《锐角三角函数》基础练习题
锐角三角函数基础题
A BCD (第7题)锐角三角函数练习一、正弦练习1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙ ﹚A .43 B .34 C .53 D .542. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sinα等于( )A .a bB .ba CD 4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )AB .23CD5.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .第1题 第3题 第4题 第5题 6.在ABC Rt ∆中,︒=∠90C ,B A ∠∠,所对的边分别为b a ,,若23sin sin =B A ,则bba +的值( ) .A135 B132 C213D25 7.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为 半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的 值为( )A .43B .34 C .45D .358.已知:在⊿ABC 中,∠C=90°,sinA=31,AC=,24求 AB 和sinB 二、余弦、正切 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C的对边,则有( )A ....2.在中,∠C =90°,如果cos A=45 那么的值为( ) A .35B .54C .34D .433.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( )B αA .12B.2C.2D.34.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247BC .724D .135.如图,在Rt △ABC 中,∠C=90°,AB=6,AD=2, 求CD 的长及sinA 、tgB 的值.6.已知:如图,在ABC ∆中,AC AB =,AC BD ⊥于D ,AD DC BC 2,4==求A cos 和AB .三、特殊角的函数值1.下列各式中不正确的是( ) A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45°2.已知∠A 为锐角,且cosA≤12,那么( )A .0°<∠A≤60°B .60°≤∠A<90°C .0°<∠A≤30°D .30°≤∠A<90°3.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定 4.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4, 设∠BCD=a ,则tana •的值为( ).A .34 B .43 C .35 D .455.当锐角a>60°时,cosa 的值( )A .小于12B .大于12C .大于 32D .大于16.在△ABC 中,三边之比为a:b :c=12,则sinA+tanA 等于( )A .1.2B C D7.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC ,则∠CAB 等于( ) A .30° B .60° C .45°D .以上都不对8.若( 3 tanA-3)2+│2cosB - 3 │=0,则△ABC ( )68CEABD(第4题)DCBAA .是直角三角形B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 9.因为1sin 302=,1sin 2102=-,所以sin 210sin(18030)sin30=+=-;因为2sin 45=,sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )A .12-B .2-C .2-D .10.sin30°+cos60°+tan45° = 11.2 sin30°·cos30°= 12.(sin45°+ cos45°)2 =13.45cos 130cos 22- = 14. (1+ sin45°)(1-cos45°) = 15.60sin 3345cos 22-= 16.在△ABC 中,∠C=90°,a + b = 2,∠A = 60°,求a ,b ,c . 四、用计算器求函数相关值1. 用计算器求下列锐角三角函数值.=10sin =33cos ='2442tan="23'157sin , ="28'4560tan .2. 已知下列锐角三角函数值,用计算器求其相应的锐角.(1)=A sin 0.7083, =∠A . =B sin 0.9371, =∠B . (2)=A cos 0.2996, =∠A . =B cos 0.829, =∠B . (3)=A tan 2.22, =∠A . =B tan 31.80 , =∠B . 3.如图,厂房屋顶人字架(等腰三角形)的跨度为12m ,五、灵活运用用三个函数值解决问题1.在⊿ABC 中,若∠B+∠C=2∠A,则tanA 的值为( )A.21 B.23 C.33 D.3 2.在Rt ⊿ABC 中,∠C=90°,CD 是斜边AB 上的高,若BC=5, DC=3,则A sin 的值是( )跨度柱26 C (第3题)A .43B .34C .53D .54 3. 在△ABC 中,若∠C= 90°,AC =1,BC=2,则下列结论中正确的是( )A. sin B =B. 2cos 5B =C. tan 2B =D. 21tan =A4. 如图1,矩形ABCD 中,若AD = 1,AB = 3,则该矩形的两条对角线所夹的锐角是( )A. 30°B.45°C.60°D. 75°5.如图2,CD 是 Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处, 则∠A 等于( ) A. 25° B. 30° C. 45° D. 60° 6.在菱形ABCD 中,∠ABC=60°,AC =4,求BD 的长. 7.已知:在⊿ABC 中, ∠A=120°, AB=5, AC=3, 求tanC 的值. 8.已知如图在Rt ⊿ABC 中, ∠C=90°, ∠ABC 的平分线BD 交AC 于点D ,,38,12cm BD cm BC == 求⊿ABD 的面积9.