数据的分析 初二数学知识点
(完整word)初二数学八下数据的分析所有知识点总结和常考题型练习题,推荐文档
一、统计学中的几个基本概念 1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
二、平均数把一组数据的总和除以这组数据的个数所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
算术平均数x =1n (1x +2x +3x +…n x )。
加权平均数x =1122k k x f x f x f n +++K 。
三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差 1、极差极差是指一组数据中最大数据与最小数据的差。
极差=最大值-最小值。
反映这组数据的变化范围。
2、方差的概念 在一组数据,,,,21n x x x Λ中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
即:])()()[(1222212x x x x x x ns n -++-+-=Λ即:“先平均,再求差,然后平方,最后再平均”方差反映一组数据的波动大小,方差值越大,波动越大,也越不稳定或不整齐。
(2)计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++=Λ 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++=Λ 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
初中数学数据分析知识点(详细全面)
第五讲、数据分析一、数据的代表(一)、(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。
注:如果有n 个数n x x x ,,,21 的平均数为x ,则①n ax ax ax ,,,21 的平均数为a x ; ②b x b x b x n +++,,,21 的平均数为x +b ; ③b ax b ax b ax n +++,,,21 的平均数为a x b +。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(3)平均数的计算方法 ①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x '11=,a x x '22=,…,a x x n n '=。
)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
(4)算术平均数与加权平均数的区别与联系①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1)。
初中数学八下《数据的分析》知识点
初中数学八下《数据的分析》知识点数学八年级下册《数据的分析》知识点课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。
本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。
为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。
八年级数学《数据的分析-》知识点
八年级数学《数据的分析-》知识点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学《数据的分析-》知识点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学《数据的分析-》知识点的全部内容。
第4题图4元3元2元③②① 八年级数学下册《数据的分析》知识点知识梳理1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键.2。
平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3。
众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4。
极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=)2+(x 2-)2+…+(x n -)2];标准差= 方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
能力训练一、选择题(本大题共分12小题,每小题3分共36分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( ) A 。
最新初中数学数据分析知识点(详细全面)讲解学习
最新初中数学数据分析知识点(详细全面)讲解学习
学习资料
精品文档第五讲、数据分析
一、数据的代表
(一)、(1)平均数:。
注:
(2)加权平均数:
,
(3)平均数的计算方法
①定义法:。
(4)算术平均数与加权平均数的区别与联系
①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1
)。
②区别:算术平均数就是简单的把所有数加起来然后除以个数。
而加权平均数是指各个数所占的比重不同,按照相应的比例把所有数乘以权值再相加,最后除以总权值。
(二)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
(注:不是唯一的,可存在多个)
(三)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
(注:
(一)极差:
(1)概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
(2)意义:能够反映数据的变化范围,是最简单的一种度量数据
波动情况的量,极差越大,波动越大。
(二)方差:
(1)概念:(2)意义:衡量数据波动大小的量,方差越大,数据的波动越大;方差越小,数据的波动越小,数据的波动越稳定。
初二数学数据的分析所有知识点和常考题及提高练习难题(含解析)
初二数学数据的分析知识点常考题与提高练习与压轴难题(含解析)【知识点】1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:x1x2x nn使用:当所给数据x,x2,,,x n中各个数据的重要程度相同时,一般使用该公式计算平均数.12、加权平均数:若n个数x,x2,,,x n的权分别是w1,w2,,,w n,则1xwxwxw1,叫做这n个数的加权平均数.122nnwww12n使用:当所给数据x1,x2,,,x n中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
