信号与系统习题答案(教学参考)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》复习题
1. 已知f(t)如图所示,求f(-3t-2)。
2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值)
3.已知f(5-2t)的波形如图,试画出f(t)的波形。
解题思路:f(5-2t)−−
−−−→−=倍
展宽乘22/1a f(5-2×2t)= f(5-t) −−→−反转f(5+t)−−→−5
右移f(5+t-5)= f(t)
4.计算下列函数值。
(1)
dt t t u t t )2(0
0--⎰+∞
∞-)
(δ (2)
dt t t u t t )2(0
--⎰+∞
∞
-)
(δ
(3)
dt t t e t ⎰+∞
∞
--++)
(2)(δ 5.已知离散系统框图,写出差分方程。
解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○
∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1)
右○
∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。 a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)=
b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程
6.绘出下列系统的仿真框图。
)()()()()(10012
2t e dt d b t e b t r a t r dt d a t r dt
d +=++ 7.判断下列系统是否为线性系统。
(2)
8.求下列微分方程描述的系统冲激响应和阶跃响应。
)(2)(3)(t e dt
d
t r t r dt d =+
9.求下列函数的卷积。
(2)
(3)
10.
11.如图所示系统,已知两个子系统的冲激响应,求整个系统的冲激响应。
)()(),1()(21t u t h t t h =-=δ
12.已知LTI 系统的输入信号和冲激响应如图所示,试求系统的零状态响应。
解:可采用图解法求解。
13.求图示信号的三角函数形式傅里叶级数。并画出频谱图。
14.求图示信号的傅里叶变换。
15.利用傅里叶变换证明如下等式。
解:因为
16.利用时域与频域的对称性,求下列傅里叶变换的时间函数。 (1) )()F(0ωωδω-=
(2))()()(00ωωωωω--+=u u F
17.求下列信号的最低抽样频率和奈奎斯特间隔。
因为
(2)
18.
19.图示系统由三个子系统组成,其中,
解:
20.
21.
解:
22.
解:
23.
解:对差分方程取单边Z变换,并考虑零状态条件: