人教版数学必修四模块综合测试题
人教版高中数学必修四模块综合测试及答案
(3)函数 与函数 是同一函数;
(4)
三、解答题(10分+12分+12分+12分+12分+12分)
17、已知单位向量 和 的夹角为 ,
(1)试判断 与 的关系并证明;
(2)求 在 方向上的投影。
18、如图,平行四边形ABCD中, ,
点M在AB边上,且 的值是多少?
19、已知函数 的最大值是1,
二、(每题5份,共20分)
13、函数 的定义域是.
14、设 , ,
则a,b,c的大小关系(由小到大排列)为
15、已知P为 所在平面内一点,且满足 ,则 的面积与
的面积之比为。
16、下列命题中,正确的是____________________
(1)若 与 是共线向量, 与 是共线向量,则 与 是共线向量
(1)求常数a的值;
(2)求使 成立的x的取值集合。
20、已知向量 ,
设函数
(1)写出 的单调递增区间;
(2)若 ,求 的值域;
(3)已知 .
21、已知函数 ,点A、B分别是函数 图像上的最高点和最低点.
(1)求点A、B的坐标以及 · 的值;
(2)设点A、B分别在角 、 的终边上,求tan( )的值.
A. B. C. D.
11、 若 均为锐角, ,则 ( )
A. B. C. D.
12、 如图,某园林单位准备绿化一块直径为 的半圆形空地, 的地方种草, 的内接正方形 为一水池,其余地方种花, ( 为定值), , 的面积为 ,正方形 的面积为 ,当 取得最小值时,角 的值为( )
A. B. C. D.
高中数学必修四模块综合测试
一、选择题(每题5份,共60分)
高中数学 必修四 本册综合能力测试 新人教A版必修4
本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.tan 83π的值为( )A .33B .-33C . 3D .- 3[答案] D[解析] tan 83π=tan(2π+23π)=tan 23π=- 3.2.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A .(35,-45)B .(45,-35)C .(-35,45)D .(-45,35)[答案] A[解析] 本题考查平面向量的坐标运算,单位向量的求法. 因为AB →=(3,-4),|AB →|=5,所以与向量AB →同向的单位向量为AB →|AB →|=,-5=(35,-45),选A . 3.若sin α=1213,α∈⎝ ⎛⎭⎪⎫π2,π,则tan2α的值为( ) A .60119 B .120119 C .-60119D .-120119[答案] B[解析] ∵sin α=1213,α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α=-513.∴tan α=-125.∴tan2α=2tan α1-tan 2α=120119. 4.若sin2α=55,sin(β-α)=1010,且α∈[π4,π],β∈[π,3π2],则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[答案] A[解析] 因为α∈[π4,π],故2α∈[π2,2π],又sin2α=55,故2α∈[π2,π],a ∈[π4,π2],∴cos2α=-255,β∈[π,3π2],故β-α∈[π2,5π4],于是cos(β-α)=-31010,∴cos(α+β)=cos[2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×(-31010)-55×1010=22,且α+β∈[5π4,2π],故α+β=7π4.5.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( ) A .0 B .-1 C .0或-1 D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x 2·x +2+x 2=22,即x 2+x =0,解得x =0或x =-1.6.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >C . 7.在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形 [答案] D[解析] 设∠BAC 的角平分线为AD ,则AB→|AB →|+AC |AC →|=λAD →.由已知得AD ⊥BC ,∴△ABC 为等腰三角形.又cos A =12,∴A =60°,△ABC 为等边三角形,故选D .8.将函数y =sin x 的图象经过下列哪种变换可以得到函数y =cos2x 的图象( ) A .先向左平移π2个单位,然后再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)B .先向左平移π2个单位,然后再沿x 轴将横坐标伸长到原来的12倍(纵坐标不变)C .先向左平移π4个单位,然后再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)D .先向左平移π4个单位,然后再沿x 轴将横坐标伸长到原来的12倍(纵坐标不变)[答案] A[解析] y =cos2x =sin(2x +π2),将y =sin x 的图象先向左平移π2个单位得到y =sin(x +π2)的图象,再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)得到y =sin(2x +π2)的图象,故选A .9.函数y =tan(π4x -π2)的部分图象如右图,则(OA →+OB →)·AB →=( )A .6B .4C .-4D .-6[答案] A[解析] ∵点B 的纵坐标为1, ∴tan(π4x -π2)=1,∴π4x -π2=π4,∴x =3,即B (3,1). 令tan(π4x -π2)=0,则π4x -π2=0,解得x =2,∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1).∴(OA →+OB →)·AB →=6.10.函数y =⎩⎪⎨⎪⎧kx +-2≤x ,ωx +φω>0,0<x ≤8π3的图象如下图,则( )A .k =12,ω=12,φ=π3B .k =12,ω=12,φ=π6C .k =12,ω=2,φ=π6D .k =-2,ω=12,φ=π3[答案] B[解析] ∵直线过点(-2,0), ∴-2k +1=0,∴k =12.∵2πω=T ,∴14T =14×2πω=83π-53π=π, ∴ω=12,∴y =2sin(12x +φ)过点(83π,-2),∴-2=2sin(4π3+φ),∴φ=π6.11.如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8[答案] D[解析] 取BC 的中点D ,连接AD 、OD ,则有OD ⊥BC ,AD →=12(AB →+AC →),BC →=AC →-AB →,AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12×(52-32)=8,选D . 12.关于x 的方程x 2-x cos A cos B -cos 2C2=0有一个根为1,则在△ABC 中一定有( )A .∠A =∠BB .∠A =∠CC .∠B =∠CD .∠A +∠B =π2[答案] A[解析] ∵1是方程的根,∴1-cos A ·cos B -cos 2C2=0,∴cos A cos B =sin 2C2,∴2cos A cos B =1-cos C ,∴2cos A ·cos B =1+cos(A +B ),把cos(A +B )展开,cos(A -B )=1,∴∠A =∠B .故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若tan α=3,则sin αcos α的值等于________. [答案]310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.已知13sin α+5cos β=9,13cos α+5sin β=15,那么sin(α+β)的值为________.[答案]5665[解析] 将两等式的两边分别平方再相加得169+130sin(α+β)+25=306,所以sin(α+β)=5665.16.在△ABC 中,∠BAC =120°,AB =AC =2.D 、E 是BC 边上的点,且AD →·BC →=0,CE →=2EB →,则AD →·AE →=________.[答案] 1[解析] ∵AD →·BC →=0,∴AD →⊥BC →. 又AB =AC ,∴点D 为BC 的中点, ∴AD →=12(AB →+AC →),AE →=AC →+CE →=23AB →+13AC →,∴AD →·AE →=12(AB →+AC →)·(23AB →+13AC →)=16(2AB →2+3AB →·AC →+AC →2) =16(8+3×2×2×cos120°+4)=1. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1 ∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.18.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2),b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2=13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.19.(本题满分12分)(2015·济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围. [解析] (1)∵a ⊥b ,∴3cos θ-sin θ=0, 得tan θ=3,又θ∈[0,π],∴θ=π3.(2)∵2a -b =(2cos θ-3,2sin θ+1), ∴|2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+8(12sin θ-32cos θ)=8+8sin(θ-π3),又θ∈[0,π],∴θ-π3∈[-π3,23π],∴sin(θ-π3)∈[-32,1],∴|2a -b |2的最大值为16. ∴|2a -b |的最大值为4. 又|2a -b |<m 恒成立. ∴m >4.20.(本题满分12分)(2015·山东潍坊高一期末)已知函数f (x )=A sin(ωx +φ)(ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)将函数y =f (x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈[-π2,5π12]时,求函数y =f (x +π12)-2f (x +π3)的最值.[解析] (1)由图得:34T =116π-π3=96π=32π,∴T =2π, ∴ω=2πT=1.又f (116π)=0,得:A sin(116π+φ)=0,∴116π+φ=2k π,φ=2k π-116π, ∵0<φ<π2,∴当k =1时,φ=π6.又由f (0)=2,得:A sin φ=2,A =4, ∴f (x )=4sin(x +π6).(2)将f (x )=4sin(x +π6)的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin(2x +π6),再将图象向右平移π6个单位得到g (x )=4sin[2(x -π6)+π6]=4sin(2x-π6), 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z )得:k π-π6≤x ≤k π+π3(k ∈Z ),∴g (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).(3)y =f (x +π12)-2f (x +π3)=4sin[(x +π12)+π6]-2×4sin[(x +π3)+π6]=4sin(x +π4)-42sin(x +π2)=4(sin x ·cos π4+cos x ·sin π4)-42cos x=22sin x +22cos x -42cos x =22sin x -22cos x =4sin(x -π4).∵x ∈[-π2,512π],x -π4∈[-34π,π6],∴sin(x -π4)∈[-1,12],∴函数的最小值为-4,最大值为2.21.(本题满分12分)(2015·厦门模拟)已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应的x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan2α的值.[解析] ∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4.∴f (x )=b·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ).令t =sin x +cos x (π4<x <π),则t ∈(-1,2),且2sin x cos x =t 2-1. ∴y =t 2+2t -1=(t +22)2-32,t ∈(-1,2). 当t =-22时,y min =-32,此时sin x +cos x =-22. 即2sin(x +π4)=-22,sin(x +π4)=-12,∵π4<x <π, ∴π2<x +π4<5π4. ∴x +π4=7π6,即x =1112π.所以函数f (x )的最小值为-32,相应的x 的值为1112π.(2)∵a 与b 的夹角为π3,cos π3=a ·b |a ||b |=cos αcos x +sin αsin x =cos(x -α),∵0<α<x <π,∴0<x -α<π. ∴x -α=π3,∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, 化简得sin(x +α)+2sin2α=0. 代入x -α=π3得sin(2α+π3)+2sin2α=52sin2α+32cos2α=0,∴tan2α=-35. 22.(本题满分12分)(2015·福建文)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0. [解析] (1)因为f (x )=103sin x 2cos x2+10cos 2x2=53sin x +5cos x +5=10sin(x +π6)+5.所以函数f (x )的最小正周期T =2π.(2)①将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5的图象,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45.由45<32知,存在0<α0<π3,使得sin α0=45. 由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45.因为y =sin x 的最小正周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,所以对任意的正整数k ,都存在正整数x k ∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)
人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
高一数学必修4 模块测试卷
高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。
人教A版高中数学必修4:模块综合检测Word版含解析