【相似题练习】1.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.﹣3.5B.3C.0.5D.﹣32.8个数的平均数12,4个数的平均为18,则这12个数的平均数为()A.12B.13C.14D.153.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.aB.a+3C.aD.a+154.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2 天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆5.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.6.成成在满分为100分的期中、期末数学测试中,两次的平均分为90分,若按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,则成成的学期数学成绩可能是()A.85B.88C.95D.100第1页(共14页)4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.【相似题练习】1.某市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:最高气温(℃)38394041天数3214则这组数据的中位数和平均数分别为()A.39.5,39.6B.40,41C.41,40D.39,412.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定3.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3.5C.2.5D.14.在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数133432这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,35.小王班的同学去年6﹣12月区孔子学堂听中国传统文化讲座的人数如下表:月6789101112份人46324232273242数则该班去年6﹣12月去孔子学堂听中国传统文化讲座的人数的众数是()56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【知识点】1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:2122 sxxxxx n12n x 2意义:方差(2s)越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a时,其平均数、中位数、众数也增加a,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大k2倍.【相似题练习】1.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()人数135701083金额(元)20000015000080000150001000080005000A.极差是195000B.中位数是15000C.众数是15000D.平均数是150002.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环3.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/01234周)人数(单位:人)14622A.中位数是2B.平均数是2C.众数是2D.极差是24.某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()C .甲得分的方差大于乙得分的方差D .甲得分的最小值大于乙得分的最小值5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分8.58.28.58.2 方差1.81.21.21.1 最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A .丁B .丙C .乙D .甲 2,则a+2,b+2,c+2的平均数和方差分别是() 6.若a ,b ,c 这三个数的平均数为2,方差为s A .2,s2B .4,s 2C .2,s 2+2D .4,s 2+42,第2组数据:52,54,56,58的方差为S 22,第3组数据: 7.已知第1组数据:1,3,5,7的方差为S 12,则S 2,S 2,S 2的大小关系是()2016,2015,2014,2013的方差为S 31232>S 22>S 12B .S 12=S 22<S 32C .S 12=S 22>S 32D .S 12=S 22=S32 A .S 3 【知识点】 统计量的选择平均数、众数、中位数都是用来描述数据集中趋势的量。
初二数学数据的分析知识点总结
初二数学数据的分析知识点总结初二数学数据的分析知识点总结数据的分析将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据 5.撰写调查报告初中数学知识点大全之数据的分析,看过的同学肯定已经熟知了吧,接下来还有更多的数学知识点营养大餐等着同学们来汲取吸收呢。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的`数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
八年级数学《数据的分析》知识点归纳与例题
数据的分析一、 统计学的几个基本概念 1. 平均数加权平均数:(1)“权”表示数据的重要程度;(2)当n 个数n x x x ,,,21 的权重分别为n w w w ,,,21 ,则这n 个数的加权平均数为nnn w w w w x w x w x ++++212211;2. 众数(1)定义:一组数据中出现次数最多的数据(2)众数可以没有也可以有多个,要是都是出现一次的话那就没有众数,要是都出现多次而且次数都一样的话那就是有多个众数。
3. 中位数将一组数据从大到小(从小到大)排列,若数据的个数是奇数,则称处于中间位置的数是中位数;若数据的个数是偶数,则称中间两个数据的平均数是中位数。
4. 极差(1)极差=最大值-最小值。
(2)用来反映这组数据的变化范围。
5. 方差与标准差(1)方差表示一组数据偏离平均值的情况,计算公式是()()()[]222211x x x x x x nn -++-+-(2(3)方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。
2. 甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
3. 一组数据:2,-2,0,4的方差是 。
4. 在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比。
初三(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:分组 频率 49.5~59.5 0.04 59.5~69.5 0.04 69.5~79.5 0.16 79.5~89.5 0.34 89.5~99.5 0.42 合计1根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有________篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;(3)补全频率分布直方图。
人教版八年级数学下册数据的分析 复习与小结优质课件.ppt
80)2
(85
80)2
(90
80)2
5 70
乙的方差:
(70
80)2
(90
80)2
(85
80)2
(75
80)2
(80
80)2
5 50
(2)因为 S甲 2 S乙 2 ,所以乙的成绩较稳
定,应该派乙去。
2.如图是某中学男田径队队员年龄结构条 形统计图,根据图中信息解答下列问题
(1)田径队共有多少人? (2)该队队员年龄的众数和中位数分别是多少? (3)该队队员的平均年龄是多少?
数.
一、基础知识
2、众数:(反映数据集中趋势的特征数 )在一组数据中,出现次数 最多 的数 据叫做这组数据的众数(一组数据的众 数一定在这组数据中,可能有多个).
一、基础知识
3、中位数:(反映数据集中趋势的特征数)将 一组数据按从 小 到 大(或从大到小) 的 顺序排列后,如果数据的个数是 奇 数 个时 ,则处在最 中间 的那个数据叫做这组数据 的中位数;如果数据的个数是 偶数 个时, 则处在最中间的两个数据的 平均数 叫做这 组数据的中位数
3.在我市开展的“好书伴我成长”读书活动 中,某中学为了了解八年级300名学生读书 情况,随机调查了八年级50名学生读书的册 数.统计数据如下表所示:
册数 0 1 2 3 4
人数 3 13 16 17 1
(1) 求这50个样本数据的平均救,众数和中 位数; (2) 根据样本数据,估计该校八年级300名学 生在本次活动中读书多于2册的人数.
