多元函数微分学习题课

合集下载

6-8多元函数微分学习题课

6-8多元函数微分学习题课

x0
x
此极限为函数z f ( x, y)在点( x0 , y0 )处对x 的
偏导数,记为
z x
,f x x0 x
z ,
x x0
x
x x0 y y0

f x ( x0 ,
y0 ).
y y0
y y0
同理可定义函数z f ( x, y)在点( x0 , y0 )处对y
的偏导数, 为
某邻域存在;
z
(3)
f

x
(
x,
y)x
f

y
(
x
,
y)y
,
(x)2 (y)2
当 (x)2 (y)2 0时是无穷小量.
小结三:
由一个方程确定的隐函数的求导法: 1 公式法:F(x,y,z)确定了z=z(x,y),则 z Fx , z Fy .
x Fz y Fz 2 解方程法:方程两边同时对x或者y求导,由复合函数求导法则 解出 z , z .
数,则复合函数 z f [ (t ), (t )] 在对应点t 可
导,且其导数可用下列公式计算:
dz z du z dv . dt u dt v dt
以上公式中的导数 dz 称为全导数.
dt
如果u ( x, y)及v ( x, y)都在点( x, y)
具有对x 和y 的偏导数,且函数z f (u,v) 在对应
法线方程为 x x0 y y0 z z0 .
Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )
15、方向导数
定义 函数的增量 f ( x x, y y) f ( x, y) 与

9-11 多元函数微分学的应用习题课

9-11 多元函数微分学的应用习题课
è xø u例8 试证锥面 z = x2 + y2 + 3 的所有切平面都通过锥面 顶点.
二、题型练习 (一)几何应用 (二)极值和最值
二、题型练习 (一)几何应用 (二)极值和最值
u例9 求由方程 x2 + y2 + z2 - xz - yz + 2x + 2 y + 2z = 0 所确定的隐函数z=z(x,y)的极值. u例10 求函数 z = x2 + y2 - xy在区域 x + y £ 1上的 最大值和最小值. u例11 求函数z = 3x2 + 3y2 - x3在区域 x2 + y2 £ 16上的 最大值和最小值. u例12 求函数 u = sin x + sin y - sin( x + y) 在区域
u例2 在曲面 z = xy 上求一点,使这点处的法线垂直于平面 x + 3y + z + 9 = 0并写出这法线的方程. u例3 试证曲面 x + y + z = a(a > 0)上任何点处的切平面 在各坐标轴上的截距之和等于a. u例4 证明螺旋线 x = a cos t, y = a sin t, z = bt上任一点处的切
:
ìF ( x, îíG(x,
y, y,
z) z)
= =
0 0
æ ç
! i
! j
! k
ö ÷
切向量 T = ç Fx Fy Fz ÷
çç è
G
x
Gy
Gz
÷÷ ø
(x0, y0, z0 )
3. 曲面的切平面与法线 1) 隐式情况 .
法向量 n = (Fx (x0 , y0 , z0 ) , Fy (x0 , y0 , z0 ) , Fz (x0 , y0 , z0 ))

多元函数微分法习题课

多元函数微分法习题课

z
x
y
2z + y + λ yz = 0
解方程组
2z + x + λxz = 0
2(x + y) + λxy = 0 xyz −V0 = 0
4 得唯一驻点 x = y = 2z = 3 2V0 , λ = 3 −V 2
0
由题意可知合理的设计是存在的, 因此 , 当高为 3 V0 , 长、宽为高的 2 倍时,所用材料最省. 思考: 思考 1) 当水箱封闭时, 长、宽、高的尺寸如何? x 提示: 提示 利用对称性可知, x = y = z = 3 V0 2) 当开口水箱底部的造价为侧面的二倍时, 欲使造价 最省, 应如何设拉格朗日函数? 长、宽、高尺寸如何? 提示: 提示 F = 2(xz + yz) + 2 x y + λ (x yz −V0 ) 长、宽、高尺寸相等 .
2 2
2. 设 3. 在曲面 平面
求 上求一点 , 使该点处的法线垂直于 并写出该法线方程 . 的切平面
4. 在第一卦限内作椭球面
使与三坐标面围成的四面体体积最小,并求此体积.
4
z
y
例4. 求原点到曲线 的最短距离。 的最短距离。
x 2 + ( y − 1) 2 + z 2 = 4 Γ: x + y + z = 1
习题课
多元函数微分法
一、 基本概念 二、多元函数微分法 三、多元函数微分法的应用
一、 基本概念
1. 多元函数的定义、极限 、连续 • 定义域及对应规律 • 判断极限不存在及求极限的方法 • 函数的连续性及其性质 2. 几个基本概念的关系 连续性 方向导数存在 偏导数存在 可微性

