能力。 齿轮常用材料:优质的碳素钢、合金结构钢、
铸钢和铸铁等,一般多采用锻件或轧制钢材。 1. 锻钢:强度高、韧性好、便于制造。还可以