s 2.样本甲的方差是
2 甲
0.005
,样本乙的
数据为2.20,2.30,2.20,2.10,2.20,
则样本甲和样本乙波动大小为( C )
初二数据的分析所有知识点总结和常考题练习含答案
])()()[(1222212x x x x x x n S n -++-+-= 初二数据的分析所有知识点总结和常考题知识点:1.加权平均数:权的理解:反映了某个数据在整个数据中的重要程度;学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法;2.中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;3.众数:一组数据中出现次数最多的数据就是这组数据的众数;4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差;5.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定;6.方差规律: x 1,x 2,x 3,…,x n 的方差为m,则ax 1,ax 2,…,ax n 的方差是a 2 m; x 1+b, x 2+b,x 3+b,…,x n +b 的方差是m7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响;8.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流常考题:一.选择题共14小题1.我市某一周的最高气温统计如下表:最高气温℃ 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是A .27,28B .27.5,28C .28,27D .26.5,272.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.53.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁6.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.7.2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,358.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁9.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差10.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是5411.某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分12.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是2013.一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,14.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁二.填空题共14小题15.数据﹣2,﹣1,0,3,5的方差是.16.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.18.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.19.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.单位:m这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差填“变大”、“不变”或“变小”.20.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差填“变小”、“不变”或“变大”.21.一组数据:2015,2015,2015,2015,2015,2015的方差是.22.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.23.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.注:计算方差的公式是S2=x1﹣2+x2﹣2+…+xn﹣224.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.25.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.组别时间小时频数人第1组0≤t<0.512第2组0.5≤t<124第3组1≤t<1.518第4组 1.5≤t<210第5组2≤t<2.5626.一组数据1,4,6,x的中位数和平均数相等,则x的值是.27.统计学规定:某次测量得到n个结果x1,x2,…,xn.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.28.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是.三.解答题共12小题29.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率没有弃权票,每位职工只能推荐1人如图所示,每得一票记作1分.1请算出三人的民主评议得分;2如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;精确到0.013根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用30.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.1已求得甲的平均成绩为8环,求乙的平均成绩;2,2观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙3如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.31.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.1分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;2试通过计算说明,哪个山上的杨梅产量较稳定32.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识平均数、中位数、方差和极差回答下列问题:1两段台阶路有哪些相同点和不同点2哪段台阶路走起来更舒服,为什么3为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度单位:cm.并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=.33.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次王军68807879817778848392张成86807583857779808075利用表中提供的数据,解答下列问题:1张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,请你帮助张老师计算张成10次测验成绩的方差S张2;平均成绩中位数众数王军8079.5张成80802请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由.34.苍洱中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表一,乙同学的测试成绩折线统计图如图一所示:表一次数一二三四五分数46474849501请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 2乙 48 482甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定请说明理由.35.如图是甲,乙两人在一次射击比赛中靶的情况击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数,每人射击了6次.1请用列表法将他俩的射击成绩统计出来;2请你用学过的统计知识,对他俩的这次射击情况进行比较.36.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.1请你根据图中的数据填写下表:姓名平均数环众数环方差甲乙 2.82从平均数和方差相结合看,分析谁的成绩好些.37.