多元函数微分习题课

多元函数微分习题课

x
x
z
y
x
( ) du
dx
=
f1 +
f2 cos x −
1 f3 ϕ3
2 xϕ1 + esin xϕ2 cos x
十.设u = f ( x, y,z),ϕ( ) x2,ey,z = 0, y = sinx,
其中 f ,ϕ 都具有一阶连续偏导数,且 ∂ϕ ≠ 0 ,求 du .
∂z
dx
解法二:用微分形式不变性:
(A). f ( x, y) 在 P 点连续; (B). f ( x, y) 在 P 点必可微;
(C). lim x → x0
f
( x,
y0 )
及 lim y→ y0
f
( x0 ,
y)
都存在;
(D). lim f ( x, y) 存在. x → y→ y0
答:(C)
三.求由方程 xyz + x2 + y2 + z2 = 2 所确定的函 数 z = z ( x, y) 在点(1,0,−1) 处的全微分dz .
答:dz = dx − 2dy
四.设 z = z ( x , y ) 定义在全平面上 (1).若 ∂z ≡ 0 ,试证 z = f ( y ) ,其中 f ( y )
∂x
是任意待定的函数; (2).若 ∂ 2 z ≡ 0 ,试证 z = f ( x ) + g ( y ) ,其
∂x∂y
中 f ( x ), g ( y ) 是可导的待定函数.
;
有二阶连续偏导数,
解: z y = x4 f1 + x2 f2 , z yy = x5 f11 + 2 x3 f12 + xf22

大学高数第八章 多元函数微分学习题解课后参考答案及知识总结

大学高数第八章 多元函数微分学习题解课后参考答案及知识总结

第8章多元函数微分学§8.1 多元函数的基本概念内容概要课后习题全解习题8-1★1.设222(,)xy f x y x y =+,求(1,)y f x。

解:222222(1,)1()yy xy x f y x x y x==++★2. 已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy +-。

解: 2(,,)()()xyxf x y x y xy x y xy +-=++★★3.设()z x y f x y =++-,且当0y =时,2z x =,求()f x 。

解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)zy x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z=解:要使表达式有意义,必须0x ≥, ∴{(,)|D x y x =≥★★(3)u=解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤≤★★★(4)z = 解:要使表达式有意义,必须 222224010ln(1)0ln1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-+解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10y x y →→知识点:二重极限。

思路:(1,0)为函数定义域内的点,故极限值等于函数值。

解:1ln 2ln 21y x y →→== ★★(2)00x y →→知识点:二重极限。

思路: 应用有理化方法去根号。

习题课多元函数微分学

习题课多元函数微分学
已知 (x0, y0) 是 f (x, y)
下列选项正确的是( )
提示: 设
()
代入()得
D
(2006考研)
作业(4-13)

所以 f 在点(0,0)不可微 !
二、多元函数微分法
显示结构
隐式结构
1. 分析复合结构
自变量个数 = 变量总个数 – 方程总个数
自变量与因变量由所求对象判定
2. 正确使用求导法则
“分段用乘,分叉用加,单路全导,叉路偏导”
注意正确使用求导符号
3. 利用一阶微分形式不变性
练习题
1. 设函数 f 二阶连续可微, 求下列函数的二阶偏导数
2. P134 题12
解答提示:
第 1 题
P134 题12 设

提示:


利用行列式解出 du, dv :
代入①即得
求曲线在切线及法平面
(关键: 抓住切向量)
求曲面的切平面及法线 (关键: 抓住法向量)
2. 极值与最值问题

6. 在第一卦限内作椭球面
的切平面
使与三坐标面围成的四面体体积最小,并求此体积.
提示: 设切点为
用拉格朗日乘数法可求出
则切平面为
所指四面体体积
V 最小等价于 f ( x, y, z ) = x y z 最大,
故取拉格朗日函数
7. 设
均可微, 且
在约束条件(x, y) 0下的一个极值点,
第九章
习题课
一、 基本概念
二、多元函数微分法
三、多元函数微分法的应用
多元函数微分法
一、 基本概念
连续性
偏导数存在
方向导数存在

吉林大学 微积分BII 习题课 多元函数微分法

吉林大学 微积分BII 习题课 多元函数微分法

机动
目录
上页
下页
返回
结束
令 x a2 a2 2 2 2 0 Fx 2 x x a b2 b2 y 2 2 2 0 Fy 2 y y b
唯一驻点
c2 c2 z 2 2 2 0 Fz 2 z z c
由实际意义可知
为所求切点 .
机动 目录 上页 下页 返回 结束
y2 2 f 22 ) x
机动
目录
上页
下页
返回
结束
设 提示: 由 z uv , 得 z u v v u x x x


z

z u v v u y y y
u u
u v x yx y
由 x e cos v, y e sin v , 得
d x eu cos v d u eu sin v d v d y eu sin v d u eu cos v d v
提示: 设所求点为
y0
利用 得
x0
1
法线垂直于平面 点在曲面上
y0 x0 1 1 3 1 z0 x0 y0
x0 3 , y0 1 , z0 3
机动 目录 上页 下页 返回 结束
2. 在第一卦限内作椭球面
的切平面
使与三坐标面围成的四面体体积最小,并求此体积.
提示: 设切点为
Fz 2( x y 2 z 2)(2) 0
z x2 y2
1 1 1 解此方程组得唯一驻点 x , y , z . 4 4 8 由实际意义最小值存在 , 故

7 4 6
机动 目录 上页 下页 返回 结束
练习题:
1. 在曲面 平面 上求一点 , 使该点处的法线垂直于 并写出该法线方程 . 则法线方程为

9、多元函数微分习题课(1)

9、多元函数微分习题课(1)

2z 其中f 具有二阶连续偏导数, z = f (e x sin y , x 2 + y 2 ), 其中 具有二阶连续偏导数,求 4、 设 、 xy z = e x sin yf1′ + 2 xf 2′ 解 x
2z ′′ ′′ ′′ = f11e 2 x sin y cos y + 2e x ( y sin y + x cos y ) f12 + 4 xyf 22 + f1′e x cos y xy
x0 y0 z0 . 6abc
u=xyz(x>0,y>0,z>0)在条件( 于是问题转化为求函数 u=xyz(x>0,y>0,z>0)在条件(1)下的 最大值问题. 最大值问题. F(x,y,z)=xyz+ x,y,z)=xyz 令 F(x,y,z)=xyz+λ( a
x + b y + c z 1 ),解方程组
2、 由方程 xyz + 、
x 2 + y 2 + z 2 = 2 所确定的函数 z=z(x, y)
在点( 在点(1,0,-1)处的全微分 dz = dx - ) [利用全微分 由方程得 利用全微分] 利用全微分 因此,在点 因此,在点(1,0,-1)处 处
2dy
1 x + y +z
2 2 2
yzdx + xzdy + xydz +
在曲面上, 因 P0 在曲面上,即 a x 0 + b y 0 + c z 0 = 1 ,
(2)
a b c x+ y+ z =1 将它代入( 可化切平面方程为, 将它代入(2)式,可化切平面方程为, x0 y0 z0