模块综合检测(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.2.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA +OB +OC +OD 等于 ( )A .OMB .2OMC .3OMD .4OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA +OC =2OM ,OB +OD =2OM ,所以OA +OC +OB +OD =4OM ,故选D.3.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).4.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 5.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.6.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 7.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+2C .2+2 2D .-2-22解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.8.如图,在四边形ABCD 中,|AB |+|BD |+|DC |=4,|AB |·|BD |+|BD |·|DC |=4,AB ·BD =BD ·DC =0,则(AB +DC )·AC 的值为( )A .4B .2C .4 2D .22解析:选A ∵AC =AB +BD +DC ,AB ·BD =BD ·DC =0, ∴(AB +DC )·AC=(AB +DC )·(AB +BD +DC )=AB 2+AB ·BD +AB ·DC +DC ·AB +DC ·BD +DC 2=AB 2+2AB ·DC +DC 2.∵AB ·BD =0,BD ·DC =0,∴AB ⊥BD ,DC ⊥BD ,∴AB ∥DC , ∴AB ·DC =|AB ||DC |, ∴原式=(|AB |+|DC |)2.设|AB |+|DC |=x ,则|BD |=4-x ,|BD |·x =4, ∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)9.在平面直角坐标系 xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0. 又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ), ∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:510.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________.解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721011.在△ABC 中,已知sin A =10sin B sin C ,cos A =10cos B · cos C ,则tan A =________,sin 2A =________.解析:由sin A =10sin B sin C ,cos A =10cos B cos C 得cos A -sin A =10cos(B +C )=-10cos A ,所以sin A =11cos A ,所以tan A =11,sin 2A =2sin A cos A sin 2A +cos 2A =2tan A 1+tan 2A =1161. 答案:11116112.函数f (x )=cos 2x -sin 2x +sin 2x +1的最小正周期是________,振幅是________. 解析:f (x )=cos 2x -sin 2x +sin 2x +1=cos 2x +sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以最小正周期为π,振幅为 2.答案:π213.已知向量a ,b 满足|a |=2,|b |=3,且|2a -b |=13,则|2a +b |=________,向量a 在向量b 方向上的投影为________.解析:|2a -b |2=4a 2-4a·b +b 2=4×22-4a ·b +32=13,解得a·b =3.因为|2a +b |2=4a 2+4a·b +b 2=4×22+4×3+32=37,所以|2a +b |=37.向量a 在向量b 方向上的投影为a·b |b |=33=1.答案:37 114.已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,∠C =90°,则f (x )=________,f ⎝⎛⎭⎫12=________.解析:依题意知,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,AB =1,故M =12,函数f (x )的最小正周期是2,即2πω=2,ω=π,所以f (x )=12cos(πx +φ),又函数f (x )是奇函数,所以φ=k π+π2,k ∈Z.由0<φ<π,得φ=π2,故f (x )=12cos ⎝⎛⎭⎫πx +π2=-12sin πx ,则f ⎝⎛⎭⎫12=-12sin π2=-12. 答案:-12sin πx -1215.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ. 解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=± 2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.17.(本小题满分15分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2. 解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.18.(本小题满分15分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3.(1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表: x -π6 π12 π3 7π12 5π6 2x +π30 π2 π 3π2 2π 2sin ⎝⎛⎭⎫2x +π3 02-219.(本小题满分15分)已知向量OA =(cos α,sin α),α∈[-π,0],向量m =(2,1),n =(0,-5),且m ⊥(OA -n ).(1)求向量OA ; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)∵OA =(cos α,sin α), ∴OA -n =(cos α,sin α+5). ∵m ⊥(OA -n ),∴m ·(OA -n )=0, ∴2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,② 由①②得sin α=-55,cos α=-255, ∴OA =⎝⎛⎭⎫-255,-55. (2)∵cos(β-π)=210,∴cos β=-210.又0<β<π,∴sin β=1-cos 2β=7210.又∵sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,∴cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22. 20.(本小题满分15分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6,由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6=4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x =22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。
(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)
232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。
高中数学 模块综合测评 新人教A版必修4-新人教A版高一必修4数学试题
模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)3.(2016•某某阿克苏高一期末)函数y=cos 2x+sin2x,x∈R的值域是()A.[0,1]B.C.[-1,2]D.[0,2]解析:因为函数y=cos 2x+sin2x=cos 2x+cos 2x=cos 2x,且x∈R,所以cos 2x∈[-1,1],所以cos 2x∈[0,1].故选A.答案:A4.已知两向量a=(2,sin θ),b=(1,cos θ),若a∥b,则的值为()A.2B.3C.4D.5解析:∵a∥b,∴2cos θ=sin θ,∴tan θ=2,∴=2+tan θ=4.答案:C5.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A. B. C.π D.2π解析:∵f(x)=2sin=1,∴sin,∴ωx1++2k1π(k1∈Z)或ωx2++2k2π(k2∈Z),则ω(x2-x1)=+2(k2-k1)π.又相邻交点距离的最小值为,∴ω=2,∴T=π.答案:C7.函数y=在一个周期内的图象是()解析:y=cos x·=-2sin x cos x=-sin 2x,故选B.答案:B9.(2016·某某某某二中期中)设函数f(x)=cos (2x+φ)+sin (2x+φ),且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数解析:f(x)=cos(2x+φ)+sin(2x+φ)=2=2cos.∵ω=2,∴T==π.又函数图象关于直线x=0对称,∴φ-=kπ(k∈Z),即φ=kπ+(k∈Z).又|φ|<,∴φ=,∴f(x)=2cos 2x.令2kπ≤2x≤2kπ+π(k∈Z),解得kπ≤x≤kπ+(k∈Z),∴函数的递减区间为(k∈Z).又(k∈Z),∴函数在上为减函数,则y=f(x)的最小正周期为π,且在上为减函数.故选B.答案:B10.函数f(x)=A sin(ωx+φ)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象() A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度解析:由题中图象可知,A=1,,即T=,∴ω=3,∴f(x)=sin(3x+φ).又f=sin=sin=-1,∴+φ=+2kπ,k ∈Z,即φ=+2kπ,k∈Z,又|φ|<,∴φ=,即f(x)=sin.∵g(x)=sin 3x=sin=sin,∴只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象,故选C.答案:C11.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b夹角的取值X围是()A. B. C. D.解析:设a与b的夹角为θ,∵Δ=|a|2-4a·b≥0,∴a·b≤,∴cos θ=.∵θ∈[0,π],∴θ∈.答案:B12α,β为锐角,cos(α+β)=,cos(2α+β)=,则cos α的值为()A. B.C. D.以上都不对解析:∵0<α+β<π,cos(α+β)=>0,∴0<α+β<,sin(α+β)=.∵0<2α+β<π,cos(2α+β)=>0,∴0<2α+β<,sin(2α+β)=.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知sin α=(2π<α<3π),则sin+cos=.解析:∵2π<α<3π,∴π<,∴sin<0,cos<0.由=1+2sincos=1+,知sin+cos=-.答案:-14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为. 解析:=()·()=()·|·||·|2+1=1.得||=|=,则AB的长为.答案:15.设f(x)=2cos2x+sin 2x+a,当x∈时,f(x)有最大值4,则a=.解析:f(x)=2cos2x+sin 2x+a=cos 2x+sin 2x+a+1=2sin+a+1.由x∈,∴f(x)max=3+a=4,∴a=1.答案:116.关于函数f(x)=cos+cos,则下列命题:①y=f(x)的最大值为;②y=f(x)最小正周期是π;③y=f(x)在区间上是减函数;④将函数y=cos 2x的图象向右平移个单位后,将与已知函数的图象重合.其中正确命题的序号是.解析:f(x)=cos+cos=cos+sin=cos-sin==coscos,∴y=f(x)的最大值为,最小正周期为π,故①,②正确.又当x∈时,2x-∈[0,π],∴y=f(x)在上是减函数,故③正确.由④得y=cos 2cos,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知α∈,且sin α=,求f.解:(1)由函数最大值为2,得A=2.由题图可得周期T=4=π,由=π,得ω=2.又ω·+φ=2kπ+,k∈Z,及φ∈,得φ=.∴f(x)=2sin.(2)由α∈,且sin α=,得cos α=-=-,∴f=2sin=2.18.(本小题满分12分)如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.解:(1)=-.(2)∵∠BAC=60°,∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cos θ=3sin θ+13cos θ+8=14sin(θ+φ)+8,∴当sin(θ+φ)=1时,的最大值为22.19.(本小题满分12分)已知函数f(x)=sin (ωx+φ)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f,求cos 的值.解:(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k=0,±1,±2,….由-≤φ<,得k=0,所以φ==-.(2)由(1)得f sin ,所以sin.由<α<,得0<α-,所以cos=.因此cos=sin α=sin=sincos +cos sin=.20.(本小题满分12分)(2016·某某某某高一期末)已知向量a=(1,cos 2x),b=(sin 2x,-),函数f(x)=a·b.(1)求函数f(x)的单调递减区间;(2)若f,求f的值.解:(1)由题意得f(x)=a·b=sin 2x-cos 2x=2sin.因为函数y=sin x的单调递减区间为,k∈Z,∴由+2kπ≤2x-+2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)∵f(x)=2sin,∴f=2sin=2sin (α+π)=-2sin α=,∴sin α=-,∴f=2sin=2sin=2cos 2α=2(1-2sin2α)=2.21.(本小题满分12分)在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),∠AOB=.现有一动点C在单位圆的劣弧上运动,设∠AOC=α.(1)求点B的坐标;(2)若tan α=,求的值;(3)若=x+y,其中x,y∈R,求x+y的最大值.解:(1)由任意角的三角函数定义,可得点B的坐标为.(2)∵=(1,0),=(cos α,sin α),∴=cos α.又tan α=,且0≤α≤,∴cos α=,即.(3)方法一:由=x+y,得(cos α,sin α)=x(1,0)+y,∴∴x+y=cos α+sin α=cos α+sin α)=sin,又0≤α≤,∴当α=时,x+y有最大值.方法二:即∴x+y=[cos α+cos(60°-α)]==cos α+sin α=sin.又0≤α≤,∴当α=时,x+y有最大值.22本小题满分12分)(2016•某某揭阳惠来一中检测)已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O为坐标原点.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值与最小值;(3)求函数f(x)的单调减区间.解:(1)∵A(sin 2x,1),B,∴=(sin 2x,1),,∴f(x)==sin 2x+cos=sin 2x+cos 2x cos -sin 2x cos=sin 2x+cos 2x=sin 2x cos +cos 2x sin=sin.故f(x)的最小正周期T==π.(2)∵0≤x≤,∴≤2x+,∴-≤sin≤1,∴f(x)的最大值和最小值分别为1和-.(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z, ∴f(x)的单调减区间是,k∈Z.。
人教版高中数学必修四(全一本)模块检测题试题+答案(精较版)
人教版高中数学 必修四(全)模块检测试题(满分150分,时间120分钟)一、单选题(共12题,每题5分)。
