生物信息学名词解释(0001)
生物信息学名词解释(个人整理)
一、名词解释:1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。
5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。
6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
P947.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P988.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
生物信息学名词解释
1.计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。
2.油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。
3.双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。
代表测序方法:solid 测序。
4.焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。
焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。
在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。
例如:454测序仪:用蛋白质序列查找核苷酸序列。
:STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp -500bp。
它可用PCR方法加以验证。
将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。
在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。
:表达序列标签技术(EST,Expressed Sequence Tags)EST技术直接起源于人类基因组计划。
生物信息学常用名词解释(一)
生物信息学常用名词解释(一)在生物信息中会出现很多的特殊名词,从这次内容开始,我们将逐渐推送一些生物信息相关的一些名词解释。
生物信息学(bioinformatics):综合计算机科学、信息技术和数学的理论和方法来研究生物信息的交叉学科。
包括生物学数据的研究、存档、显示、处理和模拟,基因遗传和物理图谱的处理,核苷酸和氨基酸序列分析,新基因的发现和蛋白质结构的预测等。
基因组(genome):是指一个物种的单倍体的染色体数目,又称染色体组。
它包含了该物种自身的所有基因。
基因(gene):是遗传信息的物理和功能单位,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。
基因组学(genomics):是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱)、核酸序列测定、基因定位和基因功能分析的科学。
基因组学包括结构基因组学(structural genomics)、功能基因组学(functional genomics)、比较基因组学(Comparative genomics)。
蛋白质组学(proteomics):阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科。
包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。
高通量测序:高通量测序技术(High-throughputsequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。
下一代测序:英文名为Next Generation Sequencing,简称为NGS。
也叫做二代测序或者高通量测序。
生物信息学 名词解释
生物信息学名词解释
嘿,你知道啥是生物信息学不?这可不是一般的玩意儿啊!生物信
息学就像是一个超级厉害的解密大师,专门破解生命的密码!比如说吧,基因就像是一串串神秘的代码,而生物信息学呢,就是那个能读
懂这些代码含义的高手。
想象一下,细胞就像一个个忙碌的小工厂,里面进行着各种复杂的
化学反应和活动。
而生物信息学要做的,就是搞清楚这些小工厂是怎
么运作的,它们的指令是什么。
这难道不神奇吗?
再打个比方,生物信息学如同一个智慧的导航员,在生命的海洋中
指引着我们前进。
它能帮助我们分析海量的生物数据,从那些看似杂
乱无章的信息中找出规律和意义。
比如说,通过对大量基因序列的分析,我们可以了解到不同物种之间的亲缘关系,这就像是在拼凑一幅
巨大的生命拼图啊!
它涉及到好多方面呢,像数据分析、算法设计、模型建立等等。
这
不就像是一个大厨,要准备各种食材,运用各种技巧,才能做出一道
美味佳肴嘛!