多元函数微分法习题课2

多元函数微分法习题课2
T ( xt , yt , zt ), 再求出切点,即可得切线及法平面方程。
t 解: 因 xt 1 cos t , yt sin t , zt 2cos 2 故在点 ( 1, 1, 2 2) 处的切向量为 2 T ( xt , yt , zt ) ( 1,1,2 2 ) (1, 1, 2)
处的切线及法平面方程。 分析:此曲线可视 x 为参数, 则求出切向量为
dy dz T (1, , ), 即可得切线及法平面方程。 dx dx
dy m 由 y 2mx 得 , dx y
2
dy dz 解: 视 x 为参数, 则切向量为T (1, , ); dx dx
m 1 , ). 故在点 ( x0 , y0 , z0 ) 处的切向量为T (1, y0 2 z0 x x 0 y y0 z z 0 所求切线方程为 m 1 1 y0 2 z0
2x Fx yz 2 0 a 2z Fz xy 2 0 c
2
2
2
2y Fy xz 2 0 b x2 y2 z2 2 2 2 1 a b c
三式相加得 3 xyz 2
a b c 解得 x , y ,z 3 3 3 2x 2y 或 yz 2 xz 2 a b 2 2 2 2 2 x z y b x x y 两式相除 2 2 2 同理 2 2 x a y a b a c
无条件极值 多元函数的极值 条件极值
(1) 无条件极值求法步骤:
①求 f x ( x, y) 0 , f y ( x, y) 0 得全部驻点. ②求 f xx ( x0 , y0 ) A , f xy ( x0 , y0 ) B , f yy ( x0 , y0 ) C ③由判别驻点为极值点的条件,验证 AC B 的符号,

微积分第七章-多元函数微分学习题

微积分第七章-多元函数微分学习题

总结词
理解偏导数与全微分的关系,掌握二者之间 的转换方法。
详细描述
偏导数是全微分的线性近似,即当 自变量改变量Δx、Δy等趋于0时, 全微分等于偏导数乘以自变量改变 量。因此,在求函数在某一点的切 线斜率时,可以使用偏导数;而在 计算函数在某一点的微小改变量时, 则使用全微分。
03
习题三:方向导数与梯度
THANKS
感谢观看
Delta y]
计算多元函数的梯度
总结词
梯度是多元函数在某点处的方向导数的最大值,表示函数在该点处沿梯度方向变 化最快。
详细描述
梯度的计算公式为:[nabla f(x_0, y_0) = left( frac{partial f}{partial x}(x_0, y_0), frac{partial f}{partial y}(x_0, y_0) right)]梯度向量的长度即为函数在该点 的变化率。
讨论多元函数极值的性质
要点一
总结词
极值的性质包括局部最大值和最小值、鞍点的存在以及多 变量函数的极值与一元函数的极值之间的关系。
要点二
详细描述
在多元函数中,极值具有局部性,即在一个小的区域内, 一个函数可能达到其最大值或最小值。鞍点是函数值在某 方向上增加而在另一方向上减少的点。此外,多变量函数 的极值与一元函数的极值之间存在一些关系,例如,在一 元函数中,可微函数在区间上的最大值和最小值必然在驻 点处取得,但在多元函数中,这一性质不再成立。
利用二阶条件求多元函数的极值
总结词
二阶条件是进一步确定极值点的工具,通过判断二阶偏导数的符号,我们可以确定是否为极值点。
详细描述
在得到临界点后,我们需要进一步判断这些点是否为极值点。这需要检查二阶偏导数的符号。如果所 有二阶偏导数在临界点处都为正,则该点为极小值点;如果所有二阶偏导数在临界点处都为负,则该 点为极大值点;如果既有正又有负,则该点不是极值点。

多元函数微分学(1)

多元函数微分学(1)

微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
9
二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元
函数的极限 (如例 1); 如例 (2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2); 如例 (3) 利用夹逼定理求二元函数的极限 (如例 3); 如例 (4) 判定二元函数的极限不存在 (如例 4). 如例
多元函数微分学
21
例 5 设 z = z(x, y) 是由方程 x2 + y2 − z = ϕ( x + y + z) 所确定的函数, 所确定的函数 其中 ϕ 具有二阶导数且 ϕ′ ≠ −1 , (1) 求 dz ;
∂u 1 ∂z ∂z ( − ), 求 (2) 记 u( x, y) = . ∂x x − y ∂x ∂y
第八章
多元函数微分学
1
多元函数微分学】 【多元函数微分学】习题课 一、主要内容 二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
2
一、主要内容
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
3
1、区域 、 (1) 邻域
U ( P0 , δ ) = { P | PP0 | < δ }
= {( x , y ) | ( x − x0 ) 2 + ( y − y0 ) 2 < δ }.
F ( x , y , u, v ) = 0 (1)F ( x , y ) = 0; (2)F ( x , y , z ) = 0; (3) . G ( x , y , u, v ) = 0

多元函数微分学 习题课

多元函数微分学 习题课
•在实际问题中往往可根据问题本身的性质来 判定驻点是否是最值点.