1. 0sin 45cos15cos 45sin15o o o -等于.A - 1.2B - 1.2C.D 2. 已知角A 同时满足sin 0A >且tan 0A <,则角A 的终边一定落在 .A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限 3. 函数cos tan y x x =的大致图象是4. 若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=.A.B - 5.3C 5.3D - 5. 下列函数中最小正周期为π,且图象关于直线3x π=对称的是().s i n A y x π=- ().sin B y x π=+ ().s i n 2C y x π=- ().s i n 2D y x π=-6. 已知点O 为ABC ∆所在平面内一点,若0OA OB OC ++=,则点O 是ABC ∆的 .A 重心 .B 垂心 .C 内心 .D 外心7. 设a 与b 是两个不共线的向量,且a b λ+与()2b a --共线,则实数λ的值为 1.A - 1.B .2C - .2D8. 已知6a =,3b =,12a b ⋅=-,则向量a 在向量b 方向上的投影是 .4A - .4B .2C - .2D9. 已知a 与b 不共线,5AB a b =+,28BC a b =-+,33CD a b =-,下列说法错误的是 .A AB 、BD 可以作为一组基底 .B BC 、BD 可以作为一组基底 .C AB 、CD 可以作为一组基底 .D BD 、CD 可以作为一组基底 10. 已知1,2a b ==,且a b +与a 垂直,则a 与b 的夹角θ等于.60oA .30o B .45o C .135o Dyππ2B11. 设1cos 662o o a =,202tan131tan 13ob =+,c =,则有 .A a b c >> .B a b c << .C a c b << .D b c a <<12. 若O 为ABC ∆所在平面内的一点,且满足()()20OB OCOB OC OA -+-=,则ABC ∆的形状为.A 正三角形 .B 直角三角形 .C 等腰三角形 .D 以上答案均错误 二、填空题(共4小题,每小题5分)13. 在直角坐标系中,终边落在一、三象限的角平分线上的角的集合为 .14. 已知点()P y 为角β终边上的一点,且sin β=,则y = .15. 函数y =+的定义域为 .16. 若函数sin log a y x x =-有5个零点,则实数a 的取值范围为 . 三、解答题17.(10分)用“五点法”列表并作出函数sin 21y x =+在[]0,x π∈内的简图。
人教版数学高一-人教A版必修4模块综合检测卷
模块综合检测卷(测试时间:120分钟 评价分值:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝⎛⎭⎪⎫12,12,则下列结论中正确的是(C )A .|a |=|b |B .a·b =22C .a -b 与b 垂直D .a ∥b解析:a -b =⎝ ⎛⎭⎪⎫12,-12,(a -b )·b =0,所以a -b 与b 垂直.故选C.2.点P 从()1,0出发,沿单位圆逆时针方向运动4π3弧长到达Q点,则Q 点的坐标为(C )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12解析:由三角函数的定义知,Q 点的坐标为⎝⎛cos 4π3,⎭⎪⎪⎫sin 4π3=⎝ ⎛⎭⎪⎫-12,-32.故选C.3.函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象如图所示,则f (0)=(D )A .1 B.12 C.22 D.32解析:由图象知A =1,T =4⎝ ⎛⎭⎪⎪⎫7π12-π3=π,∴ω=2,把⎝⎛⎭⎪⎪⎫7π12,-1代入函数式中,可得φ=π3,∴f (x )=A sin(ωx +φ)=sin ⎝⎛⎭⎪⎪⎫2x +π3,∴f (0)=sin π3=32.故选D.4.将函数y =sin( 2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为(B )A.3π4B.π4 C .0 D .-π4 解析:利用平移规律求得解析式,验证得出答案.y =sin(2x +φ)――→向左平移π8个单位Y =sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎪⎫2x +π4+φ. 当φ=3π4时,y =sin(2x +π)=-sin 2x ,为奇函数;当φ=π4时,y =sin ⎝⎛⎭⎪⎪⎫2x +π2=cos 2x ,为偶函数;当φ=0时,y =sin ⎝⎛⎭⎪⎪⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin 2x ,为奇函数.故选B.5.已知sin(π+α)=45且α是第三象限的角,则cos(2π-α)的值是(B )A .-45B .-35C .±45 D.35解析:sin(π+α)=45⇒sin α=-45,又∵α是第三象限的角,∴cos(2π-α)=cos α=-35.故选B.6.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2sin 3x 的图象(D )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位解析:y =sin 3x +cos 3x =2sin ⎝⎛⎭⎪⎪⎫3x +π4,故只需将y =2sin 3x 向左平移π12个单位.7.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于(C )A .30°B .60°C .120°D .90°解析:c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒ a ·b =-1⇒cos a ,b=a ·b ||a ||b =-12⇒a ,b=120°.故选C. 8.函数f (x )=sin x -12,x ∈(0,2π)的定义域是(B )A.⎣⎢⎡⎦⎥⎤π6,π2B.⎣⎢⎡⎦⎥⎤π6,5π6 C.⎣⎢⎡⎦⎥⎤π2,5π6 D.⎣⎢⎡⎦⎥⎤π3,5π3解析:如下图所示,∵sin x ≥12,∴π6≤x ≤5π6.故选B.9.(2015·新课标全国高考Ⅰ卷)设D 为△ABC 所在平面内一点BC →=3CD→,则(A ) A.AD→=-13AB →+43AC → B.AD →=13AB →-43AC → C.AD →=43AB →+13AC → D.AD →=43AB →-13AC →解析:由题知AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →,故选A.10.已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于(B )A .7 B.17 C .-17D .-7解析:因为α∈⎝⎛⎭⎪⎫π,32π,cos α=-45,所以sin α<0,即sin α=-35,tan α=34.所以tan ⎝ ⎛⎭⎪⎪⎫π4-α=1-tan α1+tan α=1-341+34=17,故选B.11.函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,常数φ的值可能是(D )A .0 B.π2 C .π D.3π212.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝ ⎛⎭⎪⎫12,4,n =⎝ ⎛⎭⎪⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎢⎡⎦⎥⎤π6,π3上的最大值是(D )A .2 2B .2 3C .2D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:因为a 2=9+4-2×3×2×13=9,b 2=9+1-2×3×1×13=8,a ·b =9+2-9×1×1×13=8,所以cos β=83×22=223.考点:向量数量积及夹角 答案:223. 14.已知函数f (x )=2sin 2⎝⎛⎭⎪⎫π4+x -3cos 2x -1,x ∈⎣⎢⎡⎦⎥⎤π4,π2,则f (x )的最小值为________.解析:f (x )=2sin 2⎝⎛⎭⎪⎪⎫π4+x -3cos 2x -1=1-cos ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫π4+x -3cos 2x -1=-cos ⎝⎛⎭⎪⎪⎫π2+2x -3cos 2x=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎪⎫2x -π3, ∵π4≤x ≤π2,∴π6≤2x -π3≤2π3, ∴12≤sin ⎝⎛⎭⎪⎪⎫2x -π3≤1.∴1≤2sin ⎝⎛⎭⎪⎪⎫2x -π3≤2,∴1≤f (x )≤2, ∴f (x )的最小值为1. 答案:115.若将函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.解析:由题意f (x )=2sin ⎝⎛⎭⎪⎪⎫2x +π4,将其图象向右平移φ个单位,得2sin ⎣⎢⎢⎡⎦⎥⎥⎤2(x -φ)+π4=2sin ⎣⎢⎢⎡⎦⎥⎥⎤2x -2φ+π4,要使图象关于y 轴对称,则π4-2φ=π2+k π,解得φ=-π8-k π2,当k =-1时,φ取最小正值3π8.答案:3π816.已知函数f (x )=sin ωx ,g (x )=sin ⎝⎛⎭⎪⎫2x +π2,有下列命题:①当ω=2时,f (x )g (x )的最小正周期是π2;②当ω=1时,f (x )+g (x )的最大值为98;③当ω=2时,将函数f (x )的图象向左平移π2可以得到函数g (x )的图象.其中正确命题的序号是______________(把你认为正确的命题的序号都填上).解析:①ω=2时,f (x )g (x )=sin 2x ·cos 2x =12sin 4x ,周期T =2π4=π2.故①正确.②ω=1时,f (x )+g (x )=sin x +cos 2x =sin x +1-2sin 2x =-2⎝ ⎛⎭⎪⎫sin x -142+98,∴当sin x =14时,f (x )+g (x )取最大值98.故②正确.③ω=2时,将函数f (x )的图象向左平移π2得到sin 2⎝⎛⎭⎪⎪⎫x +π2=-sin 2x ,故③不正确. 答案:①②三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点.(1)求OA→·OB →; (2)若点P 在直线AB 上,且OP→⊥AB →,求OP →的坐标. 解析:(1)OA→·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),∵P 在AB 上,∴BA →与PA →共线. BA→=(4,2),PA →=(1-m ,-2-n ), ∴4·(-2-n )-2(1-m )=0.即2n -m +5=0.① 又∵OP→⊥AB →, ∴(m ,n )·(-4,-2)=0. ∴2m +n =0.②由①②解得m =1,n =-2,∴OP→=(1,-2). 18.(本小题满分12分)已知tan ⎝⎛⎭⎪⎫α+π4=13.(1)求tan α的值;(2)求2sin 2α-sin(π-α)sin ⎝ ⎛⎭⎪⎫π2-α+sin 2⎝ ⎛⎭⎪⎫3π2+α的值.解析:(1)∵tan ⎝⎛⎭⎪⎪⎫α+π4=tan α+11-tan α=13,∴tan α=-12.(2)原式=2sin 2α-sin αcos α+cos 2α=2sin 2α-sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-tan α+1tan 2α+1=2×⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+1⎝ ⎛⎭⎪⎫-122+1=85. 19.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6-2cos x .(1)求函数f (x )的单调增区间;(2)若f (x )=65,求cos ⎝⎛⎭⎪⎫2x -π3的值.解析:(1)f (x )=2sin ⎝⎛⎭⎪⎪⎫x +π6-2cos x =2sin x cos π6+2cos x sin π6-2cos x=3sin x -cos x =2sin ⎝⎛⎭⎪⎪⎫x -π6. 由-π2+2k π≤x -π6≤π2+2k π ,k ∈Z ,得-π3+2k π≤x ≤23π+2k π,k ∈Z ,所以f (x )的单调增区间为[-π3+2k π,23π+2k π](k ∈Z).(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎪⎫x -π6,即sin ⎝⎛⎭⎪⎪⎫x -π6=35. ∴cos ⎝ ⎛⎭⎪⎪⎫2x -π3=1-2sin 2⎝⎛⎭⎪⎪⎫x -π6=725. 20.(本小题满分12分)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (a )的值;(2)求函数f (x )的最小正周期及单调递增区间.解析:(1)由0<α<π2,且sin α=22,求出角α的余弦值,再根据函数f (x )=cos x (sin x +cos x )-12,即可求得结论.(2)已知函数f (x )=cos x (sin x +cos x )-12,由正弦与余弦的二倍角公式,以及三角函数的化一公式,将函数f (x )化简,根据三角函数周期的公式即可得结论,根据函数的单调递增区间,通过解不等式即可得到所求的结论.(1)因为0<α<π2,sin α=22,所以cos α=22,所以f (a )=22⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12 =12sin 2x +1+cos 2x 2-12=12sin 2x +12cos 2x =22sin ⎝ ⎛⎭⎪⎪⎫2x +π4, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎢⎡⎦⎥⎥⎤k π-3π8,k π+π8,k ∈Z.21.(本小题满分12分)已知函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎫-π3,0. (1)求实数a 的值;(2)设g (x )=[f (x )]2-2,求函数g (x )的最小正周期与单调递增区间.解析:(1)∵函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎪⎫-π3,0,∴f ⎝ ⎛⎭⎪⎪⎫-π3=0, 即sin ⎝ ⎛⎭⎪⎪⎫-π3+a cos ⎝ ⎛⎭⎪⎪⎫-π3=0. 即-32+a 2=0.解得a = 3. (2)g (x )=4sin 2(x +π3)-2 =2(1-cos(2x +2π3)-2 =-2cos(2x +2π3) ∴g (x )的最小正周期T =2π2=π. 令- π+2k π≤2x +2π3≤2k π,k ∈Z -5π6+k π≤x ≤k π-π3,k ∈Z ∴g (x )的增区间为⎣⎢⎢⎡⎦⎥⎥⎤-5π6+k π,-π3+k π,k ∈Z. 22.(本小题满分10分)已知向量m =(sin x ,-cos x ),n =(cos θ,-sin θ),其中0<θ<π.函数f (x )=m·n 在x =π处取最小值.(1)求θ的值;(2)设A ,B ,C 为△ABC 的三个内角,若sin B =2sin A ,f (C )=12,求A .解析:(1)∵f (x )=m ·n =sin x cos θ+cos x sin θ=sin(x +θ),又∵函数f (x )在x =π处取最小值,∴sin(π+θ)=-1, 即sin θ=1.又0<θ<π,∴θ=π2. (2)由(1)得,f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +π2=cos x . ∵f (C )=12,∴cos C =12, ∵0<C <π,∴C =π3. ∵A +B +C =π,∴B =2π3-A ,代入sin B =2sin A 中,∴sin ⎝ ⎛⎭⎪⎪⎫2π3-A =2sin A ,∴sin 2π3cos A -cos 2π3 sin A =2sin A , ∴tan A =33, ∵0<A <π,∴A =π6.。
高中人教A版数学必修4:模块综合测试卷 pdf版含解析
π
5π
10.已知 ω>0,0<φ<π,直线 x=4和 x= 4 是函数 f(x)=sin(ωx+φ)图象的两条相邻的对 称轴,则 φ 的值为( )
ππ
A.4 B.3 π 3π
C.2 D. 4 答案:A
π
5π
5π π T
解析:因为直线 x=4和 x= 4 是函数图象中相邻的两条对称轴,所以 4 -4=2,即
解析:y=2sinxcosx-1=sin2x-1,∵x∈R,
∴sin2x∈[-1,1],∴y∈[-2,0].
( )π
ωx- 15.已知函数 f(x)=3sin 6 (ω>0)和 g(x)=2cos(2x+φ)+1 的图象的对称轴完全相
T
2π
π
2=π,T=2π.又 T= ω =2π,所以 ω=1,所以 f(x)=sin(x+φ).因为直线 x=4是函数图象
ππ
π
π
的对称轴,所以4+φ=2+kπ,k∈Z,所以 φ=4+kπ,k∈Z.因为 0<φ<π,所以 φ=4,检验 5π
知,此时直线 x= 4 也为对称轴.故选 A.