咱就说,要是没有生物信息学,我们对生命的理解能有这么深刻吗?它就像一把神奇的钥匙,打开了生命奥秘的大门,让我们能更深入地
探索和了解生命的本质。
所以啊,生物信息学可太重要啦,绝对是现
代生物学不可或缺的一部分!这就是我对生物信息学的理解,你觉得呢?。
生物信息学名词解释
1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P299.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
P37值:衡量序列之间相似性是否显着的期望值。
E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。
P9512.低复杂度区域:BLAST搜索的过滤选项。
指序列中包含的重复度高的区域,如poly(A)。
生物信息学
生物信息学科技名词定义中文名称:生物信息学英文名称:bioinformatics定义1:综合计算机科学、信息技术和数学的理论和方法来研究生物信息的交叉学科。
包括生物学数据的研究、存档、显示、处理和模拟,基因遗传和物理图谱的处理,核苷酸和氨基酸序列分析,新基因的发现和蛋白质结构的预测等。
所属学科:生物化学与分子生物学(一级学科);总论(二级学科)定义2:运用计算机技术和信息技术开发新的算法和统计方法,对生物实验数据进行分析,确定数据所含的生物学意义,并开发新的数据分析工具以实现对各种信息的获取和管理的学科。
所属学科:细胞生物学(一级学科);总论(二级学科)定义3:运用计算机技术和信息技术开发新的算法和统计方法,对生物实验数据进行分析,确定数据所含的生物学意义,并开发新的数据分析工具以实现对各种信息的获取和管理的学科。
所属学科:遗传学(一级学科);总论(二级学科)生物信息学简介发展简介1主要研究方向1、序列比对(Sequence Alignment)12、蛋白质结构比对和预测13、基因识别非编码区分析研究14、分子进化和比较基因组学15、序列重叠群(Contigs)装配16、遗传密码的起源17、基于结构的药物设计18、生物系统的建模和仿真19、生物信息学技术方法的研究110、生物图像111、其他生物信息学与机器学习1生物信息学的数学问题1、统计学的悖论12、度量空间的假设统计学习理论在生物信息学中应用的困难1讨论与总结启发式方法1乐观中的隐扰1总结展开生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些主要的研究重点.1、序列比对(Sequence Alignment)序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA 的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的.2、蛋白质结构比对和预测5、序列重叠群(Contigs)装配根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题.6、遗传密码的起源通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材.7、基于结构的药物设计人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益.8、生物系统的建模和仿真随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究热点-系统生物学。
生物信息学名词解释
1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P988.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P299.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
P37值:衡量序列之间相似性是否显著的期望值。
E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。
P9512.低复杂度区域:BLAST搜索的过滤选项。
指序列中包含的重复度高的区域,如poly(A)。
生物信息学名词解释
生物信息学名词解释1.计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。
2.油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。
3.双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。
代表测序方法:solid 测序。
4.焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。
焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。
在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。
例如:454测序仪5.tblastn:用蛋白质序列查找核苷酸序列。
6.STS:STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp-500bp。
它可用PCR方法加以验证。
将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。
在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。
7.EST:表达序列标签技术(EST,Expressed Sequence Tags)EST技术直接起源于人类基因组计划。
生物信息学名词解释
生物信息学名词解释
嘿,你知道啥是生物信息学不?生物信息学啊,就好比是生物世界里的神奇密码解读员!比如说,基因就像是一本神秘的大书(例子:基因就如同一个装满了无数秘密的巨大宝库),生物信息学就是要去读懂这本书里的内容。
它要处理和分析海量的生物数据,找出其中隐藏的规律和奥秘。
再比如说蛋白质,那可是生物体内超级重要的角色(例子:蛋白质就好像是机器里的关键零部件)。
生物信息学要研究蛋白质的结构、功能,搞清楚它们是怎么工作的。
还有测序技术,这简直就是打开生物奥秘大门的钥匙(例子:测序技术如同照亮黑暗洞穴的那束光)!通过它,我们能知道生物的遗传信息。
生物信息学可不是简单的事儿,它需要好多厉害的工具和方法呢!它就像是一个勇敢的探险家,在生物的海洋里不断探索(例子:生物信息学如同无畏的航海家在广阔的知识海洋中奋勇前行)。
总之,生物信息学超级重要,它能帮助我们更好地理解生命的奥秘呀!