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:命中环数10987命中次数321根据统计表图中提供的信息,补全统计表及扇形统计图;2已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去并说明理由.参考资料:38.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a71a= ,= ;2请完成图中表示乙成绩变化情况的折线;3①观察图,可看出的成绩比较稳定填“甲”或“乙”.参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.39.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示其中男生收看3次的人数没有标出.根据上述信息,解答下列各题:1该班级女生人数是,女生收看“两会”新闻次数的中位数是;2对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;3为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量如表.统计量平均数次中位数次众数次方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.40.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况单位:元:甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23小强用如图所示的方法表示甲城市16台自动售货机的销售情况.1请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;2用不等号填空:甲乙;S甲2S乙2;3请说出此种表示方法的优点.初二数据的分析所有知识点总结和常考题提高难题压轴题练习含答案解析参考答案与试题解析一.选择题共14小题1.2011•安顺我市某一周的最高气温统计如下表:最高气温℃25262728天数1123则这组数据的中位数与众数分别是A.27,28 B.27.5,28 C.28,27 D.26.5,27分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.2015•大庆某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.5分析中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数或最中间的两个数即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.解答解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7环;因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,故中位数是7.5环.故选C.点评本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.3.2013•北京某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时分析根据加权平均数的计算公式列出算式5×10+6×15+7×20+8×5÷50,再进行计算即可.解答解:根据题意得:5×10+6×15+7×20+8×5÷50=50+90+140+40÷50=320÷50=6.4小时.故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.点评此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.4.2014•滨州有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差分析因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解答解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.点评中位数是将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.5.2014•常州甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁分析根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.2015•内江有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.分析先由平均数的公式计算出a的值,再根据方差的公式计算.解答解:由题意得:3+a+4+6+7=5,解得a=5,S2=3﹣52+5﹣52+4﹣52+6﹣52+7﹣52=2.故选C.点评本题考查方差的定义与意义:一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.2007•韶关2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,35分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答解:从小到大排列此数据为:30、31、31、31、32、34、35,数据31出现了三次最多为众数,31处在第4位为中位数.所以本题这组数据的中位数是31,众数是31.故选C.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.2014•咸宁甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁分析此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.解答解:由于乙的方差较小、平均数较大,故选乙.故选:B.差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.2006•广安为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差分析根据平均数、中位数、众数、方差的意义进行分析选择.解答解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.点评此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.2014•孝感为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是54分析根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.11.2015•安徽某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分分析结合表格根据众数、平均数、中位数的概念求解.解答解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.12.2013•黄石为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是20分析根据极差、众数、中位数及平均数的定义,结合表格即可得出答案.解答解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.点评本题考查了中位数、极差、平均数及众数的知识,掌握各部分的定义是关键.13.2013•衢州一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,分析根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答解:根据题意得:80×5﹣81+79+80+82=78,方差=81﹣802+79﹣802+78﹣802+80﹣802+82﹣802=2.故选C.