11.若向量 a=(2x-1,3-x),b=(1-x,2x-1),则|a+b|的最小值为( )
3.下列函数中周期为2的偶函数是( ) A.y=sin4x B.y=cos22x-sin22x C.y=tan2x D.y=cos2x 答案:B
2π π
解析:A 中函数的周期 T= 4 =2,是奇函数.B 可化为 y=cos4x,其周期为
2π π
π
2π
T= 4 =2,是偶函数.C 中 T=2,是奇函数,D 中 T= 2 =π,是偶函数.故选 B. 4.已知向量 a,b 不共线,实数 x,y 满足(3x-4y)a+(2x-3y)·b=6a+3b,则 x-y 的
人教版高中数学必修四模块综合检测C含答案
模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .4 3 B .-43 C.433 D .-4332.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .63.设向量a =(cos α,12),若a 的模长为22,则cos 2α等于( )A .-12B .-14 C.12 D.324.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B .2 3 C .4 D .12 5.tan 17°+tan 28°+tan 17°tan 28°等于( )A .-22 B.22C .-1D .16.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x 等于( ) A .6 B .5 C .4 D .37.要得到函数y =sin x 的图象,只需将函数y =cos(x -π3)的图象( )A .向右平移π6个单位B .向右平移π3个单位C .向左平移π3个单位D .向左平移π6个单位8.设函数f (x )=sin(2x +π3),则下列结论正确的是( )A .f (x )的图象关于直线x =π3对称B .f (x )的图象关于点(π4,0)对称C .把f (x )的图象向左平移π12个单位,得到一个偶函数的图象D .f (x )的最小正周期为π,且在[0,π6]上为增函数9.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( )A .锐角B .钝角C .直角D .不确定10.已知函数f (x )=(1+cos 2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数11.设0≤θ≤2π,向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→的模长的最大值为( )A. 2B. 3 C .2 3 D .3212.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( ) A.1 B.1 C.1 D.1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α、β为锐角,且a =(sin α,cos β),b =(cos α,sin β),当a ∥b 时,α+β=________.14.已知cos 4α-sin 4α=23,α∈(0,π2),则cos(2α+π3)=________.15.若向量AB →=(3,-1),n =(2,1),且n ·AC →=7,那么n ·BC →=________.16.若θ∈[0,π2],且sin θ=45,则tan θ2=________.三、解答题(本大题共6小题,共70分)17.(10分)已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a ⊥b ,求θ; (2)求|a +b |的最大值.18.(12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求f (x )的解析式;(2)若α∈(-π3,π2),f (α+π3)=13,求sin(2α+5π3)的值.19.(12分)设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈[-π3,π3],求x ;(2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在[0,π]上的图象.20.(12分)已知x ∈R ,向量OA →=(a cos 2x,1),OB →=(2,3a sin 2x -a ),f (x )=OA →·OB →,a ≠0. (1)求函数f (x )的解析式,并求当a >0时,f (x )的单调增区间;(2)当x ∈[0,π2]时,f (x )的最大值为5,求a 的值.21.(12分)已知函数f (x )=3sin 2(x +π4)-cos 2x -1+32(x ∈R ).(1)求函数f (x )的最小值和最小正周期;(2)若A 为锐角,且向量m =(1,5)与向量n =(1,f (π4-A ))垂直,求cos 2A 的值.22.(12分)已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.模块综合检测(C)答案1.B [∵600°=360°+240°,是第三象限角.∴a <0.∵tan 600°=tan 240°=tan 60°=a-4=3,∴a =-4 3.]2.D [a ·b =6-m =0,∴m =6.]3.A [∵|a |=cos 2α+14=22,∴cos 2α=14.∴cos 2α=2cos 2α-1=-12.]4.B [∵|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos 60°+4×12=12. ∴|a +2b |=2 3.] 5.D [tan 17°+tan 28°+tan 17°tan 28° =tan(17°+28°)(1-tan 17°tan 28°)+tan 17°tan 28° =1-tan 17°tan 28°+tan 17°tan 28°=1.]6.C [∵a =(1,1),b =(2,5),∴8a -b =(6,3),∵(8a -b )·c =(6,3)·(3,x )=18+3x =30, ∴x =4.]7.A [方法一 y =cos(x -π3)=sin(x +π6),向右平移π6个单位即得y =sin(x -π6+π6)=sin x ,故选A.方法二 y =sin x =cos(x -π2),y =cos(x -π3)6π−−−−−−→向右平移个单位6π−−−−−−→向右平移个单位y =cos(x -π2),无论哪种解法都需要统一函数名称.]8.C [∵f (π3)=0,∴A 不正确.∵f (π4)=cos π3=12≠0,∴B 不正确.f (x )向左平移π12个单位得f (x )=sin[2(x +π12)+π3]=sin(2x +π2)=cos 2x ,故C 正确.]9.A [∵△ABC 是锐角三角形,∴A +B >π2.∴π2>A >π2-B >0.∵函数y =sin x ,x ∈(0,π2)是递增函数,∴sin A >sin(π2-B ).即sin A >cos B .∴p ·q =sin A -cos B >0.∴p 与q 所成的角是锐角.]10.D [f (x )=(1+cos 2x )1-cos 2x 2=12(1-cos 22x )=12-12×1+cos 4x2=14-14cos 4x ,∴T =2π4=π2,f (-x )=f (x ),故选D.] 11.D [|P 1P 2→|=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cos θ≤18=3 2.]12.D [由题意知tan[ω(x -π6)+π4]=tan(ωx +π6),即tan(ωx +π4-πω6)=tan(ωx +π6).∴π4-π6ω=k π+π6,得ω=-6k +12,则ωmin =12(ω>0).] 13.π2解析 ∵a ∥b ,∴sin αsin β-cos αcos β=0即cos(α+β)=0.∵0<α+β<π.∴α+β=π2.14.13-156解析 ∵cos 4α-sin 4α=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α=23.又2α∈(0,π).∴sin 2α=53.∴cos(2α+π3)=12cos 2α-32sin 2α=13-156.15.2解析 n ·BC →=n ·(AC →-AB →)=n ·AC →-n ·AB →=7-(2,1)·(3,-1)=7-5=2. 16.12解析 ∵sin θ=2sin θ2cos θ2=2sin θ2cos θ2sin 2θ2+cos 2θ2=2tanθ21+tan 2θ2=45.∴2tan 2θ2-5tan θ2+2=0,∴tan θ2=12或tan θ2=2.∵θ∈[0,π2],∴θ2∈[0,π4].∴tan θ2∈[0,1],∴tan θ2=12.17.解 (1)若a ⊥b ,则sin θ+cos θ=0.由此得tan θ=-1(-π2<θ<π2),∴θ=-π4.(2)由a =(sin θ,1),b =(1,cos θ)得 a +b =(sin θ+1,1+cos θ),|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin (θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |的最大值为2+1.18.解 (1)∵图象上相邻的两个最高点之间的距离为2π,∴T =2π,则ω=2πT=1.∴f (x )=sin(x +φ).∵f (x )是偶函数,∴φ=k π+π2(k ∈Z ).又0≤φ≤π,∴φ=π2,∴f (x )=cos x .(2)由已知得cos(α+π3)=13.∵α∈(-π3,π2).∴α+π3∈(0,5π6).∴sin(α+π3)=223.∴sin(2α+5π3)=-sin(2α+2π3)=-2sin(α+π3)cos(α+π3)=-429.19.解 (1)依题设得f (x )=2cos 2x +3sin 2x=1+cos 2x +3sin 2x =2sin(2x +π6)+1.由2sin(2x +π6)+1=1-3得sin(2x +π6)=-32.∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6,∴2x +π6=-π3,即x =-π4.(2)-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),即-π3+k π≤x ≤π6+k π(k ∈Z )得函数单调增区间为[-π3+k π,π6+k π](k ∈Z ).x 0 π6 π3 π2 2π3 5π6π y 2 3 2 0 -1 0220.解 (1)f (x )=2a cos 2x +3a sin 2x -a =3a sin 2x +a cos 2x =2a sin(2x +π6).当a >0时,由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).故函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).(2)由(1)知f (x )=2a sin(2x +π6).当x ∈[0,π2]时,2x +π6∈[π6,7π6].若a >0,当2x +π6=π2时,f (x )max =2a =5,则a =52;若a <0,当2x +π6=7π6时,f (x )max =-a =5,则a =-5.所以a =52或-5.21.解 (1)f (x )=3sin 2(x +π4)-cos 2x -1+32=3[22(sin x +cos x )]2-cos 2x -1+32=3sin x cos x -cos 2x -12=32sin 2x -1+cos 2x 2-12=sin(2x -π6)-1, 所以f (x )的最小正周期为π,最小值为-2.(2)由m =(1,5)与n =(1,f (π4-A ))垂直,得5f (π4-A )+1=0,∴5sin[2(π4-A )-π6]-4=0,即sin(2A -π3)=-45.∵A ∈(0,π2),∴2A -π3∈(-π3,2π3),∵sin(2A -π3)=-45<0,∴2A -π3∈(-π3,0),∴cos(2A -π3)=35.∴cos 2A =cos[(2A -π3)+π3]=35×12+45×32=43+310.22.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ). 令t =sin x +cos x (0<x <π),则2sin x cos x =t 2-1,且-1<t ≤ 2.则y =g (t )=t 2+2t -1=(t +22)2-32,-1<t ≤ 2.∴t =-22时,y 取得最小值,且y min =-32,此时sin x +cos x =-22.由于0<x <π,故x =11π12.所以函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π.∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0.∴sin(x +α)+2sin 2α=0,sin(2α+π3)+2sin 2α=0.∴52sin 2α+32cos 2α=0.∴tan 2α=-35.附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。
新课标高中数学人教A版必修4模块终结性素质测试题.doc
新课标高中数学人教A 版必修4模块终结性素质测试题(考试时间120分钟,满分150分)姓名_______评价_______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(07湖北文1)tan690°的值为( )A.33-B.33C.3 D.3-2.(10江西文6)函数2sin sin 1y x x =+-的值域为( )A .[1,1]-B .5[,1]4-- C .5[,1]4-D .5[1,]4-3.(11重庆文5)已知向量)2,2(),,1(==b k a ,且a b a 与+共线,那么b a ⋅的值为( ) A .1 B .2 C .3 D .44.(09重庆文6)下列关系式中正确的是( )A .0sin11cos10sin168<< B .0sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<<5.(09全国Ⅰ文8)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则a 、b 的夹角为( )A.150°B.120°C.60°D.30° 6.(11四川文7)如图,正六边形ABCDEF 中,BA CD EF ++=( )A.0B.BEC.ADD.CF7.(12江西文4)若sin cos 1sin cos 2αααα+=-,则tan2α=( )A. 43-B. 34C. 34- D. 43B AD EC F8.(12安徽理8)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量 OQ 则点Q 的坐标是( )A.(72,2)--B. (72,2)-C. (46,2)--D.(46,2)- 9.(11新课标文11)设函数()sin(2)cos(2)44f x x x ππ=+++,则()y f x =在( )A .(0,)2π单调递增,图象关于直线4x π=对称 B .(0,)2π单调递增,图象关于直线2x π=对称C .(0,)2π单调递减,图象关于直线4x π=对称 D .(0,)2π单调递减,图象关于直线2x π=对称10.(08江西理6)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象大致是( )11.(09安徽理8)已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调区间是( )A.5[,],1212k k k Z ππππ-+∈B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈D.2[,],63k k k Z ππππ++∈ 12.(09全国Ⅱ理8)若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为( )A .16B.14C.13D.12二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上) 13.(12全国Ⅰ理14)当函数sin 3cos (02)y x x x π=-≤<取得最大值时,x =___________.x o 32ππ2πyA 2-︒o-Bx32ππ2πy2︒-C2-xo32ππ2πy︒-Dxo32ππ2πy2-︒14.(08北京文9)若角α的终边经过点)2,1(-P ,则α2tan 的值为 . 15.(07浙江理12)已知1sin cos 5θθ+=,且324ππθ≤≤,则cos2θ的值是____________. 16.(07陕西理15)如图,平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且OA =OB =1,OC =32.若OC =μλμλμλ+∈+则R),,(OB OA 的值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17. (本题满分10分,11天津理15) 已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.18.