我的观点结论就是:生物信息学真的太神奇、太重要啦!。
生物信息学名词解释
1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学现象,这些中断的位点称为空位。
P29是引入时间概念的支序图。
18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种10.科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影中的同源序列,具有相似或不同的功能。
(书:在缺乏任何基因复数学模型响,序列中的空位的引入不代表真正的进化事件,所以要对其进行; 利用计算机为工具对实验所得大量生物学数据进行储制证据的情况下,具有共同祖先和相同功能的同源基因。
)罚分,空位罚分的多少直接影响对比的结果。
存、检索、处理及分析,并以生物学知识对结果进行解释。
P3719.值:11.E衡量序列之间相似性是否显著的期望值。
E2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对值大小说明了旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重复产生的一组基因,这些基因在功能上可能发生了改变。
(可以找到与查询序列(特定目标衍生而来,是对生物学知识和信息的进一步的整理。
query)相匹配的随机或无关序列的概率,E书:由于基因重复事件产生的相似序列。
值越小意味着序列的序列格式:是将DNA或者蛋白质序列表示为一个带有一)值越接近零,越不可能找到其他匹配序列,E3.FASTA20.相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意外类群:)表示一个新文件些标记的核苷酸或者氨基酸字符串,大于号(>是进化树中处于一组被分析物种之外的,具有相近亲缘关系的物种。
义。
P95的开始,其他无特殊要求。
21.有根树:能够确定所有分析物种的共同祖先的进化树。
BLAST12.低复杂度区域:搜索的过滤选项。
指序列中包含的重复序列格式:4.genbank是GenBank 数据库的基本信息单位,是最为22.除权配对算法(UPGMA):最初,每个序列归为一类,然后找(度高的区域,如polyA广泛的生物信息学序列格式之一。
生物信息分析常用名词解释
生物信息分析常用名词解释生物信息学(bioinformatics):综合计算机科学、信息技术和数学的理论和方法来研究生物信息的交叉学科。
包括生物学数据的研究、存档、显示、处理和模拟,基因遗传和物理图谱的处理,核苷酸和氨基酸序列分析,新基因的发现和蛋白质结构的预测等。
基因组(genome):是指一个物种的单倍体的染色体数目,又称染色体组。
它包含了该物种自身的所有基因。
基因(gene):是遗传信息的物理和功能单位,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。
基因组学:(genomics)是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱)、核酸序列测定、基因定位和基因功能分析的科学。
基因组学包括结构基因组学(structural genomics)、功能基因组学(functional genomics)、比较基因组学(Comparative genomics)宏基因组学:宏基因组是基因组学一个新兴的科学研究方向。
宏基因组学(又称元基因组学,环境基因组学,生态基因组学等),是研究直接从环境样本中提取的基因组遗传物质的学科。
传统的微生物研究依赖于实验室培养,元基因组的兴起填补了无法在传统实验室中培养的微生物研究的空白。
蛋白质组学(proteomics):阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科。
包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。
遗传图谱:指通过遗传重组所得到的基因线性排列图。
物理图谱:是利用限制性内切酶将染色体切成片段,再根据重叠序列把片段连接称染色体,确定遗传标记之间的物理距离的图谱。
转录图谱:是利用EST作为标记所构建的分子遗传图谱。
基因文库:用重组DNA技术将某种生物细胞的总DNA 或染色体DNA的所有片断随机地连接到基因载体上,然后转移到适当的宿主细胞中,通过细胞增殖而构成各个片段的无性繁殖系(克隆),在制备的克隆数目多到可以把某种生物的全部基因都包含在内的情况下,这一组克隆的总体就被称为某种生物的基因文库。
生物信息学名词解释(个人整理)
一、名词解释:1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。
5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。
6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
P947.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P988.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
生物信息学名词解释cj