例题分析
(一)求定义域和极限
x2 y2 1. f ( x , y, z ) arcsin z
2.讨论极限
1 cos( x y ) (2) lim xy (1)lim ; x0 x 2 y 2 2 x 0 ( x y) y0 y 0
若 z f ( x , y )在点 x0 , y0 处有极值,则
f x( x0 , y0 ) 0, f y( x0 , y0 ) 0.
这时称 x0 , y0 为驻点。
驻点不一定是极值点
2.充分条件: 设 z f ( x , y ) 在驻点 x0 , y0 的某邻域内有 连续的二阶偏导数,记 A f xx ( x0 , y0 ), B f xy ( x0 , y0 ), C f yy ( x0 , y0 ),
10 掌握多元函数无条件极值和条件极值
的求法及最大(小)值的求法。

要点提示
注意 1.从一元函数推广 2.多元函数与一元函数的区别
(一)函数的概念 1.点函数的定义: P 设 是一个点集,如果对于每一点 变量 z 按照一定的法则总有确定的值和它 对应,则称 z 是点 P 的函数,记为
z f ( P)
2 y
d 2 z x (1,0) z( x,0) ( x ) |x 1 2 dx x 1
若求zy (1,0),则
d y ' z y (1, 0) z (1, y ) (e ) | y 0 1 dy y0
2 x z z z 4.z f ( x , ), f 二阶偏导连续, 求 , , . y x y xy

习题课 多元函数微分学

习题课 多元函数微分学

复习题8(A )1. 设3(1)z y f x =+-,且已知y =1时,z =x 则()f x = ,z = .2. 设322,(,)(0,0)(,)0,(,)(0,0)x x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩,则(0,0)x f = , (0,0)y f = .3. 设arctanx yz x y+=-,,则d z = . 4. 设()()y x u yf xg x y =+,其中f ,g 具有二阶连续偏导数,则222u u x y x y x∂∂+=∂∂∂ . 5. 若函数z =f (x ,y )在点(x 0,y 0)处的偏导数存在,则在该点处函数(,)z f x y = ( ) A 有极限 B 连续C 可微D 以上三项都不成立6. 偏导数f x (x 0,y 0),f y (x 0,y 0)存在是函数z =f (x ,y )在点(x 0,y 0)连续的( ) A 充分条件 B 必要条件C 充要条件D 即非充分也非必要条件7. 设函数f (x ,y )=1-x 2+y 2,则下列结论正确的是( )A 点(0,0)是f (x ,y )的极小值点B 点(0,0)是f (x ,y )的极大值点C 点(0,0)不是f (x ,y )的驻点D f (0,0)不是f (x ,y )的极值 8. 求下列极限:(1) 22(,)(0,0)1lim ()sin x y x y x y →+; (2) (,)(0, 0)11lim x y xy →+-. 9. 设u =e 3x -y ,而x 2+y =t 2,x -y =t +2,求0d d t u t =.10. 设z =f (x ,y )由方程xy +yz +xz =1所确定,求222,,.z z z x x y x ∂∂∂∂∂∂∂ 11. 设f (u ,v )具有二阶连续偏导数,且满足22221f f u v∂∂+=∂∂,又221(,)[,()]2g x y f x y x y =-,试证222222g gx y x y∂∂+=+∂∂. 12. 求函数f (x ,y )=x 2(2+y 2)+y ln y 的极值.13. 设商品A 及B 的收益函数分别为:22121624 , R 20410R x x xy y xy y =-+=+-,总成本函数为2888C x y =-+,,x y 为商品A 及B 的价格,试问价格取何值时可以使总利润最大?14. 某同学现有400元钱,他决定用来购买x 张计算机磁盘和y 盒录音磁带。