(本题满分12分,09湖南文16)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ (Ⅰ)若a //b ,求tan θ的值; (Ⅱ)若πθ<<=0|,|||b a ,求θ的值.19.(本题满分12分,08天津理17)(17)已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值.20.(本题满分12分,10江苏15)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1). (Ⅰ)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (Ⅱ)设实数t 满足(OC t AB -)·OC =0,求t 的值.21.(本题满分12分,08安徽理17)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域.22.(本题满分12分,09福建文19)已知函数()sin(),f x x ωϕ=+其中0ω>,||2πϕ<.(Ⅰ)若coscos,sinsin 0,44ππϕϕ3-=求ϕ的值; (Ⅱ)在(I )的条件下,若函数()f x 的图像的相邻两条对称轴之间的距离等于3π,求函数()f x 的解析式;并求最小正实数m ,使得函数()f x 的图像象左平移m 个单位所对应的函数是偶函数.新课标高中数学人教A 版必修4模块终结性素质测试题(参考答案)一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACDCBDBADCCD二、填空题 13. 2 . 14. 43. 15.725-. 16. 6 .三、解答题 17. 解:(I )由2,42x k k Z πππ+≠+∈,得,82k x k Z ππ≠+∈. 所以()f x 的定义域为{|,}82k x R x k Z ππ∈≠+∈ ()f x 的最小正周期为.2π (II )解:由()2cos 2,2a f a =得tan()2cos 2,4a a π+=22sin()42(cos sin ),cos()4a a a a ππ+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin a a a a a a a a+=+--因为(0,)4a π∈,所以sin cos 0.a a +≠因此211(cos sin ),sin 2.22a a a -==即由(0,)4a π∈,得2(0,)2a π∈.所以2,.612a a ππ==即 18. 解:(Ⅰ) 因为→a //→b ,所以2sin 2cos 1sin θθθ-=,即2sin cos 2sin θθθ=-, 于是 θθcos sin 4=,故tan θ=14.(Ⅱ)由 ||||→→=b a 知,2sin θ+(cos θ-2sin θ2)=5,所以1-2sin2θ + 42sin θ=5.从而522cos 142sin 21=-⨯+-θθ,即12cos 2sin -=+θθ,于是22)42sin(-=+πθ. 又由0<θ<π知,4π< 2θ+4π<94π,所以2θ+4π=54π,或2θ+4π=74π. 因此θ=2π,或θ=34π.19. 解:(Ⅰ)解法一:因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x , .54221022210274sin 4cos 4cos 4sin 44sin sin =⨯+⨯=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=ππππππx x x x解法二:由题设得102sin 22cos 22=+x x ,即51sin cos =+x x , 又sin 2x+cos 2x=1,从而25sin 2x-5sinx-12=0,解得sinx=54或sinx=53-, 因为⎪⎭⎫⎝⎛∈43,2ππx ,所以54sin =x .(Ⅱ)解:因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x .2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x , 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x .20. 解:(Ⅰ)(方法一)由题设知(3,5),(1,1)AB AC ==-,则(2,6),(4,4).AB AC AB AC +=-=所以||210,||4 2.AB AC AB AC +=-= 故所求的两条对角线的长分别为42、210。
2019-2020学年高中数学人教版必修四模块综合检测(一) Word版含答案
模块综合检测(一)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1 120°角所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D -1 120°=-360°×4+320°,-1 120°角所在象限与320°角所在象限相同.又320°角为第四象限角,故选D.2.(全国甲卷)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725B.15 C .-15D .-725解析:选D 因为cos ⎝ ⎛⎭⎪⎫π4-α=35,所以sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.3.已知向量a =(1,m ),b =(m,2), 若a ∥b, 则实数m 等于( ) A .- 2 B. 2 C .-2或 2D .0解析:选C a ∥b 的充要条件的坐标表示为1×2-m 2=0,∴m =±2,选C. 4.1-sin 20°=( ) A .cos 10°B .sin 10°-cos 10° C.2sin 35°D .±(sin 10°-cos 10°)解析:选C ∵1-sin 20°=1-cos 70°=2sin 235°, ∴1-sin 20°=2sin 35°.5.已知a =(1,2),b =(x,4),且a·b =10,则|a -b |=( ) A .-10 B .10 C .- 5D. 5解析:选D 因为a· b =10,所以x +8=10,x =2,所以a -b =(-1,-2),故|a -b |= 5.6.(山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π解析:选B 法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝⎛⎭⎪⎫32sin x +12cos x ⎝ ⎛⎭⎪⎫32cos x -12sin x=4sin ⎝ ⎛⎭⎪⎫x +π6cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π. 法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴T =2π2=π.故选B. 7.已知α满足sin α=12,那么sin ⎝ ⎛⎭⎪⎫π4+α·sin ⎝ ⎛⎭⎪⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=sin π4+α·cos ⎝ ⎛⎭⎪⎫π4+α=12sin ⎝ ⎛⎭⎪⎫π2+2α=12cos 2α=12(1-2sin 2α)=14. 8.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3D.π2解析:选A 由题意得3cos ⎝⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z.取k =0,得|φ|的最小值为π6.9.已知向量a =⎝⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝⎛⎭⎪⎫α+4π3=( ) A .-34B .-14C.34D.14解析:选B a·b =4sin ⎝⎛⎭⎪⎫α+π6+4cos α-3= 23sin α+6cos α-3=43sin ⎝ ⎛⎭⎪⎫α+π3-3=0, ∴sin ⎝⎛⎭⎪⎫α+π3=14.∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝⎛⎭⎪⎫α+π3=-14,故选B. 10.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ为( ) A .k π,(k ∈Z) B .k π+π6,(k ∈Z) C .k π+π3,(k ∈Z) D .-k π-π3,(k ∈Z) 解析:选 D f (x )=3cos(3x -θ)-sin(3x -θ)=2cos ⎝⎛⎭⎪⎫3x -θ+π6.由函数为奇函数得-θ+π6=k π+π2(k ∈Z),解得θ=-k π-π3(k ∈Z),故选D.11.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( ) A .12P P ·13P PB .12P P ·14P PC .12P P ·15P PD .12P P ·16P P解析:选A 由于12P P ⊥15P P ,故其数量积是0,可排除C ;12P P 与16P P 的夹角是2π3,故其数量积小于零,可排除D ;设正六边形的边长是a ,则12P P ·13P P =|12P P |·|13P P |·cos 30°=32a 2,12P P ·14P P=|12P P |·|14P P |·cos 60°=a 2. 12.已知函数f (x )=2a sin 2x -23a sin x cos x +a +b (a <0)的定义域是⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],则a 、b 的值分别为( )A .a =2,b =-5B .a =-2,b =2C .a =-2,b =1D .a =1,b =-2解析:选C f (x )=-a (cos 2x +3sin 2x )+2a +b =-2a sin ⎝⎛⎭⎪⎫2x +π6+2a +b . 又∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1. ∵-5≤f (x )≤1,a <0,∴⎩⎪⎨⎪⎧3a +b =-5,-2a +2a +b =1,∴⎩⎪⎨⎪⎧a =-2,b =1.二、填空题(本题共4小题,每小题5分,共20分)13.cos ⎝ ⎛⎭⎪⎫-17π3=________. 解析:cos ⎝ ⎛⎭⎪⎫-17π3=cos ⎝ ⎛⎭⎪⎫-6π+π3=cos π3=12.答案:1214.(北京高考)在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=xAB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→.又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -1615.(重庆高考)在OA 为边,OB 为对角线的矩形中,OA =(-3,1),OB =(-2,k ),则实数k =________.解析:因为AB =OB -OA =(1,k -1),且OA ⊥AB ,所以OA ·AB =0,即-3×1+1×(k -1)=0,解得k =4.答案:416.函数y =A sin(ωx +φ)⎝⎛⎭⎪⎫A>0,ω>0,|φ|<π2的图象如图所示,则y 的表达式为________.解析:由图象,知A =2,由T 2=2π3-π6,求出周期T =π,ω=2,然后可求得φ=π6.答案:y =2sin ⎝⎛⎭⎪⎫2x +π6三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足|a |=|b|=2,a 与b 的夹角为120°.求: (1)|a +b |及|a -b |; (2)向量a +b 与a -b 的夹角.解:(1)a·b =|a||b |cos θ=2×2×cos 120°=-2,所以|a +b |2=(a +b )2=a 2+b 2+2a·b =22+22+2×(-2)=4,所以|a +b |=2,同理可求得|a -b |=2 3.(2)因为(a +b )·(a -b )=a 2-b 2=22-22=0,所以(a +b )⊥(a -b ),所以a +b 与a -b 的夹角为90°. 18.(本小题满分12分)已知函数f (x )=a sin(2ωx +π6)+a2+b (x ∈R ,a >0,ω>0)的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω、a 、b 的值; (2)指出f (x )的单调递增区间.解:(1)由函数最小正周期为π,得2π2ω=π,∴ω=1,又f (x )的最大值是74,最小值是34,则⎩⎪⎨⎪⎧a +a 2+b =74,-a +a 2+b =34,解得⎩⎪⎨⎪⎧a =12,b =1.(2)由(1)知,f (x )=12sin(2x +π6)+54,当2k π-π2≤2x +π6≤2k π+π2(k ∈Z), 即k π-π3≤x ≤k π+π6(k ∈Z)时,f (x )单调递增, ∴f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z). 19.(本小题满分12分)(天津高考)已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:(1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≠π2+k π,k∈Z .f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3. 所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z.设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π12+k π≤x≤5π12+k π,k∈Z, 易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减. 20.(本小题满分12分)已知向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +kc )∥(2b -a ),求实数k 的值;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d . 解:(1)∵(a +kc )∥(2b -a ),且a +kc =(3+4k,2+k ),2b -a =(-5,2), ∴2×(3+4k )-(-5)×(2+k )=0, ∴k =-1613.(2)∵d -c =(x -4,y -1),a +b =(2,4),(d -c )∥(a +b )且|d -c |=1,∴⎩⎪⎨⎪⎧---=0,-+-=1,解得⎩⎪⎨⎪⎧x =4+55,y =1+255或⎩⎪⎨⎪⎧x =4-55,y =1-255.∴d =20+55,5+255或d =20-55,5-255. 21.(本小题满分12分)如图所示,是一个半径为10个长度单位的水轮,水轮的圆心离水面5 2 个长度单位.已知水轮每分钟转4圈,水轮上的点P 到水面距离d 与时间t 满足的函数关系是正弦曲线,其表达式为d -k b =sin(t -h a).(1)求正弦曲线的振幅和周期;(2)如果从P 点在水中浮现时开始计算时间,写出其有关d 与t 的关系式; (3)在(2)的条件下,求P 首次到达最高点所用的时间. 解:(1)A =r =10.T =604=15(s). (2)由d -k b =sin t -h a ,得d =b sin t -ha+k .b =A =10,T =2π1a=2πa =15,∴a =152π. 由于圆心离水面52个长度单位, ∴k =5 2. ∴d =10sin2π-15+5 2.将t =0,d =0代入上式,得sin(2π15h )=22,2π15h =π4, ∴d =10sin(2π15t -π4)+5 2.(3)P 到达最高点时d =10+5 2.∴sin(2π15t -π4)=1,得2π15t -π4=π2,t =458(s).即P 首次到达最高点所用时间为458s. 22.(本小题满分12分)已知函数f (x )=sin(π-ωx )·cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值. 解:(1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx , 所以f (x )=sin ωx cos ωx +1+cos 2ωx2=12sin 2ωx +12cos 2ωx +12 =22sin ⎝⎛⎭⎪⎫2ωx +π4+12.由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎪⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2, 所以22≤sin ⎝⎛⎭⎪⎫4x +π4≤1.因此1≤g (x )≤1+22. 故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.。
高中数学 模块综合测评 新人教A版必修4[1](2021年整理)
2017-2018学年高中数学模块综合测评新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学模块综合测评新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学模块综合测评新人教A版必修4的全部内容。