名词解释(红色考过)1.生物信息学:生物信息学是一门交叉科学,它包含了生物信息的获取、处理、存储、分发、分析和解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量数据所包含的生物学意义。
/生物信息学(bioinformatics):是一门结合生物技术和信息技术从而揭示生物学中新原理的科学。
3.同一性:P42是指两序列在同一位点核苷酸或氨基酸残基完全相同的序列比例。
4.相似性:P42是指两序列间直接的数量关系,如部分相同、相似的百分比或其他一些合适的度量。
5.同源性:是指从某个祖先经趋异进化而形成的不同序列,也就是从一些数据中推断出的两个基因在进化上具有共同祖先的结论,它是质的判断。
6.序列比对(alignment):将两个或多个序列排在一起,以达到最大一致性的过程(对于氨基酸序列是比较他们的保守性),这样评估序列间的相似性和同源性。
7.多序列比对(multiple sequence alignment):三个或多个序列之间的比对,如果序列在同一列有相同结构位置的残基和(或)祖传的残基,则会在该位置插入空位。
8.算法(algorithm):在计算机程序中包含的一种固定过程。
9.空位(gap):在两条序列比对过程中需要在检测序列或目标序列中引入空位,以表示插入或删除。
10.直系同源(Orthologous)指不同种类的同源序列,他们是在物种的形成事件中从一个祖先序列独立进化而成的,可能有相似功能,也可能没有。
11.旁系同源(paralogous)是通过类似基因复制的机制产生的同源序列。
12.模块替换矩阵(BLUSUM)在替换矩阵中,每个位置的打分是在相关蛋白局部比对模块中观察到的替换的频率而获得的,每个矩阵被修改成一个特殊的进化距离。
(教材P46)13.可接受点突变(PAM)一个用于衡量蛋白质序列的进化突变程度的单位。
(教材P45)14.BLAST:基本局部相似性比对搜索工具。
生物信息学名词解释(xiexiebang推荐)
生物信息学名词解释(xiexiebang推荐)第一篇:生物信息学名词解释(xiexiebang推荐)1.生物信息学(bioinformatics):是一门综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法,以互联网为媒介、数据库为载体、利用数学和计算机科学对生物学数据进行储存、检索和处理分析,并进一步挖掘和解读生物学数据。
2.Genom基因组:某一物种的一套完整染色体组中的所有遗传物质。
其大小一般以其碱基对总数表示的表格。
3.数据库查询(database query):是指对序列、结构以及各种二次数据中的注释信息进行关键词匹配查找检索。
4.数据库搜索(database search):在分子生物信息学中有特定含义,它是指通过特定的序列相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。
Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。
5.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
6.Alignment:比对,从核酸以及氨基酸的层次去分析序列的相同点和不同点,以期能够推测它们的结构、功能以及进化上的联系。
7.表达序列标签(EST):某个基因cDNA克隆测序所得的部分序列片段,长度约为200-600bp。
EST可以定位出基因在genome上的位置。
8.开放阅读框(ORF):开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列。
In Silico Cloning电子克隆:利用种子序列从EST及UniGene数据库中搜索相似性序列,进行拼装、检索、分析等,以此获得目标基因的全称cDNA,在此基础上也能够实现基因作图定位。
9.Contig:即重叠群,把含有STS序列标签位点的基因片段分别测序后,重叠分析就可以得到完整的染色体基因组序列。
生物信息学名词解释
1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科模型;处理及分析,并以生物学知识2.二级数据库:3.FASTA序列格式:是将DNA始,其他无特殊要求。
4.genbank序列格式:是GenBank身,以“//”结尾。
5.Entrez检索系统:是NCBI点。
6.BLAST:7.查询序列(query sequence)索并进行相似性比较的序列。
P988.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2918.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中的同源序列,具有相似或不同的功能。
(书:在缺乏任何基因复制证据的情况下,具有共同祖先和相同功能的同源基因。
)19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重复产生的一组基因,这些基因在功能上可能发生了改变。
(书:由于基因)UPGMA):最初,每个序列归为一类,然后找到):是一种不仅仅计算两两比对距算法要求进化速率保持恒定的缺陷。
):在一系列能够解释序列差异的的进化树中找):它对每个可能的进化位点分配一个概率,然tree):在同一算法中产生多个最优树,合并这):放回式抽样统计法。