点评本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.2014•天津某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁分析根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答解:甲的平均成绩为:86×6+90×4÷10=87.6分,乙的平均成绩为:92×6+83×4÷10=88.4分,丙的平均成绩为:90×6+83×4÷10=87.2分,丁的平均成绩为:83×6+92×4÷10=86.6分,因为乙的平均分数最高,所以乙将被录取.故选:B.点评此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.二.填空题共14小题15.2013•宁波数据﹣2,﹣1,0,3,5的方差是.分析先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答解:这组数据﹣2,﹣1,0,3,5的平均数是﹣2﹣1+0+3+5÷5=1,则这组数据的方差是:﹣2﹣12+﹣1﹣12+0﹣12+3﹣12+5﹣12=;故答案为:.点评本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2.16.2014•宿迁某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.分析按3:3:4的比例算出本学期数学学期综合成绩即可.解答解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88分.。
八年级数学上册 第六章 数据的分析知识点归纳 北师大版
1 / 11 / 1 第六章 数据的分析1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数2、平均数(1)平均数:一般地,对于n 个数,,,,21n x x x 我们把)(121n x x x n +++ 叫做这n 个数的算术平均数,简称平均数,记为x 。
(2)加权平均数:①、一组数据,,,,21n x x x 的权分加为123,,,....,n w w w w ,则称112233123........n n n x w x w x w x w w w w w ++++++++ 为这n 个数的加权平均数。
(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、3、1,则加权平均数为:724503881431⨯+⨯+⨯++) ②、如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现f k 次(12f f n k f ++=), 那么这n 个的平均数可表示为1122x f x f x f k kx n ++=,这样的平均数x 叫加权平均数,其中12,,k f f f 叫做权。
如:某小组在一次数学测试中,有3人为85分,2人为90分,5人为100分,则该小组的平均分为:853*********.5325⨯+⨯+⨯=++ 3、众数众数指的是一组数据中出现次数最多的那个数据。
4、中位数中位数指的是n 个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。
众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。
八年级上册数学数据的分析知识点
八年级上册数学数据的分析知识点八年级上册数学数据的分析知识点1、平均数①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度〞未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数②一组数据中出现次数最多的那个数据叫做这组数据的众数③平均数、中位数和众数都是描述数据集中趋势的统计量④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息⑥各个数据重复次数大致相等时,众数往往没有特别意义3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。
一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量②数学上,数据的离散程度还可以用方差或标准差刻画数学的方法和技巧狠抓“双基〞训练“双基〞即基础知识与基本技能。
基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。
只有扎实地掌握“双基〞,才能灵活应用、深入探索,不断创新。
解决疑难这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。
解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。
对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟〞到“活〞。
初二数学寒假课程 第九讲 数据的分析
第九讲 数据的分析第一部分 知识梳理一、数据的代表1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
3.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
二、数据的波动1.方差的概念:在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即])()()[(1222212x x x x x x ns n -++-+-=2.标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即])()()[(1222212x x x x x x n s s n -++-+-==第二部分 例题与解题思路方法归纳类型一 平均数【例题1】(2010•宁德)下表是中国2010年上海世博会官方网站公布的5月某一周入园参观人数,则这一周入园参观人数的平均数是万.〖选题意图〗本题考查的是样本平均数的求法,熟记公式是解决本题的关键.〖解题思路〗只要运用平均数公式:,即可求出.〖参考答案〗解:平均数=(36.12+31.14+31.4+34.42+35.26+37.7+38.12)÷7≈34.88(万),所以这一周入园参观人数的平均数是34.88万.故填34.88.【课堂训练题】1.某酒店共有6名员工,所有员工的工资如下表所示:(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.〖参考答案〗解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵能达到这个工资水平的只有2人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.2.某企业招工广告中称,本企业所有员工的平均工资为2000元/月,如果是事实,你愿意受聘于该企业吗?〖参考答案〗解:不一定.因为可能比2000元高的员工的工资的平均工资比全部的平均工资高的多,比2000元低的员工的工资的平均数比全部的平均数低得多,那么平均工资为2000元,这个数不能说明大多数员工的工资,因此不一定去;如果2000元是中位数,还是能够去的.【例题2】在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数整理成统计表,则该班同学平均每人捐款元.〖选题意图〗本题考查的是加权平均数的求法.熟记公式是解决本题的关键.〖解题思路〗平均数是指在一组数据中所有数据之和再除以数据的个数.〖参考答案〗解:(5×4+10×15+20×6+50×5)÷30=18元,∴该班同学平均每人捐款18元.故填18.【课堂训练题】1.某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则该生数学科总评成绩是分.〖参考答案〗解:=90×30%+92×30%+85×40%=27+27.6+34=88.6.2.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为()A.146 B.150 C.153 D.1600〖参考答案〗解:依题意有:(142×2+145×2+6×156+5×157)÷15=153.故选C.类型二中位数、众数【例题3】(2010•鸡西)一组数据:3,4,9,x,它的平均数比它唯一的众数大1,则x=.〖选题意图〗本题考查了确定一组数据众数与平均数的能力.正确运用分类讨论的思想是解答本题的关键.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.〖解题思路〗众数可能是3,也可能是4或9,因此应分众数是3或4或9三种情况进行讨论.