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a=(2,4)与向量b=(x,6)共线,则实数x=()A.2 B.3C.4 D.6【解析】∵a∥b,∴2×6-4x=0,解得x=3.【答案】B2.如果一扇形的弧长为2π cm,半径等于2 cm,则扇形所对圆心角为()A.2π B.πC.错误!D.错误!【解析】θ=错误!=错误!=π。
【答案】B3.设α是第二象限的角,P(x,4)为其终边上的一点,且cos α=错误!,则tan α=( ) A.错误!B.错误!C.-错误!D.-错误!【解析】∵点P(x,4)在角α终边上,则有cos α=错误!=错误!。
又x≠0,∴16+x2=5,∴x=3或-3.又α是第二象限角,∴x=-3,∴tan α=错误!=错误!=-错误!.【答案】D4.已知错误!=2+错误!,则tan错误!等于()A.2+错误!B.1C.2-错误!D.错误!【解析】∵错误!=2+错误!,∴tan错误!=错误!=错误!=2-错误!。
【答案】C5.已知平面向量a=(2,4),b=(-1,2),若c=a-(a·b)b,则|c|等于( )A.4错误!B.2错误!C.8 D.8错误!【解析】由题意易得a·b=2×(-1)+4×2=6,∴c=(2,4)-6(-1,2)=(8,-8),∴|c|=错误!=8错误!.【答案】D6.已知cos错误!=m,则cos x+cos错误!=( )A.2m B.±2mC.错误!m D.±错误!m【解析】∵cos错误!=m,∴cos x+cos错误!=cos x+错误!cos x+错误!sin x=错误!sin错误!=3cos 错误!=错误!cos错误!=错误!m。
高中数学 模块综合测评(含解析)新人教B版必修第四册-新人教B版高一第四册数学试题
模块综合测评(时间:120分钟 满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,则i1+i 的虚部是( )A .12iB .-12iC .12D .-12C [i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i.]2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若c =4,a =42,A =45°,则sin C 等于( )A .12B .22C .14D .24A [由正弦定理得sin C =c ·sin A a =4×2242=12.]3.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列选项不一定成立的是( )A .AB ∥m B .AC ⊥β C .AB ∥βD .AC ⊥mB [∵m ∥α,m ∥β,α∩β=l ,∴m ∥l ,又AB ∥l ,∴AB ∥m ,则A 一定成立.∵AC ⊥l ,m ∥l ,∴AC ⊥m ,则D 一定成立.∵AB ∥l ,AB ⊄β,l ⊂β,∴AB ∥β,则C 一定成立.若C ∉α且AC ⊥α,∵l ⊂α,∴AC ⊥l ,∵平面α⊥平面β,∴AC ∥β,则B 不一定成立.故选B .]4.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10πB [因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]5.复数i1-i的共轭复数为( )A .-12+12iB .12+12iC .12-12iD .-12-12iD [因为i1-i =i (1+i )(1-i )(1+i )=-1+i 2=-12+12i ,所以其共轭复数为-12-12i.故选D .]6.在△ABC 中,若lg a -lg c =lg sin B =-lg 2,且B ∈⎝⎛⎭⎫0,π2,则△ABC 的形状是( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形 D .直角三角形C [∵lg a -lg c =lg sin B =-lg 2,∴a c =sin B ,sin B =22.∵B ∈⎝⎛⎭⎫0,π2,∴B =π4,∴ac =sin A sin C =22, ∴sin C =2sin A =2sin ⎝⎛⎭⎫3π4-C =2⎝⎛⎭⎫22cos C +22sin C , ∴cos C =0.∵C ∈(0,π),∴C =π2,∴A =π-B -C =π4,∴△ABC 是等腰直角三角形.故选C .]7.如图所示,在长方体ABCD -A 1B 1C 1D 1中,P 为BD 上任意一点,则一定有( )A .PC 1与AA 1异面B .PC 1与A 1A 垂直 C .PC 1与平面AB 1D 1相交 D .PC 1与平面AB 1D 1平行 D [连接BC 1和DC 1(图略), 因为BD ∥B 1D 1,AB 1∥DC 1,所以平面AB 1D 1∥平面C 1BD , 而PC 1⊂平面C 1BD , 所以PC 1∥平面AB 1D 1.选D .]8.已知三棱锥P -ABC 的各棱长均相等,O 是△ABC 的中心,D 是PC 的中点,则直线PO 与直线BD 所成角的余弦值为( )A .23 B .73 C .12 D .13A [设底面边长为a ,连接CO 并延长交AB 于F ,过点D 作DE ∥PO 交CF 于点E ,连接BE ,则∠BDE 即PO 与BD 所成角,因为PO ⊥平面ABC ,所以DE ⊥平面ABC , 所以△BDE 是直角三角形,设三棱锥P -ABC 的各棱长均为a ,则, BD =CF =32a ,CO =23BD =33a , 所以PO =a 2-13a 2=63a ,因为点D 为侧棱PC 的中点,所以DE =12PO =66a ,所以cos ∠BDE =DE BD =66a32a =23,则直线PO 与直线BD 所成角的余弦值为23. ]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列命题正确的是( ) A .若ab >c 2,则C <π3B .若a +b >2c ,则C <π3C .若(a +b )c <2ab ,则C >π2D .若(a 2+b 2)c 2<2a 2b 2,则C >π2AB [对于A ,由余弦定理有cos C =a 2+b 2-c 22ab >2ab -ab 2ab =12,因为C 为三角形的内角,所以C <π3,故A 正确;对于B ,因为a +b >2c ,所以(a +b )2>4c 2,c 2<(a +b )24,由余弦定理有cos C =a 2+b 2-c 22ab>a 2+b 2-(a +b )242ab =38⎝⎛⎭⎫a b +b a -14≥12,因为C 为三角形的内角,所以C <π3,故B 正确;对于C ,取a =b =2,c =1,满足(a +b )c <2ab ,因为cos C =a 2+b 2-c 22ab =78>0,所以C <π2,故C 错误;对于D ,取a =b =2,c =1,满足(a 2+b 2)c 2<2a 2b 2,因为cos C =a 2+b 2-c 22ab =34>0,所以C <π2,故D 错误.故选AB .] 10.下列各式的运算结果不是纯虚数的是( ) A .i·(1+i)2B .i 2·(1-i) C .(1+i)2D .i·(1+i)ABD [A 项,i(1+i)2=i(1+2i +i 2)=i ×2i =-2,不是纯虚数. B 项,i 2(1-i)=-(1-i)=-1+i ,不是纯虚数. C 项,(1+i)2=1+2i +i 2=2i ,是纯虚数. D 项,i(1+i)=i +i 2=-1+i ,不是纯虚数.]11.已知α,β,γ是三个互不重合的平面,l 是一条直线,下列命题中正确的是( ) A .若α⊥β,l ⊥β,则l ∥α B .若l ⊥α,l ∥β,则α⊥βC.若l上有两个点到α的距离相等,则l∥αD.若α⊥β,α∥γ,则β⊥γBD[对于A,由α⊥β,l⊥β,得l⊂α或l∥α,故A错误;对于B,过直线l作第三个平面与平面β相交于直线m,根据线面平行的性质,知m∥l,又l⊥α,则m⊥α,又m⊂β,所以α⊥β,故B正确;对于C,l还可能与α相交,故C错误;对于D,在平面α内作与α和β的交线垂直的直线m,根据面面垂直的性质,得m⊥β,再过直线m作平面δ,并与平面γ相交于直线n,根据面面平行的性质,知m∥n,所以n⊥β,又n⊂γ,所以γ⊥β,故D正确.] 12.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“≻”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),当且仅当“a1>a2”或“a1=a2且b1>b2”时,z1≻z2.按上述定义的关系“≻”,下列命题为真命题的是()A.若z1≻z2,则|z1|>|z2|B.若z1≻z2,z2≻z3,则z1≻z3C.若z1≻z2,则对于任意z∈C,z1+z≻z2+zD.对于复数z≻0,若z1≻z2,则zz1≻zz2BC[对于复数z1=2+i,z2=1-3i,显然满足z1≻z2,但|z1|=5,|z2|=10,不满足|z1|>|z2|,故A为假命题;设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R),由z1≻z2,z2≻z3可得“a1>a3”或“a1=a3且b1>b3”,即z1≻z3,故B为真命题;设z1=a1+b1i,z2=a2+b2i,z=a+b i(a1,a2,a,b1,b2,b∈R),由z1≻z2可得“a1>a2”或“a1=a2且b1>b2”,显然有“a1+a>a2+a”或“a1+a=a2+a且b1+b>b2+b”,从而z1+z≻z2+z,故C为真命题;对于复数z1=2+i,z2=1-3i,显然满足z1≻z2,令z=1+i,则zz1=(1+i)(2+i)=1+3i,zz2=(1+i)(1-3i)=4-2i,显然不满足zz1≻zz2,故D为假命题.故选BC.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知实数a,b满足a+b i=i2 019(i为虚数单位),则a+b的值为_______.-1[由i1=i,i2=-1,i3=-i,i4=1,所以a+b i=i2 019=(i4)504·i3=-i,得a=0,b=-1.∴a+b=-1.]14.已知在△ABC 中,AC =4,BC =27,∠BAC =60°,AD ⊥BC 于点D ,则BDCD 的值为________.6[在△ABC 中,AC =4,BC =27,∠BAC =60°,由余弦定理得cos 60°=AB 2+42-(27)22AB ·4=12,解得AB =6或-2(舍去).因为Rt △ADB 与Rt △ADC 有公共边AD ,所以62-BD 2=42-(27-BD )2,解得BD =1277,所以CD =277,所以BDCD=6.]15.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.(本题第一空2分,第二空3分)图1 图2262-1[依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体由18个正方形和8个正三角形围成,因此题中的半正多面体共有26个面.注意到该多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1.] 16.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算).若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为________.322[由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2.∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9=2⎝⎛⎭⎫a -322+92,∴当a =32时,z *z -取得最小值,为322.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i ,若z 2+az +b =1+i ,某某数a ,b 的值.[解]z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=5-5i5=1-i.因为z 2+az +b =(1-i)2+a (1-i)+b =-2i +a -a i +b =(a +b )-(2+a )i =1+i ,所以⎩⎪⎨⎪⎧ a +b =1,-(2+a )=1,解得⎩⎪⎨⎪⎧a =-3,b =4.18.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P -ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值.[解](1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC . 由底面ABCD 为长方形,得BC ⊥CD .而PD ∩CD =D , 所以BC ⊥平面PCD .又DE ⊂平面PCD ,所以BC ⊥DE .因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形, 即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB . (2)由已知,PD 是阳马P -ABCD 的高,所以V 1=13S 长方形ABCD ·PD =13BC ·CD ·PD .由(1)知,DE 是鳖臑D -BCE 的高,BC ⊥CE , 所以V 2=13S △BCE ·DE =16BC ·CE ·DE .在Rt △PDC 中,因为PD =CD ,点E 是PC 的中点, 所以DE =CE =22CD ,于是V 1V 2=13BC ·CD ·PD16BC ·CE ·DE =2CD ·PDCE ·DE=4.19.(本小题满分12分)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,已知c =2,∠C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin B =2sin A ,求△ABC 的面积. [解](1)由余弦定理,得a 2+b 2-ab =4. 因为△ABC 的面积等于3, 所以12ab sin C =3,得ab =4.联立方程⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理,已知条件可化为b =2a .联立方程⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.20.(本题小题满分12分)在如图的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点.(1)求证:AB ∥平面DEG ; (2)求证:BD ⊥EG ;(3)求多面体ADBEG 的体积.[解](1)证明:∵AD ∥EF ,EF ∥BC ,∴AD ∥BC . 又∵BC =2AD ,G 是BC 的中点,∴AD BG ,∴四边形ADGB 是平行四边形,∴AB ∥DG .∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴AB ∥平面DEG . (2)证明:∵EF ⊥平面AEB ,AE ⊂平面AEB ,∴EF ⊥AE . 又AE ⊥EB ,EB ∩EF =E ,EB ,EF ⊂平面BCFE , ∴AE ⊥平面BCFE .过D 作DH ∥AE 交EF 于H ,连接BH ,EG ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE ,∴DH ⊥EG .∵AD ∥EH ,DH ∥AE ,∴四边形AEHD 为平行四边形,∴EH =AD =2, ∴EH =BG =2,又EH ∥BG ,EH ⊥BE ,BE =2,∴四边形BGHE为正方形,∴BH⊥EG,又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD.∵BD⊂平面BHD,∴BD⊥EG.(3)∵EF⊥平面AEB,AD∥EF,∴AD⊥平面AEB,由(2)知四边形BGHE为正方形,∴BE⊥BC.∴V ADBEG=V D﹣AEB+V D﹣BEG=13S△ABE·AD+13S△BEG·AE=43+43=83.21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20 n mile.当甲船航行20 min到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10 2 n mile.问乙船每小时航行多少海里.[解]如图所示,连接A1B2.因为A2B2=102,A1A2=302×2060=102,所以A1A2=A2B2.又因为∠A1A2B2=180°-120°=60°,所以△A1A2B2是等边三角形.所以A1B2=A1A2=10 2.又因为A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2.所以乙船的速度为1022060=302(n mile/h). 即乙船每小时航行30 2 n mile.22.(本小题满分12分)如图,三棱锥P -ABC 中,PC ,AC ,BC 两两垂直,BC =PC =1,AC =2,E ,F ,G 分别是AB ,AC ,AP 的中点.(1)证明:平面GFE ∥平面PCB ;(2)求二面角B -AP -C 的正切值;(3)求直线PF 与平面P AB 所成角的正弦值.[解](1)证明:因为E ,F ,G 分别是AB ,AC ,AP 的中点,所以EF ∥BC ,GF ∥CP .因为EF ⊄平面PCB ,GF ⊄平面PCB ,所以EF ∥平面PCB ,GF ∥平面PCB .又EF ∩GF =F ,所以平面GFE ∥平面PCB .(2)如图,过点C 作CH ⊥P A ,垂足为H ,连接HB .因为BC ⊥PC ,BC ⊥AC ,且PC ∩AC =C ,所以BC ⊥平面P AC ,所以BC ⊥P A .又P A ⊥CH ,CH ∩BC =C ,所以P A ⊥平面BCH ,所以HB ⊥P A , 所以∠BHC 是二面角B -AP -C 的平面角,依条件容易求出CH =25,所以tan ∠BHC =125=52, 所以二面角B -AP -C 的正切值是52. (3)如图,设PB 的中点为K ,连接KC ,AK .因为△PCB 为等腰直角三角形,所以KC ⊥PB .又AC ⊥PC ,AC ⊥BC ,且PC ∩BC =C , 所以AC ⊥平面PCB ,所以AC ⊥PB .又PB ⊥KC ,AC ∩KC =C ,所以PB ⊥平面AKC .又PB ⊂平面P AB ,所以平面AKC ⊥平面P AB .在平面AKC 内,过点F 作FM ⊥AK ,垂足为M .因为平面AKC ⊥平面P AB ,所以FM ⊥平面P AB .连接PM ,则∠MPF 是直线PF 与平面P AB 所成的角.易得PF =2,FM =13,所以sin ∠MPF =132=26, 即直线PF 与平面P AB 所成角的正弦值是26.。