通过对数据集多次):开放阅读框是基因序列的一部分,包含一段codon bias):氨基酸的同义密码子的使用频率与相量高的同功tRNA所对应的密码子,这种效应称为密码子偏好性。
30.基因预测的从头分析:依据综合利用基因的特征,如剪接位点,内含子与外显子边界,调控区,预测基因组序列中包含的基因。
31.结构域(domain):保守的结构单元,包含独特的二级结构组合和疏水内核,可能单独存在,也可能与其他结构域组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学名词解释1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。
利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。
2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。
4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。
5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI 的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。
6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。
P947.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。
P988.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。
包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。
P299.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。
P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。
P3711.E值:衡量序列之间相似性是否显著的期望值。
E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。
P9512.低复杂度区域:BLAST搜索的过滤选项。
指序列中包含的重复度高的区域,如poly(A)。
13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。
14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在结构上的异同,来回答大量的生物学问题。
15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。
16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或其他性状,可以研究推断不同物种或基因之间的进化关系。
17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个父分支都只能被分成两个子分支。
系统发育图:用枝长表示进化时间的系统树称为系统发育图,是引入时间概念的支序图。
18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中的同源序列,具有相似或不同的功能。
(书:在缺乏任何基因复制证据的情况下,具有共同祖先和相同功能的同源基因。
)19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重复产生的一组基因,这些基因在功能上可能发生了改变。
(书:由于基因重复事件产生的相似序列。
)20.外类群:是进化树中处于一组被分析物种之外的,具有相近亲缘关系的物种。
21.有根树:能够确定所有分析物种的共同祖先的进化树。
22.除权配对算法(UPGMA):最初,每个序列归为一类,然后找到距离最近的两类将其归为一类,定义为一个节点,重复这个过程,直到所有的聚类被加入,最终产生树根。
23.邻接法(neighbor-joining method):是一种不仅仅计算两两比对距离,还对整个树的长度进行最小化,从而对树的拓扑结构进行限制,能够克服UPGMA算法要求进化速率保持恒定的缺陷。
24.最大简约法(MP):在一系列能够解释序列差异的的进化树中找到具有最少核酸或氨基酸替换的进化树。
25.最大似然法(ML):它对每个可能的进化位点分配一个概率,然后综合所有位点,找到概率最大的进化树。
最大似然法允许采用不同的进化模型对变异进行分析评估,并在此基础上构建系统发育树。
26.一致树(consensus tree):在同一算法中产生多个最优树,合并这些最优树得到的树即一致树。
27.自举法检验(Bootstrap):放回式抽样统计法。
通过对数据集多次重复取样,构建多个进化树,用来检查给定树的分枝可信度。
28.开放阅读框(ORF):开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列。