〖参考答案〗解:当众数为3时,(3+4+9+x)÷4=4,则x=0;当众数为4时,(3+4+9+x)÷4=5,则x=4;当众数为9时,(3+4+9+x)÷4=10,则x=24.∴x=0,4或24.当x=0,24时,没有众数∴x=4故答案为4.【课堂训练题】1.100名学生进行20秒钟跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足()A.40<m≤50B.50<m≤60C.60<m≤70D.m>70〖参考答案〗解:∵一共有100名学生参加测试,∴中位数应该是第50名和第51名成绩的平均数,∵第50名和第51名的成绩均在50<x≤60,∴这次测试成绩的中位数m满足50<x≤60,故选B.2.在“庆祝建党90周年的红歌传唱活动”比寒中,七位评委给某参赛队打的分数为:92、86、88、87、92、94、86,则去掉一个最高分和一个最低分后,所剩五个分数的平均数和中位数是()A.89,92 B.87,88 C.89,88 D.88,92〖参考答案〗解:根据去掉一个最高分和一个最低分后,所剩五个分数的平均数为:平均数:(92+86+88+87+92)÷5=89,故平均数是89;将数据按从小到大的顺序排列得:86、87、88、92、92.最中间的年龄是88,故中位数是88.故选:C.类型三极差、方差和标准差【例题4】一组数据3,x,0,﹣1,﹣3的平均数是1,则这组数据的极差为.〖选题意图〗本题考查了极差的定义,求极差的方法是用一组数据中的最大值减去最小值.〖解题思路〗根据平均数的定义即可求得x的值,进而得到这组数据的极差.〖参考答案〗解:根据题意得:3+x+0﹣1﹣3=1×5,解得x=6.则这组数的极差是6﹣(﹣3)=9.【课堂训练题】1.“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“﹣”,他记录的结果是+0.5,﹣0.5,0,﹣0.5,﹣0.5,+1,那么这6袋大米重量的平均数和极差分别是()A.0,1.5 B.29.5,1 C.30,1.5 D.30.5,0〖参考答案〗解:平均数:30+(0.5﹣0.5+0﹣0.5﹣0.5+1)÷6=30(kg),极差:(30+1)﹣(30﹣0.5)=1.5(kg),故选:C.2.一组数据为1,5,3,4,5,6,这组数据的极差、众数、中位数分别为()A.5,4,5 B.5,5,4.5 C.5,5,4 D.5,3,2〖参考答案〗解:先对这组数据按从小到大的顺序重新排序:1,3,4,5,5,6.位于最中间的数是4和5,∴这组数的中位数是4.5.这组数出现次数最多的是5,∴这组数的众数是5极差为:6﹣1=5.故选B.【例题5】博才中学要从甲、乙两名同学中选拔一名同学代表学校参加“华罗庚金杯”数学竞赛活动.这两位活动同学最近四次的数学测验成绩如下表:(单位:分)(1)根据表中数据,分别求出甲、乙两名同学这四次数学测验成绩的平均分.(2)经计算,甲、乙两位同学这四次数学测验成绩的方差分别为S甲2=62.5,S乙2=14.5,你认为哪位同学的成绩较稳定?请说明理由.〖选题意图〗本题考查了方差、平均数,方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.〖解题思路〗(1)由平均数的公式计算即可;(2)方差越小,成绩越稳定,反之,方差越大,成绩越不稳定.〖参考答案〗解:(1)甲=(75+70+85+90)=80,=(75+78+85+82)=80,乙(2)∵S甲2=62.5,S乙2=14.5,∴S甲2>S乙2,∴乙的成绩稳定,因为甲的方差大于乙的方差.【课堂训练题】1.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?〖参考答案〗解:(1)甲(千克),乙(千克),总产量为40×100×98%×2=7840(千克);(2)甲(﹣)(﹣)(﹣)(﹣)(千克2),乙(﹣)(﹣)(﹣)(﹣)(千克2),∴S2甲>S2乙.答:乙山上的杨梅产量较稳定.2.一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与英语哪个学科考得更好?友情提示:一组数据的标准差计算公式是:S=(﹣)(﹣)(﹣),其中为n个数据x1,x2,…x n r的平均数.〖参考答案〗解:(1)数学考试成绩的平均分数学=(71+72+69+68+70)=70英语考试成绩的标准差S英语=(﹣)(﹣)(﹣)(﹣)(﹣)=6 (2)设A同学数学考试成绩标准分为P数学,英语考试成绩标准分为P英语,则P数学=(71﹣70)+=﹣;P英语=(88﹣85)÷6=;∵P数学>P英语∴从标准分来看,A同学数学比英语考得更好.类型四统计量的选择【例题6】甲、乙两名运动员在6次百米跑训练中的成绩如下表:(单位:秒)请你比较这两组数据的众数、平均数、中位数,并利用这些数据对甲、乙两名运动员进行评价?〖选题意图〗本题考查了平均数,中位数,众数的意义.平均水平的判断主要分析平均成绩,优秀成绩的判断从中位数不同可以得到,众数比较整体成绩.〖解题思路〗平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.〖参考答案〗解:甲:数据10.8出现2次,次数最多,所以众数是10.8;平均数=(10.8+10.9+11.0+10.7+11.2+10.8)÷6=10.9;中位数=(10.8+10.9)÷2=10.85;乙:数据10.9出现3次,次数最多,所以众数为10.9;平均数=(10.9+10.9+10.8+10.8+10.5+10.9)÷6=10.8;中位数=(10.8+10.9)÷2=10.85;所以从众数上看,甲的整体成绩优于乙的整体成绩;从平均数上看,乙的平均成绩优于甲的平均成绩;从中位数看,甲、乙的成绩一样好.【课堂训练题】1.星期天上午,动物圆熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:(1)根据上述数据完成下表:(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计量是.②平均数能较好地反映乙队游客的年龄特征吗?为什么?〖参考答案〗解:(1)对于甲队:平均数为==15;方差为(2×4+1+4+2×4)=1.8;对于乙队:年龄为6的最多,故众数为6;题中已将年龄从小到大排列,共10人;找第5、6人的年龄为5、6岁,其平均数为5.5,故中位数是5.5;(2)①平均数或中位数或众数;②平均数不能较好地反映乙队游客的年龄特征.因为乙队游客年龄中含有两个极端值,受两个极端值的影响,导致乙队游客年龄方差较大,平均数高于大部分成员的年龄.2.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传;(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.〖参考答案〗解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;由于乙厂数据中12有3次,是众数,故乙厂的广告利用了统计中的众数;丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月.【例题7】下表是甲、乙两人各打靶十次的成绩情况统计表(单位:环)根据上面的统计表,制作适当的统计图表示甲、乙两人打靶成绩的变化,并回答下列问题.(1)谁成绩变化的幅度大?(2)甲、乙两人哪一次射击的成绩相差最大?相差多少?〖选题意图〗极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.〖解题思路〗(1)谁的成绩变化幅度大实际上是比较极差的大小,因为极差反映了一组数据变化范围的大小.(2)利用极差公式求即可.〖参考答案〗解:(1)∵甲中找出数据中最大的值9,最小值5,故极差是4,乙中找出数据中最大的值10,最小值2,极差是8,∴乙成绩变化的幅度大;(2)从数据中找出成绩相差大的是第一次,相差9﹣2=7环.【课堂训练题】1.某校初三(1)班、(2)班各有49名学生,两班在一次数学测验中的成绩统计如下表:(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.〖参考答案〗解:(1)由中位数可知,85分排在第25位之后,从位次上讲不能说85分是上游;但也不能单纯以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握较好,从掌握学习内容上讲也可以说属于上游;(2)高一(1)班成绩中位数为87,说明高于87分的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习有困难者的帮助;高一(2)班的中位数和平均分均为79分,标准差又很小,说明学生之间差别较小,学习很差的学生少,但学习优秀的学生也很少,建议采取措施提高优秀率.2.