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,求其底边上的高. 10.如图,已知在⊿ABC 中,∠B=60°,∠C=30°,BC=),33(10+求AB 、AC 的长.第8题第10题六、解直角三角形(一)1.Rt ⊿ABC 中,∠C=90°,若AC=22, AB=4, 则∠A= ,BC= . 2.Rt ⊿ABC 中,∠C=90°,若∠A= 45°, AB=5, 则BC= , AC= . 3. Rt ⊿ABC 中,∠C=90°,若∠A=60°, AC =2, 则AB= , BC= . 4.已知Rt ⊿ABC 中,∠C=90°,S ⊿ABC =5, AB=29.求B A tan tan +的值. 5.在四边形ABCD 中,∠B=∠D=90°,AB=BC ,AD=7,tanA=2,求CD 的长; 6.在菱形ABCD 中,AE BC ⊥于E ,1EC =,5sin 13B =,求四边形AECD 的周长.七、解直角三角形(二) 1.已知如图,从山顶A 点测得一建筑物B 的俯角为30°,若山的高度AC 为1500米,山坡的倾斜角∠ADC=60°, 求建筑物到山脚D 的距离BD.2.如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30,测得岸边点D 的俯角为45,又知 河宽CD 为50米。
中考数学考点专题训练之锐角三角函数
中考数学考点专题训练之锐角三角函数一.选择题(共5小题)1.如图,某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与水平方向的夹角为α(0°<α<90°),地下停车场层高CD=3米,则在停车场的入口处,可通过汽车的最大高度是()A.3B.3cosαC.3sinαD.3cos a2.在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B3.如图,在△ABC中,DC平分∠ACB,BD⊥CD于点D,∠ABD=∠A,若BD=1,AC =7,则tan∠CBD的值为()A.5B.2√6C.3D.√264.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为()A.20tan37°B.20tan37°C.20sin37°D.20sin37°5.在△ABC中,若|sin A−12|+(√22−cos B)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°二.填空题(共11小题)6.如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB表示“铁军”雕塑的高,点B,C,D在同一条直线上,且∠ACB=60°,∠ADB=30°,CD=17.5m,则线段AB的长约为m.(计算结果保留整数,参考数据:√3≈1.7)7.如图1是小鸟牙签盒实物图,图2是牙签盒在取牙签过程中一个状态的部分侧面示意图,D、E为连接杆AB上两个定点,通过按压点B,连接杆AB绕点E旋转,从而带动连接杆DF上升,带动连接杆FH与FG绕点G旋转,致使牙签托盘HI向外推出,在取牙签过程中固定杆EG位置不变且DF与EG始终平行,牙签托盘HI始终保持水平,现测得FG=FH=1cm,EB=8113cm,DF=EG=7cm,∠HFG=46°与∠B=90°,杆长与杆长之间角度大小不变,已知,牙签盒在初始状态,D、H、F三点共线,在刚好取到牙签时,E、H、G三点共线,且点C落在线段HI上,(参考数据:tan23°=5 12)(1)从初始状态到刚好取到牙签时,牙签托盘HI在水平方向被向外推出cm;(2)鸟嘴BC的长为cm.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3√5米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为.9.已知△ABC中,∠C=90°,cos A=35,AC=6,那么AB的长是.10.如图,与斜坡CE垂直的太阳光线照射立柱AB(与水平地面BF垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若BC=2米,CD=8.48米,斜坡的坡角∠ECF =32°,则立柱AB的高为米(结果精确到0.1米).科学计算器按键顺序计算结果(已取近似值)0.5300.8480.62511.如图,某飞机于空中A处探测到某地面目标在点B处,此时飞行高度AC=1200米,从飞机上看到点B的俯角为37°,飞机保持飞行高度不变,且与地面目标分别在两条平行直线上同向运动.当飞机飞行943米到达点D时,地面目标此时运动到点E处,从点E 看到点D的仰角为47.4°,则地面目标运动的距离BE约为米.(参考数据:tan37°≈34,tan47.4°≈109)12.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为.13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上;顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm,若按相同的方式将22.5°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数为cm.14.如图,在△ABC中,AB=AC,D是△ABC外一点,连接BD和DC,BD=AB,∠BDC+ 1∠BAC=180°,DC=1,tan∠ABC=2√33,则线段BC的长为.215.如图,学校操场上有一棵与地面垂直的树,数学小组两次测量它在地面上的影子,第一次是阳光与地面成30°,第二次是阳光与地面成60°,两次测量的影长相差6米,则树高为米.16.如图,已知∠ABC=90°,∠C=30°,∠EAB=150°,DC=AE.若AB=1,DB=3,则DE的长为.三.解答题(共9小题)17.在襄阳市诸感亮广场上矗立着一尊诸葛亮铜像.某校数学兴趣小组利用热气球开展综合实践活动,测量诸葛亮铜像的高度.如图,在点C处,探测器显示,热气球到铜像底座底部所在水平面的距离CE为32m,从热气球C看铜像顶部A的俯角为45°,看铜像底部B的俯角为63.4°.已知底座BD的高度为4m,求铜像AB的高度.(结果保留整数.参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00,√2≈1.41).18.无人机爱好者小新尝试利用无人机测量他家所住的楼房AB的高度.