29.密码子偏好性(codon bias):氨基酸的同义密码子的使用频率与相应的同功tRNA的水平相一致,大多数高效表达的基因仅使用那些含量高的同功tRNA所对应的密码子,这种效应称为密码子偏好性。
30.基因预测的从头分析:依据综合利用基因的特征,如剪接位点,内含子与外显子边界,调控区,预测基因组序列中包含的基因。
31.结构域(domain):保守的结构单元,包含独特的二级结构组合和疏水内核,可能单独存在,也可能与其他结构域组合。
相同功能的同源结构域具有序列的相似性。
32.超家族:进化上相关,功能可能不同的一类蛋白质。
33.模体(motif):短的保守的多肽段,含有相同模体的蛋白质不一定是同源的,一般10-20个残基。
34.序列表谱(profile):是一种特殊位点或模体序列,在多序列比较的基础上,氨基酸的权值和空位罚分的表格。
35.PAM矩阵:PAM指可接受突变百分率。
一个氨基酸在进化中变成另一种氨基酸的可能性,通过这种可能性可以鉴定蛋白质之间的相似性,并产生蛋白质之间的比对。
一个PAM 单位是蛋白质序列平均发生1%的替代量需要的进化时间。
36.BLOSUM矩阵:模块替代矩阵。
矩阵中的每个位点的分值来自蛋白比对的局部块中的替代频率的观察。
每个矩阵适合特定的进化距离。
例如,在BLOSUM62矩阵中,比对的分值来自不超过62%一致率的一组序列。
37.PSI-BLAST:位点特异性迭代比对。
是一种专门化的的比对,通过调节序列打分矩阵(scoring matrix)探测远缘相关的蛋白。
38.RefSeq:给出了对应于基因和蛋白质的索引号码,对应于最稳定、最被人承认的Genbank序列。
39.PDB(Protein Data Bank):PDB中收录了大量通过实验(X射线晶体衍射,核磁共振NMR)测定的生物大分子的三维结构,记录有原子坐标、配基的化学结构和晶体结构的描述等。
PDB数据库的访问号由一个数字和三个字母组成(如,4HHB),同时支持关键词搜索,还可以FASTA程序进行搜索。
40.GenPept:是由GenBank中的DNA序列翻译得到的蛋白质序列。
数据量很大,且随核酸序列数据库的更新而更新,但它们均是由核酸序列翻译得到的序列,未经试验证实,也没有详细的注释。
41.折叠子(Fold):在两个或更多的蛋白质中具有相似二级结构的大区域,这些大区域具有特定的空间取向。
42.TrEMBL:是与SWISS-PROT相关的一个数据库。
包含从EMBL核酸数据库中根据编码序列(CDS)翻译而得到的蛋白质序列,并且这些序列尚未集成到SWISS-PROT数据库中。
43.MMDB(Molecular Modeling Database):是(NCBI)所开发的生物信息数据库集成系统Entrez的一个部分,数据库的内容包括来自于实验的生物大分子结构数据。
与PDB相比,对于数据库中的每一个生物大分子结构,MMDB具有许多附加的信息,如分子的生物学功能、产生功能的机制、分子的进化历史等,还提供生物大分子三维结构模型显示、结构分析和结构比较工具。
44.SCOP数据库:提供关于已知结构的蛋白质之间结构和进化关系的详细描述,包括蛋白质结构数据库PDB中的所有条目。
SCOP数据库除了提供蛋白质结构和进化关系信息外,对于每一个蛋白质还包括下述信息:到PDB的连接,序列,参考文献,结构的图像等。
可以按结构和进化关系对蛋白质分类,分类结果是一个具有层次结构的树,其主要的层次依次是类(class)、折叠子(fold)、超家族(super family)、家族(family)、单个PDB蛋白结构记录。
45.PROSITE:是蛋白质家族和结构域数据库,包含具有生物学意义的位点、模式、可帮助识别蛋白质家族的统计特征。
PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;PROSITE还包括根据多序列比对而构建的序列统计特征,能更敏感地发现一个序列是否具有相应的特征。
46.Gene Ontology 协会:编辑一组动态的、可控的基因产物不同方面性质的字汇的协会。
从3个方面描述基因产物的性质,即,分子功能,生物过程,细胞区室。
47.表谱(PSSM):指一张基于多序列比对的打分表,表示一个蛋白质家族,可以用来搜索序列数据库。
48.比较基因组学:是在基因组图谱和测序的基础上,利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科。
49.简约信息位点:指基于DNA或蛋白质序列,利用最大简约法构建系统发育树时,如果每个位点的状态至少存在两种,每种状态至少出现两次的位点。
其它位点为都是非简约性信息位点。
1、生物信息学:生物分子信息的获取、存贮、分析和利用;以数学为基础,应用计算机技术,研究生物学数据的科学。
2、相似性(similarity):两个序列(核酸、蛋白质)间的相关性。
3、同源性(homology):生物进化过程中源于同一祖先的分支之间的关系。
4、同一性(identity):两个序列(核酸、蛋白质)间未发生变异序列的关系。
5、序列比对(alignment):为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。
6、生物数据库检索(database query,数据库查询):对序列、结构以及各种二次数据库中的注释信息进行关键词匹配查找。
7、生物数据库搜索(database search):通过特定序列相似性比对算法,找出核酸或蛋白质序列数据库中与待检序列具有一定程度相似性的序列。