射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如下:甲:9,6,6,8,7,6,6,8,8,6;乙:4,5,7,6,8,7,8,8,8,9.如果你是教练员,会选择哪位运动员参加比赛?请说明理由.〖参考答案〗解:选择甲运动员.理由如下:甲的平均数为=7.0,乙的平均数为=7.0,S甲2=(﹣)(﹣)(﹣)=1.2,S乙2=(﹣)(﹣)(﹣)=2.2,∴S甲2<S乙2,∴乙的成绩比较稳定,∴选择甲运动员参加比赛.第三部分课后自我检测试卷A类试题:1.下列数据:16,20,22,25,24,25的平均数和中位数分别为()A.21和22 B.22和23 C.22和24 D.21和232.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则()A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定3.(2011•滨州)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?4.一组数据10,14,20,24,19,16的极差是.5.九位学生的鞋号由小到大是:20,21,21,22,22,22,22,23,23.这组数据的平均数、中位数和众数哪个指标是鞋厂最不感兴趣的?哪个指标是鞋厂最感兴趣的?B类试题:6.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:某同学根据上表分析得出如下结论:①甲,乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A.①②③B.①②C.①③D.②③7.三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?8.某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1)根据上图信息填写下表:(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.C类试题:9.(2011•济宁)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.图票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?10.芜湖市1985年~2008年各年度专利数一览表(1)请你根据以上专利数数据,求出该组数据的中位数为;极差为;(2)请用折线图描述2001年~2008年各年度的专利数;(3)请你根据这组数据,说出你得到的信息.课后自我检测试卷参考答案A类试题:1.解:一组数据为16,20,22,25,24,25,∴平均数=(16+20+22+25+24+25)÷6=22;把数据按从小到大的顺序排列:16,20,22,24,25,25,∴中位数=(22+24)÷2=23.故选B.2.解:由题意知,甲的平均数==8环,乙的平均数=8环,所以从平均数看两个一样.故选B.(),3.解:甲、乙两人射击成绩的平均成绩分别为:甲(),乙(﹣)(﹣)(﹣),甲(﹣)(﹣)(﹣),乙∵s甲2<s乙2.∴乙同学的射击成绩比较稳定.4.由题意可知,极差为24﹣10=14.5.解:鞋厂最不感兴趣的指标是平均数,因为有可能没有一个学生的鞋号等于这个平均数.最感兴趣的指标是众数,因为它表明工厂应该生产最多这一鞋号的鞋.B类试题:6.解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以(3)也正确.故选A.7.解:(1)由题意知:男生鞋号数据的平均数==24.525;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.525,中位数是24.5,众数是25.(2)厂家最关心的是众数.8.解:(1)中位数填85,众数填100.(2)因为两班的平均数都相同,但初三(1)班的中位数高,所以初三(1)班的成绩较好.(3)如果每个班各选2名同学参加决赛,我认为初三(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中初三(2)班的成绩为100分,而初三(1)班的成绩为100分和85分.C类试题:9.解:(1)(2)甲的票数是:200×34%=68(票),乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票);(3)甲的平均成绩:,乙的平均成绩:,丙的平均成绩:,∵乙的平均成绩最高,∴应该录取乙.10.解:(1)中位数为46,极差为1006;(2)如图:(3)芜湖的专利数从无到有,近几年专利数增加迅速.(必须围绕专利数据来谈)。
初二数学数据的分析1
第二十章数据的分析20.1 数据的代表一、平均数:平均数=总量÷总份数。
数据的平均数只有一个。
这里的f1,f2,...,fk分别叫做x1,x2, (x)练习4个班,在一次数学考试中参考人数和成绩如下:求该校初二年级在这次数学考试中的平均成绩下述计算方法是否合理为什么x=41〔79+80+81+82〕=80.5:作业占10%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:求小关与小兵的学期总平均分100只灯泡的使用寿命进行测量,结果如下表:〔单位:小时〕求这些灯泡的平均使用寿命1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,那么这个样本的平均数为.2、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%3、在一次英语口试中,50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
该班平均成绩为80分,问该班有多少人4、下表是截至到2022年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄二、中位数:将一组数据由小到大〔或由大到小〕的顺序排列〔即使有相等的数据也要全部参加排列〕,如果数据的个数是奇数,那么中位数就是中间的那个数据。
如果数据的个数是偶数,那么中位数就是中间的两个数据的平均数。
小于或大于这个中位数的数据各占一半。
中位数仅与数据排列位置有关,当一组数据中个别数据变动较大时,可用中位数描述集中趋势。
一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据.三、众数:一组数据中出现的次数最多的数据就是众数。
一组数据可以有不止一个众数,也可以没有众数〔当某一组数据中所有数据出现的次数都相同时,这组数据就没有众数〕.练习15人,销售部为了制定某种商品的销售金额,统计了15个人的销售量如下〔单位:件〕1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的分析知识导图基础知识点k kx f ++)叫做1x ,2x ,…,(第二类).其中1,2x ,…,将一组数据按照大小顺序排列,如重点题型1【平均数】例题1:(1(2)求这30名同学捐款的平均数.(3)若该校共有720名学生,估计捐款数不低于20元的学生有多少名?变式练习1-1:本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?变式练习1-2:某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为km/h.【数据的分析】重点题型2例题2:某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)25 26 21 17 28 26 20 25 26 3020 21 20 26 30 25 21 19 28 26(1(2)上述数据中,众数是 万元,中位数是 万元,平均数是 万元; (3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.变式练习2-1:某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1(2(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?说明理由.变式练习2-2:在植树节当天,10个小组植树的株数见下表:则这10个小组植树株数的方差是____________.