小新站在距离楼房60米的O处,他操作的无人机在离地面高度30√3米的P处,无人机测得此时小新所处位置O的俯角为60°,楼顶A处的俯角为30°.(O,P,A,B在同一平面内)(1)求楼房AB的高度;(2)在(1)的条件下,若无人机保持现有高度且以4米/秒的速度沿平行于OB的方向继续匀速向前飞行,请问:经过多少秒,无人机刚好离开小新的视线?19.莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)20.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,求点C到AE的距离.(结果保留小数点后一位,参考数据:sin70°≈0.94,√3≈1.73)21.如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°.另一边开挖点E在直线AC上,求BE的长(结果保留整数).(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)22.如图,在△ABC中,∠B=45°,CD是AB边上的中线,过点D作DE⊥BC,垂足为点E,若CD=5,sin∠BCD=3 5.(1)求BC的长;(2)求∠ACB的正切值.23.如图,在10×6的正方形网格中,每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中以AB为边画Rt△ABC,点C在小正方形的格点上,使∠BAC=90°,且tan∠ACB=2 3;(2)在(1)的条件下,在图中画以EF为边且面积为3的△DEF,点D在小正方形的格点上,使∠CBD=45°,连接CD,直接写出线段CD的长.24.为做好疫情防控工作,确保师生生命安全,学校门口安装一款红外线体温检测仪,该设备通过探测人体红外辐射的能量对进入测温区域的人员进行快速体温检测,无需人员停留和接触.如图所示,BF是水平地面,其中EF是测温区域,测温仪安装在校门AB上的点A处,已知∠DAG=60°,∠DAC=30°.(1)∠ACG=度,∠ADG=度.(2)学生DF身高1.5米,当摄像头安装高度BA=3.5米时,求出图中BF的长度;(结果保留根号)(3)学生DF身高1.5米,为了达到良好的检测效果,测温区EF的长不低于3米,请计算得出设备的最低安装高度BA是多少?(结果保留1位小数,参考数据:√3≈1.73)25.根据以下材料,完成项目任务.项目测量古塔的高度及古塔底面圆的半径测角仪、皮尺等测量工具测角仪高度AB=CD=1.5m,在B、D处分别测得古塔顶端的仰角为32°、45°,BD=9m,测角仪CD所在位置与古塔底部边缘距离DG=12.9m.点B、D、G、Q在同一条直线上.sin32°≈0.530,cos32°≈0.848,tan32°≈0.625参考数据项目任务(1)求出古塔的高度.(2)求出古塔底面圆的半径.。
锐角三角函数专项练习题
锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。
2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。
3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。
4. 已知sinA=3/5,∠A为锐角,则cosA=____。
5. 已知cosA=4/5,∠A为锐角,则sinA=____。
三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。
解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。
解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。
锐角三角函数练习题
锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数基础题
锐角三角函数基础题一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米.C D.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.2D.9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m.C D.C D.二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=_________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.(2014•常州)若∠α=30°,则∠α的余角等于_________度,sinα的值为_________.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________.17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为_________.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC 的顶点都在方格的格点上,则cosA=_________.19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是_________.20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为_________.21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________.22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________.23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为_________.24.(2014•铜仁)cos60°=_________.三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)27.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.29.