高中数学 模块综合测试(含解析)新人教A版必修4-新人教A版高一必修4数学试题
模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知角α的终边过点P (sin(-30°),cos(-30°)),则角α的一个值为( D ) A .30° B .-30° C .-60°D .120°解析:P ⎝⎛⎭⎫-12,32,点P 在第二象限,sin α=32,cos α=-12,∴120°为角α的一个值.2.已知sin α=23,则cos(π-2α)等于( B )A .-53B .-19C .19D .53解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.对于函数f (x )=2sin x cos x ,下列选项中正确的是( B ) A .f (x )在⎝⎛⎭⎫π4,π2上是递增的 B .f (x )的图象关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2解析:f (x )=2sin x cos x =sin2x ,它在(π4,π2)上是单调递减的,图象关于原点对称,最小正周期是π,最大值为1,故B 是正确的.4.已知▱ABCD 中,AD →=(-3,7),AB →=(4,3),对角线AC 、BD 交于点O ,则CO →的坐标为( C )A .⎝⎛⎭⎫-12,5 B .⎝⎛⎭⎫12,5 C .⎝⎛⎭⎫-12,-5 D .⎝⎛⎭⎫12,-5 解析:由AD →+AB →=(-3,7)+(4,3)=(1,10). ∵AD →+AB →=AC →.∴AC →=(1,10). ∴CO →=-12AC →=⎝⎛⎭⎫-12,-5.故应选C . 5.已知e 1,e 2是夹角为60°的两个单位向量,若a =e 1+e 2,b =-4e 1+2e 2,则a 与b 的夹角为( C )A .30°B .60°C .120°D .150°解析:依据题意a ·b =-3,|a |·|b |=3×23=6, cos 〈a ,b 〉=-12,故a 与b 的夹角为120°.6.设α∈(0,π),sin α+cos α=13,则cos2α的值是( C )A .179 B .-223C .-179D .179或-179解析:∵sin α+cos α=13,∴1+2sin αcos α=19,即2sin αcos α=-89.∵α∈(0,π),∴sin α>0,cos α<0,∴cos α-sin α<0,∴cos α-sin α=-(cos α-sin α)2=-1-2sin αcos α=-173,∴cos2α=(cos α-sin α)(cos α+sin α)=-179. 7.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( B )A .3π4B .π4C .0D .-π4解析:y =sin(2x +φ)――→向左平移π8个单位y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ =sin ⎝⎛⎭⎫2x +π4+φ. 当φ=3π4时,y =sin(2x +π)=-sin2x ,为奇函数;当φ=π4时,y =sin ⎝⎛⎭⎫2x +π2=cos2x ,为偶函数; 当φ=0时,y =sin ⎝⎛⎭⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin2x ,为奇函数.故选B .8.已知sin(α-β)=35,cos(α+β)=-35,且α-β∈(π2,π),α+β∈(π2,π),则cos2β的值为( C )A .1B .-1C .2425D .-45解析:由题意知cos(α-β)=-45,sin(α+β)=45,所以cos2β=cos[α+β-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =(-35)×(-45)+45×35=2425.9.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin2αcos ⎝⎛⎭⎫α-π4等于( A ) A .-255B .-3510C .-31010D .255解析:由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,∴sin α=-1010.故2sin 2α+sin2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.10.已知向量a =⎝⎛⎭⎫2cos x ,22sin x ,b =⎝⎛⎭⎫22sin x ,2cos x ,f (x )=a ·b ,要得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只需将f (x )的图象( C ) A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:f (x )=a ·b =sin x cos x +sin x cos x =sin2x . 而y =sin ⎝⎛⎭⎫2x +π3=sin2⎝⎛⎭⎫x +π6, 于是只需将f (x )的图象向左平移π6个单位.故选C .11.将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象如图所示,则平移后的图象所对应的函数解析式是( C )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫x -π-π6 C .y =sin ⎝⎛⎭⎫2x +π3 D .y =sin ⎝⎛⎭⎫2x -π3 解析:将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象所对应的解析式为y =sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x +π6.由题图象知,⎝⎛⎭⎫7π12+π6ω=3π2,所以ω=2.所以平移后的图象所对应的函数解析式是y =sin ⎝⎛⎭⎫2x +π3.12.点O 在△ABC 所在平面内,给出下列关系式: ①OA →+OB →+OC →=0;②OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0;③(OA →+OB →)·AB →=(OB →+OC →)·BC →=0. 则点O 依次为△ABC 的( C ) A .内心、重心、垂心 B .重心、内心、垂心 C .重心、内心、外心D .外心、垂心、重心解析:①由于OA →=-(OB →+OC →)=-2OD →,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),所以O 为△ABC 的重心;②向量AC →|AC →|,AB →|AB →|分别表示在AC 和AB 上的单位向量AC ′→和AB ′→,它们的差是向量B ′C ′→,当OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=0,即OA ⊥B ′C ′时,则点O 在∠BAC 的平分线上,同理由OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;③OA →+OB →是以OA →,OB →为边的平行四边形的一条对角线,而AB →是该四边形的另一条对角线,AB →·(OA →+OB →)=0表示这个平行四边形是菱形,即|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=43.解析:设BC →=b ,BA →=a ,则AF →=12b -a ,AE →=b -12a ,AC →=b -A .代入条件得λ=μ=23,∴λ+μ=43.14.已知tan ⎝⎛⎭⎫α-π4=12,则sin α+cos αsin α-cos α的值为2 . 解析:由tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=12,解得tan α=3,所以sin α+cos αsin α-cos α=tan α+1tan α-1=42=2.15.已知函数f (x )=A cos 2(ωx +φ)+1⎝⎛⎭⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴交点坐标为(0,2),其相邻的两条对称轴的距离为2,则f (1)+f (2)+…+f (2 015)=4 030 .解析:由最大值为3知A =2,f (x )=2cos 2(ωx +φ)+1=cos(2ωx +2φ)+2, 由交点(0,2)及0<φ<π2知φ=π4.∴f (x )=2-sin2ωx . 又周期为4,∴ω=π4.∴f (x )=2-sin π2x ,f (1)+f (2)+f (3)+f (4)=8.∴f (1)+f (2)+…+f (2 015)=503[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)+f (3)=503×8+6=4 030.16.给出下列四个命题:①函数y =tan x 的图象关于点(k π+π2,0)(k ∈Z )对称;②函数f (x )=sin|x |是最小正周期为π的周期函数;③设θ为第二象限的角,则tan θ2>cos θ2,且sin θ2>cos θ2;④函数y =cos 2x +sin x 的最小值为-1.其中正确的命题是①④.解析:①由正切曲线,知点(k π,0),(k π+π2,0)是正切函数图象的对称中心,∴①对;②f (x )=sin|x |不是周期函数,②错;③∵θ∈(2k π+π2,2k π+π),k ∈Z ,∴θ2∈(k π+π4,k π+π2),k ∈Z . 当k =2n +1,n ∈Z 时,sin θ2<cos θ2.∴③错;④y =1-sin 2x +sin x =-(sin x -12)2+54,∴当sin x =-1时,y min =1-(-1)2+(-1)=-1. ∴④对.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)tan10°+tan170°+sin1 866°-sin(-606°). 解:(1)原式=⎝⎛⎭⎫cos π5+cos 4π5+⎝⎛⎭⎫cos 2π5+cos 3π5 =⎣⎡⎦⎤cos π5+cos ⎝⎛⎭⎫π-π5+⎣⎡⎦⎤cos 2π5+cos ⎝⎛⎭⎫π-2π5 =⎝⎛⎭⎫cos π5-cos π5+⎝⎛⎭⎫cos 2π5-cos 2π5=0. (2)原式=tan10°+tan(180°-10°)+sin(5×360°+66°)-sin[(-2)×360°+114°]=tan10°-tan10°+sin66°-sin(180°-66°)=sin66°-sin66°=0.18.(12分)已知|a |=2|b |=2,且向量a 在向量b 的方向上的投影为-1,求: (1)a 与b 的夹角θ; (2)(a -2b )·B .解:(1)由题意知,|a |=2,|b |=1,|a |cos θ=-1, ∴a ·b =|a ||b |cos θ=-|b |=-1, ∴cos θ=a ·b |a ||b |=-12.由于θ∈[0,π], ∴θ=2π3即为所求.(2)(a -2b )·b =a ·b -2b 2=-1-2=-3.19.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示.(1)求函数的解析式;(2)求这个函数的单调递增区间.解:(1)由题图象可知A =2,T 2=3π8-(-π8)=π2,∴T =π,ω=2, ∴y =2sin(2x +φ),将点(-π8,2)代入得-π4+φ=2k π+π2(k ∈Z ),∵|φ|<π,∴φ=34π.∴函数的解析式为y =2sin(2x +3π4).(2)由2k π-π2≤2x +3π4≤2k π+π2(k ∈Z ),得k π-5π8≤x ≤k π-π8(k ∈Z ).∴函数y =2sin(2x +3π4)的单调递增区间为[k π-5π8,k π-π8](k ∈Z ). 20.(12分)已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数, 所以y 2=cos(2x +θ)为奇函数, 又θ∈(0,π),得θ=π2,所以f (x )=-sin2x ·(a +2cos 2x ), 由f ⎝⎛⎭⎫π4=0得-(a +1)=0.即a =-1. (2)由(1)得,f (x )=-12sin4x ,因为f ⎝⎛⎭⎫α4=-12sin α=-25.即sin α=45, 又α∈⎝⎛⎭⎫π2,π,从而cos α=-35. 所以sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3310.21.(12分)如图,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →,(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点.(2)在(1)的条件下,求BA →·EF →的值. 解:(1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12A E →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝⎛⎭⎫14AB →-110AC → =-14AB →2+110AB →·AC →=-14×4+110×2×6×cos60°=-25.22.(12分)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值X 围. 解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴, 可得sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.word11 / 11 (2)由y =f (x )的图象过点(π4,0),得f (π4)=0, 即λ=-2sin(56×π2-π6)=-2sin π4=-2, 即λ=- 2.故f (x )=2sin(53x -π6)-2, 由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin(53x -π6)≤1, 得-1-2≤2sin(53x -π6)-2≤2-2, 故函数f (x )在[0,3π5]上的取值X 围为[-1-2,2-2].。
高一数学必修4综合能力测试