《微积分(下)》第2章多元函数微分学练习题--参考答案

《微积分(下)》第2章多元函数微分学练习题--参考答案

第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。

(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。

(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。

(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。

2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

吴第8章多元函数微分学-习题课

吴第8章多元函数微分学-习题课

【解】 lim f(x,y)0f(0,0)所以f 在(0,0)点连续,故否B .
x 0
y 0
f( x ,0 ) f( 0 ,0 ) x 2 s1 ix n 2 ) (
f x ( 0 ,0 ) l x 0 im x
lim 0 x 0 x
fy (0 ,0 ) ly 0 ifm (y ,0 ) yf(0 ,0 ) ly 0 iy m 2 sy i 1y n 2 ) ( 0 偏导数存在, 否A .
第八章 习题课
多元函数微分法及其应用
一、关于多元函数极限的题类 二、关于多元函数连续、偏导数存在、可微的题类 三、关于复合函数求导、隐函数求导,全微分计算题类 四、关于多元函数极(最)值的题类
一、关于多元函数极限的题类
【例1】 求
lim
x0
xy x2 y2
y0
【解】
xy
lim
x 0
x2

【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
【解Ⅰ】公式法
抽象函数隐函数求导
令F(x,y,z)x2z2y(fz), y

Fz
2zf(z), y
Fyf(zy)zyf(zy),
z y
Fy Fz

yf( z) zf ( z)
y
y
2yz yf(z)
.
y
【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
抽象函数隐函数求导
【解Ⅱ】(求导直接法) z是x,y的函数
zyz 两边同时对y求导 2zyzf(zy)yf(zy)yy2 ,
yf(z) zf (z)
解得

9-7 多元函数微分法习题课

9-7 多元函数微分法习题课

1.简单、具体函数
u例1

z
=
(x2
+
y
2
-
)e
arctan
y x
求 ¶2z .
¶x¶y
2.复合函数:外层具体、内层具体
u例2 设 u = ex ( y + z), y = sin x, z = cos x, 求 du .
dx
u例3
设 z = u2v - uv2 , u =
x cos y,
v=
x sin y,
第七讲 多元函数微分法习题课
多元函数微分法习题课
一、内容小结 二、题型练习
多元函数微分法习题课
一、内容小结 二、题型练习
一、内容小结
(一)多元复合函数求导法则 (二)隐函数求导法则
一、内容小结
(一)多元复合函数求导法则 (二)隐函数求导法则
多元复合函数的五种基本类型
类型
举例
复合关系图 求导法则 注
Fx表示F对x求偏 分导子和分母不要颠倒
不要丢掉负号
ìF(x, y,u, v) = 0 îíG(x, y,u, v) = 0
ìu = u (x, y) îív = v (x, y)
(1) 确定因变量个数与自变量个数.
明确变量个数与方程个数
确定因变量个数 方程个数
确定自变量个数 变量个数
方程个数
(2) 明确因变量与自变量. 题目要求
一个具体、一个抽象
u例21 设 w = f ( x, y, z), z=z(x,y)由方程 z5 - 5xy + 5z = 1
确定,求
¶w ¶x
,
¶2w ¶x 2
.
两个抽象

0809习题课(第8章多元函数微分法及其应用)

0809习题课(第8章多元函数微分法及其应用)

练习 解答或提示
六、求螺旋线 x = a cosθ , y = a sinθ , z = bθ 在点(a ,0,0) t 曲 t t
处的切线与法平面方程 .
t x′ = −asinθ , y′ = acosθ , t
(a,0,0) →θ = 0, T t
(a,0,0)
z′ = b,
= (0, a, b),
练习 解答或提示
∂z ∂ z 五、设 x = e cos v , y = e sin v , z = uv ,求 , . ∂ x , ∂y Qzx = vux + uvx , z y = vuy + uv y ,
u u
1 = eu cos v ⋅ ux − eu sinv ⋅ vx 0 = eu sinv ⋅ ux + eu cos v ⋅ vx
∂z ∂ z 五、设 x = e cos v , y = e sin v , z = uv ,求 , . ∂ x , ∂y
u u
六、求螺旋线 x = a cosθ , y = a sinθ , z = bθ 在点(a ,0,0) 处的切线与法平面方程 . 七、求曲面 x + y + z = 1在点 1,2,−2)处切平面方程. ( 八、求函数z = f ( x, y) = x2 − xy + y2的极值.
( ∴在点 0,0)处: AC − B2 = 3 > 0, 且A = 2 > 0,
∴函数有极小值 f (0,0) = 0.
所确定的函数 , 求 du. ∂z ∂z ′ ux = f1 + f2 ⋅ , uy = f2 ⋅ , 令F( x, y, z) = z − x − yϕ(z), ′ ′ ∂y ∂x Fy Fx 1 ∂z ∂z ϕ(z) , , =− = =− = Fz 1 − yϕ′(z) ∂y Fz 1 − yϕ′(z) ∂x

