水泵并联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 水泵并联运行的一般情况
水泵并联运行的主要目的是增大所输送的流量。但流量增加的幅度大小与管路性能曲线的特性及并联台数有关。图2-4所示为两台及三台性能相同的20sh-13型离心泵并联时,在不同陡度管路性能曲线下流量增加幅度的情况,从图5可见,当管路性能曲线方程为hc=20+10q2时(q的单位为m3/s),从图中查得:
一台泵单独运行时:q1=730l/s (100%)
两台泵关联运行时:q2=1160l/s (159%)
三台泵并联运行时:q3=1360l/s (186%)
但当管路性能曲线方程为hc=20+100q2时(q的单位为m3/s),从图2-4可查出:
一台泵单独运行时:q1=450l/s (100%)
二台泵并联运行时:q2=520l/s (116%)
三台泵并联运行时:q3=540l/s (120%)
图2-4 不同陡度管路性能曲线对泵并联效果的影响
比较两组数据可以看出:管路性能曲线越陡,并联的台数越多,流量增加的幅度就越小。因此,并联运行方式适用于管路性能曲线不十分陡的场合,且并联的台数不宜过多。若实际并联管路性能曲线很陡时,则应采取措施,如增大管
径、减少局部阻力等,使管路性能曲线变得平坦些,以获得好的并联效果。
一般的供水系统都采用多台泵并联运行的方式,并且采用大小泵搭配使用,目的是为了灵活的根据流量决定开泵的台数,降低供水的能耗。供水高峰时,几台大泵同时运行,以保证供水流量;当供水负荷减小时,采用大小泵搭配使用,合理控制流量,晚上或用水低谷时,开一台小泵维持供水压力。
多台并联运行的水泵,一般采用关死点扬程(或最大扬程)相同,而流量不同的水泵。这些泵并联运行时,每台泵的出口压力即为母管压力,且一定大于每一台泵单泵运时的出口压力(或扬程):(管道系统不变)
hn=ha2=hb2=hc2……>ha1、hb1、hc1……
并联运行泵的总出口流量为每台泵出口流量之和,且每台泵的流量一定小于该泵单泵运行时的流量:(管道系统不变) qn=qa2+qb2+qc2……<qa1+qb1+qc1+……
若并联运行的泵的扬程不同,而且流量也不同时,则在并联运行时扬程低的泵的供水流量会比单泵运行时减小很多。当管网阻力曲线变化时,容易发生不出水和汽蚀现象。母管制运行的水泵群的母管压力可由下式求出:
图2-5 两泵并联及并联性能曲线(h-qv)并
2.2如何作出并联运行水泵的性能曲线(h-qv)或(p-qv)
两台或两台以上风机(水泵)向同一压出管路压送流体的运行方式称为并联运行,如图2-5(a)所示。
水泵并联运行的基本规律是:并联后的总流量应等于并联各泵流量之和;并联后产生的扬程与各泵产生的扬程都相等(母管压力)。因此,水泵并联合成后的性能曲线(h-qv)并或(p-qv)并的作法是:把并联各泵(或风机)的(h-qv)或(p-qv)曲线上同一扬程(或全压)点上流量值相加,以图2-5(a)两台泵并联为例,先把这两台泵的性能曲线(h-qv)i和(h-qv)a以相同的比例尺绘在同一坐标图上,然后把各个同一扬程值的流量分别相加,如图2-5(b)所示,取扬程值为h、h'、h〃、……,对应于(h-qv)i和(h-qv)a,上分别为1、1'、1〃……和2、2′、2″……取qv1+ qv2、qv'1+ qv'2、qv〃1+ qv〃2……得3、3′、3″……连接3、3′、3″……各点即得合成后泵并联性能曲线(h-q)并,同法可得风机并联性能曲线。
2.3当并联水泵中的一台进行变速调节时,如何确定并联运行工况点
如图2-6 所示,i、ii两台性能相同的泵并联运行。但泵i与泵ii有一台为变速泵,另一台为定速泵。当变速泵与定速泵
以相同的额定转速运行时,i和ii的并联性能曲线(h-q)并为iii,并联运行工况点为m。但当变速泵的转速降低时,并联性能曲线变为如图2-6中的虚线所示,其并联运行工况点也相应地变为m′、m″、……
从图2-6 可以看出,当变速泵的转速降低时,变速泵的流量减小,但定速泵的流量却增大。当变速泵的转速降低到某一转速值时,其输出流量为零,这时并联运行实际上相当于一台定速泵单独运行。若变速泵转速进一步降低,且变速泵出口管路又未设置逆止阀时,就会出现定速泵部分流量向变速泵倒灌,这种现象在实际上是不容许产生的。从图2-6可见,当变速泵的转速由额定转速降低到该泵输出流量为零的转速时,定速泵的流量将由qn增大到qb,而扬程将由hn减小到hb,这可能会导致定速泵产生过载或泵内汽蚀。为防止定速泵的过载和汽蚀,可在定速泵出口管路设置调节阀,必要时控制其流量。
如图2-6所示,当静扬程约为额定扬程的20%左右时,qb约为额定流量的70%,hb约为额定扬程的60%,工频泵超载约20%;此时变频泵的转速约为额定转速的78%(频率为39hz)左右,则其中心调节转速(50%流量)约为额定转速的86%(频率为43hz),节电率大约为25%左右。
图2-6 两泵并联其中一台转速降低时并联运行工况点的变化
变速泵在b点运行,虽然已经不出水了,但是还要消耗空载功率,很不经济;此时的转速nb只是最低转速,不能在节能计算时作为调节转速使用,而应以不同流量时的转速为依据,或者以中心调节频率(50%流量时的转速)为依据,注意:由于水泵系统静扬程的存在,中心调节频率(转速)不是最低转速与额定转速的平均值,而应取50%流量时的频率(转速)。如图2-7所示,当静扬程约为额定扬程的20%左右时,qb约为额定流量的70%,hb约为额定扬程的60%,;此时变
频泵的最低转速约为额定转速的78%(频率为39hz)左右,而其中心调节转速(50%流量)约为额定转速的86%(频率为4 3hz)。
图2-7 多泵并联其中一台转速降低时并联运行工况点的变化
当定速泵的数量增加,b点的扬程hb将升高,最低转速nb也将升高,变速泵的调速范围变小,调节效果及节能效果变差。一般定速泵与变速泵的比例达到3:1时,采用变速泵已无多大意义了,而此时往往还有一台泵是采用起/停调节的,此时采用变速泵就更无什么意义了!见图2-7。