本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α=-3,则α是第( )象限角.( ) A .一 B .二 C .三 D .四[答案] C[解析] ∵-π<-3<-π2,∴-3为第三象限角.2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 2[答案] A[解析] 由题意得⎩⎪⎨⎪⎧ 2r +l =8,l =2r.解得⎩⎪⎨⎪⎧r =2,l =4.所以S =12lr =4(cm 2).3.有三个命题:①向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一条直线上;②向量a 与b 平行,则a 与b 的方向相同或相反;③单位向量都相等,其中真命题有( )A .0个B .1个C .2个D .3个[答案] A4.已知sin θ<0,tan θ>0,则1-sin 2θ化简的结果为( ) A .cos θ B .-cos θ C .±cos θ D .以上都不对[答案] B[解析] ∵sin θ<0,tan θ>0,故θ为第三象限角,∴cos θ<0. ∴1-sin 2θ=cos 2θ=|cos θ|=-cos θ. 5.tan(-1560°)的值为( ) A .- 3 B .-33C.33D. 3 [答案] D[解析] tan(-1560°)=-tan1560°=-tan(4×360°+120°)=-tan120°=-tan(180°-60°)=tan60°= 3.6.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75°[答案] D[解析] ∵a ∥b ,∴sin α·cos α=34×13,即sin2α=12又∵α为锐角,∴0°<2α<180°. ∴2α=30°或2α=150° 即α=15°或α=75°.7.已知sin α>sin β,那么下列命题中成立的是( ) A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β [答案] D[解析] 可以结合单位圆进行判断. 8.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[121]C .[12,32]D .[32,1][答案] B[解析] 可以借助单位圆或函数的图象求解.9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位[答案] C10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( )A .0B .-1C .0或-1D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x2·(x +1)2+x 2=22,即x 2+x =0,解得x =0或x =-1.11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34B.34 C .-43D.43[答案] B[解析] 主要考查三角函数的运算,分子分母同时除以cos α可得tan α=-3,带入所求式可得结果.12.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >c . 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若tan α=3,则sin αcos α的值等于________.[答案] 310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.函数y =sin(π3-2x )+sin2x 的最小正周期是________.[答案] π[解析] y =sin π3cos2x -cos π3sin2x +sin2x =32cos2x +12sin2x =cos(2x -π6),故T =2π2=π.16.已知三个向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,则k =________.[答案] -2或11[解析] 由A 、B 、C 三点共线,可得AB →=λBC →,即(4-k ,-7)=λ(6,k -5),于是有方程组⎩⎪⎨⎪⎧k +6λ=4,kλ-5λ=-7,解得⎩⎪⎨⎪⎧k =-2λ=1,或⎩⎨⎧k =11λ=-76.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(α)-sin 2(5π2-α)的值.[解析] 原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1 又∵tan α=12,∴原式=12+112-1=-3.18.(本题满分12分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.19.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2), b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2 =13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.20.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期;(2)若f (θ)=3,其中0<θ<π2cos(θ+π6)的值.[解析] (1)由题意得f (x )=3sin2x +(sin x +cos x )·(sin x -cos x )=3sin2x -cos2x =2sin(2x -π6),故f (x )的最小正周期T =2π2=π.(5分)(2)由(1)知,f (θ)=2sin(2θ-π6),若f (θ)=3,则sin(2θ-π6)=32.又因为0<θ<π2,所以-π6<2θ-π6<5π6,则2θ-π6=π3或2θ-π6=2π3,故θ=π4或θ=5π12.(9分)当θ=π4时,cos(θ+π6)=cos(π4+π6)=cos π4cos π6-sin π4sin π6=6-24.(12分)当θ=5π12时,cos(θ+π6)=cos(5π12+π6)=cos(π-5π12)=-cos 5π12=-cos(π4+π6)=-6-24.(15分)21.(本题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的最大值为22,最小值为-2,周期为π,且图象过(0,-24). (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解析] (1)∵f (x )=A sin(ωx +φ)+B 的最大值为22,最小值为-2.∴A =322,B =22.又∵f (x )=A sin(ωx +φ)+B 的周期为π, ∴φ=2πω=π,即ω=2.∴f (x )=322sin(2x +φ)+22又∵函数f (x )过(0,-24),∴-24=322sin φ+22,即sin φ=-12.又∵|φ|<π2,∴φ=-π6,∴f (x )=322sin(2x -π6)+22.(2)令t =2x -π6,则y =322sin t +22,其增区间为:[2k π-π2,2k π+π2],k ∈Z .即2k π-π2≤2x -π6≤2k π+π2,k ∈Z .解得k π-π6≤x ≤k π+π3.(k ∈Z )所以f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修四模块综合测试题 (满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.下列叙述中正确的是( )A.三角形的内角必是第一象限或第二象限的角B.角α的终边在x 轴上时,角α的正弦线、正切线分别变成一个点C.终边相同的角必相等D.终边在第二象限的角是钝角思路解析:由正弦线、正切线的定义可知B 正确,A 中漏了直角的情况,直角终边在y 轴上,不属于第一象限也不属于第二象限. 答案:B2.若α、β的终边关于y 对称,则下列等式正确的是( )A.sinα=sinβB.cosα=cosβC.tanα=tanβD.cotα=cotβ思路解析:因为α、β的终边关于y 对称,所以β=2kπ+π-α,k ∈Z ,sinβ=sin(2kπ+π-α)=sinα.或者通过定义sinα=ry,也可判断. 答案:A3.函数y=2sin2xcos2x 是( )A.周期为2π的奇函数B.周期为2π的偶函数 C.周期为4π的奇函数 D.周期为4π的偶函数思路解析:y=22sin4x,T=42π=2π,又f (-x )=22sin (-4x )=-22sin4x=-f (x ),它是奇函数.答案:A4.已知向量a =(3,2),b =(x,4),且a ∥b ,则x 的值为( ) A.6 B.-6 C.38-D.38思路解析:因为a ∥b ,所以3×4-2x=0,解得x=6.答案:A5.下面给出四种说法,其中正确的个数是( ) ①对于实数m 和向量a 、b ,恒有m(a-b)=ma-mb ;②对于实数m 、n 和向量a ,恒有(m-n)a=ma-na ;③若ma=mb(m ∈R),则a=b ;④若ma=na(a≠0),则m=n. A.1 B.2 C.3 D.4 思路解析:正确的命题有①②④,③当且仅当m≠0时成立. 答案:C6.已知|a|=1,|b|=2,a 与b 的夹角为60°,c=2a+3b,d=k a -b (k ∈R ),且c ⊥d ,那么k 的值为( ) A.-6 B.6 C.514- D.514思路解析:a·b=1×2×cos60°=1.∵c ⊥d,∴c·d=(2a+3b)·(ka-b)=2ka 2-2a·b+3ka·b-3b 2=2k-2+3k-12=0. ∴k=514. 答案:D7.函数y=3cos 2x+sinxcosx-23的周期是( ) A.4π B.2πC.πD.2π 思路解析:y=212322sin 22cos 13=-++∙x x sin2x+23cos2x=sin(2x+3π), T=22π=π. 答案:C 8.若α∈(0,2π),且tanα>cotα>cosα>sinα,则α的取值范围是( ) A.(4π,2π) B.(43π,π) C.(45π,23π) D.(47π,2π)思路解析:排除法.当α=3π时,cosα<sinα,排除A ; 当α=65π时,cotα<cosα,排除B;当α=611π时,tanα<cosα,排除D.答案:C9.已知|p |=22,|q |=3,p 、q 的夹角为4π,如图1,若=5p +2q ,=p -3q ,D 为BC 的中点,则|AD |为( )图1A.215 B.215 C.7 D.18 思路解析:=21(+)=21(5p+2q+p-3q)=21(6p-q),∴||=222123621)6(21q q p p q p +∙--= =2121534cos32212)22(3622=+⨯⨯⨯-⨯π.答案:A10.要得到函数y=sin(2x-3π)的图象,只要将函数y=sin2x 的图象( ) A.向左平行移动3π个单位 B.向左平行移动6π个单位C.向右平行移动3π个单位D.向右平行移动6π个单位思路解析:由y=sin2x 到y=sin(2x-3π)关键是看x 的变化,即由x 到x-6π,所以需向右平行移动6π个单位.答案:D11.使函数y=sin(2x+φ)+3cos(2x+φ)为奇函数,且在[0,4π]上是减函数的φ的一个值为( ) A.3π B.35π C.32π D.34π思路解析:可考虑代入法.y=sin(2x+φ)+3cos(2x+φ)=2sin(2x+φ+3π). 当φ=3π时,y=2sin(2x+φ+3π)=2sin(2x+32π)是非奇非偶函数,因此排除A.当φ=35π时,y=2sin(2x+φ+3π)=2sin2x 是奇函数,但在[0, 4π]上是增函数,因此排除B.当φ=32π时,符合题意,同样可排除D.答案:C12.函数y=Asin(ωx+φ)(A >0,ω>0)的部分图象如图2所示,则f(1)+f(2)+f(3)+…+f(11)的值等于( )图2A.2B.2+2C.2+22D.-2-22思路解析:由图象可知f(x)=2sin4πx 的周期为8, ∴f(1)+f(2)+f(3)+…+f(11)=f(1)+f(2)+f(3)=2sin 4π+2sin 2π+2sin 43π=2+22.答案:C二、填空题(本大题共4个小题,每小题4分,共16分) 13.已知tanx=6,那么21sin 2x+31cos 2x=________________.思路解析:原式=.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x x 答案:1115514.已知AB =2e 1+k e 2,CB =e 1+3e 2,CD =2e 1-e 2,若A 、B 、D 三点共线,则k=______________. 思路解析:若A 、B 、D 三点共线,则∥,设=λ. ∵=-=e 1-4e 2,∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2. ∴λ=2,k=-4λ.∴k=-8. 答案:-815.若|a +b |=|a -b |,则a 与b 的夹角为_______________. 思路解析:方法一:考虑夹角公式. ∵|a +b |=|a -b |,∴(a +b )2=(a -b )2.整理得a ·b =0,∴a ⊥b .∴a 与b 的夹角为90°. 方法二:考虑平行四边形模型.在平行四边形OABC 中,=a ,=b , 则OB =a +b ,CA =a -b , ∵|a +b |=|a -b |,即|OB |=|AC |, ∴平行四边形OABC 为矩形. ∴a 与b 的夹角为90°. 答案:90°16.给出下列五种说法:①函数y=-sin(kπ+x)(k ∈Z )是奇函数;②函数y=tanx 的图象关于点(kπ+2π,0)(k ∈Z )对称;③函数f(x)=sin|x|是最小正周期为π的周期函数;④设θ为第二象限角,则tan 2θ>cos 2θ,且sin 2θ>cos 2θ;⑤函数y=cos 2x+sinx 的最小值为-1. 其中正确的是.思路解析:①∵f(x)=-sin(kπ+x)=⎩⎨⎧∈+=∈=-.,12,sin ,,2,sin Z n n k x Z n n k x f(-x)=f(x),∴f(x)是奇函数,①对. ②由正切曲线知,点(kπ,0)(kπ+2π,0)是正切函数的对称中心,∴②对.③f(x)=sin|x|不是周期函数,③错.④∵θ∈(2kπ+2π,2kπ+π),k ∈Z ,∴2θ∈(kπ+4π,kπ+2π).当k=2n+1,k ∈Z 时,sin 2θ<cos 2θ.∴④错.⑤y=1-sin 2x+sinx=-(sinx-21)2+45,∴当sinx=-1时,y min =1-(-1)2+(-1)=-1.∴⑤对.答案:①②⑤三、解答题(本大题共6小题,共74分) 17.(本小题满分12分) 已知cosα=31,且-2π<α<0, 求αααππαtan )cos()2sin()cot(-+∙--的值.解:∵cosα=31,且-2π<α<0, ∴sinα=322-,cotα=42-. ∴原式=42cos sin sin cot tan )cos(sin )cot(=-=-=--ααααααααt . 18.(本小题满分12分)已知向量OA =(3,-4),OB =(6,-3),OC =(5-m,-(3+m)).(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.解:(1)已知向量=(3,-4),=(6,-3), =(5-m,-(3+m)),若点A 、B 、C 能构成三角形,则这三点不共线.∵=(3,1),=(2-m,1-m), ∴3(1-m)≠2-m. ∴实数m≠21时满足条件. (2)若△ABC 为直角三角形,且∠A 为直角,则AB ⊥AC , ∴3(2-m)+(1-m)=0,解得m=47. 19.(本小题满分12分) 已知f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a ,当x ∈[-4π,4π]时,f(x)的最小值为-3,求α的值.解:∵f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a =3sin2x+cos2x+1+a=2sin(2x+6π)+1+a.∵x ∈[-4π,4π],∴-3π≤2x+6π≤32π.∴f(x)在[-4π,4π]上的最小值为2(-23)+1+a=1-3+a.由题意,知1-3+a=-3,∴a=3-4.20.(本小题满分12分)已知函数y=21cos 2x+23sinxcosx+1,x ∈R . (1)求它的振幅、周期和初相;(2)用五点法作出它的简图; (3)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到的? 解:y=21cos 2x+23sinxcosx+1=41cos2x+43sin2x+45 =21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π. (2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出图象如下图所示:x -12π 6π 125π 32π 1211πx 1 0 2π π 23π 2π y=sinx 1 01-1y=21sin(2x+6π)+45 4547 45 43 45(3)方法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象, 即得函数y=21cos 2x+23sinxcosx+1的图象. 方法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象−−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的−−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象, 即得函数y=21cos 2x+23sinxcosx+1的图象. 21.(本小题满分12分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2π,23π). (1)若|AC |=|BC |,求角α的值;(2)若AC ·BC =-1,求αααtan 12sin sin 22++的值. 解:(1)∵AC =(cosα-3,sinα),BC =(cosα,sinα-3),∴|AC |=αααcos 610sin )3(cos 22-=+-,|BC |=αααsin 610)3(sin cos 22-=-+.由||=||,得sinα=cosα. 又∵α∈(2π, 23π),∴α=45π. (2)由AC ·BC =-1,得(cosα-3)cosα+sinα(sinα-3)=-1. ∴sinα+cosα=32.①又αααααααcos sin 1)cos (sin sin 2tan 12sin sin 22++=++=2sinαcosα.由①式两边平方,得1+2sinαcosα=94, ∴2sinαcosα=95-.∴αααtan 12sin sin 22++=95-.22.(本小题满分14分)已知=(2,1),=(1,7),=(5,1).设M 是直线OP 上的一点(其中O 为坐标原点),当∙取最小值时: (1)求OM ;(2)设∠AMB=θ,求cosθ的值.解:设=t ,则=(2t,t),=(1-2t,7-t),=(5-2t,1-t).MB MA ∙=5t 2-20t+12=5(t-2)2-8.∴t=2时,MB MA ∙最小,这时OM =(4,2). (2)由=(-3,5),=(1,-1), ∴17174-=. ∴cosθ的值是17174-.。