高数A(2)习题课(5)多元函数微分学1

高数A(2)习题课(5)多元函数微分学1

∂u + ∂u + ∂u . 2 2 2 设 三、 u = x + y + z , 求 、 ∂x ∂y ∂z
? f (x, y) ¶y
可见函数在(0,0)点极限不存在,更不连续但可偏导.
例5(1)设 f ( x, y ) = x , 求 f x ( x, y ), f y ( x, y ). ∂z ∂z 2 2 (2)设 z = sin( x − y ), 求 , . ∂x ∂y 解 (1) f ( x ,y ) = yx y −1 , x
解法2 利用一阶全微分形式的不变性
x y du = f1′d ( ) + f 2′( ) y z 1 x 1 y = f1′( dx − 2 dy ) + f 2′( dy − 2 dz ) y y z z −x 1 1 y = f1′dx + ( 2 ) f1′ + f 2′ dy − 2 f 2′dz y z z y
C.有界闭区域上连续函数的性质 3.偏导数的定义、计算以及几何意义
4.全微分的定义,形式不变性;可微和偏导数存 在、偏导数连续,连续之间的关系 5.复合函数偏导数的链式法则
∂u ∂u ∂x ∂u ∂y = ⋅ + ⋅ ∂s ∂x ∂s ∂y ∂s ∂u ∂u ∂x ∂u ∂y = ⋅ + ⋅ ∂t ∂x ∂t ∂y ∂t
是否趋于0。
ρ
同理, f y′ ( 0,0 ) = 0
∆f = f ( x, y ) − f (0,0), ∆x = x, ∆y = y, ρ = x 2 + y 2 , 则
lim f ( x, y ) − f (0,0) − f x′(0,0) x − f y′ (0,0) y x2 + y2

多元函数微分学习题课

多元函数微分学习题课
2 2
平行的切平面方程为:
.
答案:x + 4 y − z = 0 2
15 二元函数f ( x , y )在点(0, 0)可微的充分条件为[ ]. A. lim [ f ( x , y ) − f (0, 0)] = 0;
( x , y )→ (0,0)
f ( x , 0) − f (0, 0) f (0, y ) − f (0, 0) B .lim = 0, 且 lim = 0; x→0 y→0 x y C.
1 设u = f ( x , y , z ), z = ϕ ( y , t ), t = ψ ( y , x ),
∂u ∂u 其中f , ϕ ,ψ 均可微,求 , . ∂x ∂y
y 2 验证:z = , f ( u)可微, 2 2 f (x − y )
则 1 ∂z 1 ∂z z + = 2. x ∂x y ∂y y
Ans : ( −5, −5, 5),(1,1,1).
27 设z = z ( x , y )是由x 2 − 6 xy + 10 y 2 − 2 yz − z 2 +18=0确定的 函数,求z = z ( x , y )的极值点和极值. [2004考研]
x+ y x− y
ψ ( t )dt
其中ϕ 具有二阶导数,ψ 有一阶导数,则必有[ ].
[2005考研]
Ans : B.
22 设f ( x , y ), ϕ ( x , y )均为可微函数,且ϕ y ( x , y ) ≠ 0. 设( x0 , y0 )为f ( x , y )在约束条件ϕ ( x , y )下的一个极值点 则必有[ ]. A.若f x ( x0 , y0 ) = 0, 则f y ( x0 , y0 ) = 0; B .若f x ( x0 , y0 ) = 0, 则f y ( x0 , y0 ) ≠ 0; C .若f x ( x0 , y0 ) ≠ 0, 则f y ( x0 , y0 ) = 0; D.若f x ( x0 , y0 ) ≠ 0, 则f y ( x0 , y0 ) ≠ 0. [2006考研]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数微分学习题课
1.已知)(),(22y x y x y x y x f ++-=-+ϕ,且x x f =)0,(,求出),(y x f 的表达式。