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)【考点训练】锐角三角函数-1参考答案与试题解析一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.AB=cosA=2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米CM=BC=50BM=CM=50.C D.AB==13=.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.tanA==.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()tanA=,代入求出即可.tanA=,sinA=,cosA=.,7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.sinA=,=12x=.2D.×9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()=10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m:tanA=10AB=.C D=.C D..二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75),然后把,即=14.(2014•常州)若∠α=30°,则∠α的余角等于60度,sinα的值为.,.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.tanA=)求出即可.tanA=,故答案为:sinA=,cosA=.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.cosB=,求出∠)cosB=17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4.cosB=cosB=,AB==.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.解:如图,,故答案为:19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是75°.cosA=,20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为30°.sinA==,21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.,cosB=22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.==故答案为:23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.==2=42.24.(2014•铜仁)cos60°=..故答案为:三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75))=37,26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)CEH=×=10(CD=20cm20≈DEI=,×=10 DG=2DI=2027.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.BAD=BAD==×=9AC==13sinC==28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.40+x=x+40=60+2060+2029.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)CE=≈30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)cmcmcmcmAB=BD+AD=20。
锐角三角函数题型练习
锐角三角函数题型练习锐角三角函数一、定义。
正弦=sinθ,余弦=cosθ,正切=tanθ。
二、常见直角三角形及其角度与边长关系。
1、45°-45°-90°三角形,对边和邻边相等,斜边为对边或邻边的根号2倍。
2、30°-60°-90°三角形,对边为邻边的一半,斜边为邻边的根号3倍。
3、3-4-5三角形,边长比为3:4:5.4、5-12-13三角形,边长比为5:12:13.三、常见角的三角函数。
三角函数30°45°60°sin 1/2根号2/2根号3/2cos 根号3/2根号2/2 1/2tan 1/根号3 1.根号33.在直角三角形ABC中,∠C=90°,CD⊥AB于D,AC=5,sinA=5/12,则BC=5根号119/12,CD=5/根号119.4.三角形三边长的比为5:12:13,则此三角形最小内角的正切值为3/4.5.在直角三角形中,各边都扩大2倍,则锐角A的正弦值不变。
6.在△ABC中,若∠C=90°,∠B=2∠A,则cosA等于1/2.7.在直角三角形ABC中,∠C=90°,BC=6,sinA=3/5,则AB=4.8.8.已知cosA=tanα,求cos2A。
解:cos2A=2cos^2A-1=2tan^2α-1.四、解直角三角形就是求出三角形的各边长和角度。
基础练:1、已知一边和一角。
在直角三角形ABC中,∠C为直角,∠A=30°,b=4,则a=2根号3,c=5,∠B=60°。
2、已知两边。
在直角三角形ABC中,c=5,b=4,且∠B=90-∠A,则sinB=3/5.9.计算:cot60=1/根号3,tan45·sin45-4sin30·cos45+6=1.10.计算:2tan30+2sin60-tan45·sin90-tan60+cos30=3.11.在直角三角形ABC中,∠C为直角,∠A=30°,则sinA+sinB=1.1.在直角三角形ABC中,若AC=2,BC=7,AB=3,则cosA=-1/2.2.在△ABC中,∠C=90°,BC=3,AC=4,则tanA=4/3,sinA=4/5,cosA=3/5.12.若锐角三角形ABC中,∠A的三角函数值为sinA、cosA、tanA,则在各边长度扩大两倍后,三角函数值仍保持不变,选C。
锐角三角函数练习题及答案
锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
《锐角三角函数》知识点及练习3篇