(2)补全右面折线统计图;(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析:①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.两步一回头1.四个数据8,10,x ,10的平均数与中位数相等,则x 等于( )A .8B .10C .12D .8和122则这10A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米 D .26厘米,26厘米3. 16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是() A .平均数 B .极差 C .中位数 D .方差 4A .平均数B .众数C .中位数D .方差 5A .甲 B .乙 C .丙 D .丁问题探究例题3:阅读理解:市盈率是某种股票每股市价与每股盈利的比率(即:某支股票的市盈率=该股票当前每股市价 该股票上一年每股盈利).市盈率是估计股票价值的最基本、最重要的指标之一.一般认为该比率保持在30以下是正常的,风险小,值得购买;过大则说明股价高,风险大,购买时应谨慎.应用:某日一股民通过互联网了解到如下三方面的信息:①甲股票当日每股市价与上年每股盈利分别为5元、0.2元乙股票当日每股市价与上年每股股盈利分别为8元、0.01元20 20 30 28 32 35 38 42 40 44根据以上信息,解答下列问题:(1)甲、乙两支股票的市盈率分别是多少?(2)该股民所购买的15支股票中风险较小的有几支?(3)求该股民所购15支股票的市盈率的平均数、中位数与众数;(4)请根据丙股票最近10天的市盈率画出折线统计图,并依据市盈率的有关知识和折线统计图,就丙股票给该股民一个合理的建议.变式练习3:为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.拓展延伸1.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A .平均数和中位数不变B .平均数增加,中位数不变C .平均数不变,中位数增加D .平均数和中位数都增加2.已知1a ,2a ,3a ,4a ,5a 的平均数为8,则另一组数据110a +,210a -,310a +,410a -,510a +的平均数为( )A .6B .8C .10D .123.已知1x ,2x ,3x 的方差是2,平均数是5,则数据123x +,223x +,323x +的方差是 ,平均数是 .4.某校开展读书活动,随机抽查了若干名同学,了解他们半年内阅读名著的情 况,调查结果制作了如下部分图:(1)请求出样本容量,并将条形统计图补充完整;(2)根据以上统计图中的信息,求这些同学半年内阅读名著数量的众数、中位数、平均数(保留小数).(3)你能估计全校2000名同学,在这个读书活动中阅读名著的总数量吗?请指出,并说明理由.5.为了进一步了解八年级学生的身体素质情况,体育老师以八年级(1)班50位学生为样本进行了一分钟跳绳次:请结合图表完成下列问题:(1)表中的a = ; (2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4)若八年级学生一分钟跳绳次数(x )达标要求是:160x ≥为优;140160x <≤为良;120140x<≤为合格;120x <不合格.根据以上信息,请你给学校或八年级学生提一条合理化建议: .课堂加油站二战时,美英联军对德国展开了大轰炸.由于德国防空力量强大,美英空军损失惨重,人机皆亡比例达11%.为了降低人机损失,汤姆逊带领研究小组投入到工作中,他们检查了执行任务归来的所有飞机,发现这些飞机的机腹部位都布满了弹痕,而机翼则大都完好无损.故改善机腹,却始终收效甚微.这时,统计学家克里打来电话:“如果你仍然只顾埋头研究改进机腹,花再大的代价也是徒劳!”汤姆逊问:“为什么这样说?”克里笑了:“所有返回的飞机都是机翼完好而机腹被击中,这不正说明飞机机腹受袭还可幸运地返航,而那些机翼受损的飞机则无一能够幸免吗?所以,你要解决的是机翼问题而非机腹!”汤姆逊如醍醐灌顶,他尝试着加固了机翼,果然被击毁的飞机很快减少了.有时事情得不到改善,并非功夫没下够,或许仅仅是没找准问题而已.课后练习1.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是( ) A .4,7 B .7,5 C .5,7 D .3,7 2. 12名学生参加江苏省初中英语听力口语自动化考试成绩如下:28,21,26,30,28,27,30,30,18,28,30,25.这组数据的众数为 .3(1)该班学生考试成绩的众数是 .(2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.课堂小测1.已知数据,,a b c 的平均数为8,那么数据1,2,3a b c +++的平均数是_______.2.在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数整理成3.下列数据5、3、6、7、6、3、3、4、7、3、6的众数是 .4.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A .100分 B .95分 C .90分 D .85分 5.某地连续9A .24,25 6.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是( )A .7,7B .8,7.5C .7,7.5D .8,67则关于这12..A .中位数 6方B .众数6方C .极差8方D .平均数5方8.一组数据:l2、l3、15、14、l6、l8、19、14.则这组数据的极差是 .9.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( ) A .学习水平一样B .成绩虽然一样,但方差大的学生学习潜力大C .虽然平均成绩一样,但方差小的班学习成绩稳定D .方差较小的学习成绩不稳定,忽高忽低10.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的( )A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25【参考答案】【基础知识点】【重点题型1】 例题1:(1)330元 (2)11元 (3)96名变式练习1-1:(1)25人;(2)3.7分;(3)4分15人,5分30人 变式练习1-2: 100【重点题型2】例题2:(1)3,5,2,2;(2)26,25,24;(3)不能,此时众数26万元>中位数25万元 变式练习2-1:(1)中位数85,众数100;(2)两班平均数相同,但1班的中位数高,所以1班的成绩较好;(3)如果每班各选2名同学参加决赛,我认为初三(2)班实力更强些,虽然两班的平均数相同,但在前两名的高分区中初三(2)班成绩较好变式练习2-2:0.6 变式练习2-3:(1)8,34;(2)略;(3)①库尔勒香梨与哈密瓜销量的平均数相同,从平均数看来销售情况一样;但是库尔勒香梨与哈密瓜的方差相差很大,因为哈密瓜的方差小,所以哈密瓜的销售情况好于库尔勒香梨.②由折线图可以看出,库尔勒香梨的销售量曲线起伏较大,所以哈密瓜的销售情况好于库尔勒香梨,但库尔勒香梨的销售呈上升趋势.【两步一回头】【问题探究】例题3:(1)甲股票的市盈率为:5÷0.2=25,乙股票的市盈率为:8÷0.01=800 (2)5 支;(3)平均数100,中位数59,众数为80;(4)存在一定风险,建议卖掉;观察市盈率变化情况,若继续增加,可减少持有量变式练习3:(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. (2)可从不同角度分析.例如:①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116;乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它.【拓展延伸】1.B 2.C 3.8,134.(1)设样本容量为x ,依题意1610032=x ,解得50=x ,即样本容量为50 图形(略,只要画出阅读3册名著的频数是15即可);(2)所求的众数是2,中位数是3,平均数是1.35013010415316281=⨯+⨯+⨯+⨯+⨯;(3)答案不唯一,只要讲请道理即可,如用平均数要去掉半年读30册书的情况. 5.(1)12;(2)略;(3)3;(4)合理即可【课堂小测】【课后练习】1.C2.303.(1)88分 (2)86分(3)不能,因为全班的成绩的中位数是86分,83分低于中位数。