2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x
y y x 原式;解法2:令kx y =,01lim 0=+=→k
k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。

(2)证明极限 y x xy y x +→→0
0lim 不存在。

3.证明 ⎪⎩⎪⎨⎧=≠+=00
)1ln(),(x y x x xy y x f 在其定义域上处处连续。

4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y
x y x y x α。

5. 设 ⎪⎩
⎪⎨⎧=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论
(1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微?
6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。

7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ∂∂,y
x u ∂∂∂2。

8. 设)(u f z =,方程⎰+
=x y t d t p u u )()(ϕ确定u 是y x ,的函数,其中)(),(u u f ϕ可微,)(),(u t p ϕ'连续,且 1)(≠'u ϕ,求 y
z x p x z y p ∂∂+∂∂)()(。

9. 设22v u x +=,uv y 2=,v u z ln 2=,求y
z x z ∂∂∂∂,。

10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定:
2=-xy e xy ,dt t t e z
x x ⎰-=0sin ,求dx
du 。

11. 若可微函数 ),(y x f z = 满足方程 y
z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

12. 在变换 22,y x v x u -== 下,求下面方程的解 0=∂+∂y
x x y 。

13. 求常数c b a ,,的值,使函数 232
),,(z cx byz axy z y x f ++= 在点)1,2,1(-处沿z 轴正方向的方向导数
有最大值64。

14. 设函数 z y x z y x f +=2),,(, (1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线 ⎪⎩
⎪⎨⎧=-== 12 32t z t y t x 在该点切线方向的方向导数;
(2) 求函数在点 M ( 1, 1, 1 ) 处的梯度与 (1) 中切线方向的夹角 θ 。

15. 直线L :⎩⎨⎧=--+=++0
30z ay x b y x ,在平面π上,而π与曲面22y x z +=相切于)5,2,1(-,求b a ,之值。

16. 已知椭球面 2222a yz xy z y x =++++,)0(>a ,
(1)求椭球面上z 坐标为最大和最小的点; (2)求椭球面在xoy 面上的投影区域的边界曲线。

17. 求两球面25222=++z y x 与1)8(222=-++z y x 的公切面方程,使该公切面在x 轴和y 轴的上半
轴上的截距相等。

18. 试求椭圆124522=++y xy x 的长轴和短轴之长。

19. 当n 个正数n x x x ,,21之和为常数时,求它们的乘积开n 次方的最大值,并由此证明
)(12121n n n x x x n
x x x ++≤ 。

20.已知两平面曲线0),(=y x f ,0),(=y x g ,),(βα和),(ηξ分别为两曲线上的点,试证:如果这两
点是这两曲线上相距最近或最远的点,则 ),(),(),(),(ηξηξβαβαηβξαy x y x g g f f ''=''=--。

21.设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为
}75|),{(22≤-+=xy y x y x D ,小山的高度函数为 xy y x y x h +--=2275),(。

(1)设),(00y x M 为区域D 的一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向
导数的最大值为),(00y x g ,试写出),(00y x g 的表达式。

(2)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀岩的起点。

也就是说,要在D 的的边界线752
2=-+xy y x 上找出使(1)中的),(y x g 达到最大值的点。

试确定攀岩起点的位置。

22.已知平面上两定点 A ( 1 , 3 ), B ( 4 , 2 ) ,试在椭圆 )0,0(,14
9≥≥=+y x 圆周上求一点 C ,使△ABC 面积 S △ 最大 。

23.求半径为R 的圆的内接三角形中面积最大者。

24.求平面上以d c b a ,,,为边的面积最大的四边形,试列出其目标函数和约束条件。

25.设 ),(y x z z =是由方程 181026 222=--++y x z yz xy 确定的隐函数。

已知3)3 ,9( =z ,求
),(y x z z =在 )3 ,9( 点带Peano 型余项的二阶Taylor 公式,判断 ),( y x z z =在 )3 ,9( 点是否取得 极值。

相关文档
最新文档