《锐角三角函数》知识点及练习3篇知识框架知识概念1.Rt△ABC(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边2.特殊值的三角函数1.求出下图中sinD ,sinE 的值.2.把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′,那么锐角A 、A ′的正弦值的关系为( )A .sinA =sinA ′B .sinA =2sinA ′C .2sinA =sinA ′D .不能确定 3.在Rt △ABC 中,∠C=90°,若AB =5,AC =4,则sinB 的值是( )A . 35B . 45C . 34D . 434.如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值.25247C BA5.计算:sin30°·sin 60°+sin45°6.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线上取一点P ,连接AP 、PB ,使sin ∠APB=12,则满足条件的点P 的个数是( ) A .1个 B .2个 C .3个 D .不存在7.如图,△ABC 中,∠A 是锐角,求证:1sin 2ABC S AB AC A ∆=⋅⋅8.等腰△ABC 中,AB=AC=5,BC=6,求sinA 、sinB .lCBA (第7题图)85F E D1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,若b=3a,则tanA= .2.在△ABC中,∠C=90°,cosAc=4,则a=_______.3.如果a∠是等腰直角三角形的一个锐角,则cosα的值是()A.12B.2C.1D.4.如图,P是∠α的边OA上一点,且P点坐标为(2,3),则sinα=_______,cosα=_________,tanα=______ _.5.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=AB=tan∠ACD的值为()A.B. C D6.已知α是锐角,且cosα=34,求sinα、tanα的值.7.若α为锐角,试证明:sintancosααα=.8.如图,在Rt△ABC中,CD、CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.9.如图,Rt△ABC中,∠C=90°,D为CA上一点,∠DBC=30°,DA=3,AB=,试求cosA与tanA的值.b aE DCBACBAD1.计算:(1)计算:()013sin 452007tan 30-+-(2) 先化简,再求值:()2221x xx x+-÷+1,其中,tan 60x = .2.如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD 为10m ,眼高AB 为1.6m (即小明的眼睛距地面的距离),那么这栋楼的高是( )A .(8105)m B .21.6m C ..85⎫+⎪⎪⎝⎭m3.已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CDAB等于( ) A .sin α B .COS α C .tan α D .1tan α4.如图,⊙O 的半径为3,弦AB 的长为5.求cosA 的值.5.如图,∠C=90°,∠DBC=45°,AB=DB ,利用此图求tan22.5°的值.E D CBA 第2题图第3题图。
锐角三角函数练习题(含答案)
锐角三角函数练习题一、选择题(本大题共10小题,每小题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是(D)A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,则两树间的坡面距离AB为(C)A.B.C.D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)A.250mB.mC.mD.m4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是(C)A.2 3 B. 3 2 C. 3 4 D. 4 3(第2题)(第3题)(第4题)5.如果∠A是锐角,且,那么∠A=(B)A. 30°B. 45°C. 60°D. 90°6. 等腰三角形的一腰长为,底边长为,则其底角为(A)A. B. C. D.7.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是(B)A.150 B.C.9 D.78.在△ABC中,∠C=90°,BC=2,,则边AC的长是(A)A.B.3 C.D.9.如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( A )A. (m2)B. (m2)C.1600sinα(m2)D.1600cosα(m2)10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA =(C)A.1B.C.D.(第9题)(第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.已知为锐角, sin( )=0.625, 则cos =___ 0.625 。
12.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC= ,则梯子长AB = 4 米。
锐角三角函数的经典测试题及答案
锐角三角函数的经典测试题及答案锐角三角函数的经典测试题及答案一、选择题1.“奔跑吧,兄弟!”节目组预设计一个新的游戏:“奔跑”路线需经过A、B、C、D四地。
如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向。
C地在A地北偏东75°方向。
且BD=BC=30m。
从A地到D地的距离是()A。
303mB。
205mC。
302mD。
156m答案】D解析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到___的长。
详解】过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°-30°=45°。
因为△BCD是等边三角形,所以∠DBC=60°,BD=BC=CD=30m。
因此,DH=3/2×30=45,AD=2DH=90m。
所以,从A地到D地的距离是156m。
故选D。
点睛】本题考查了解直角三角形的应用——方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想。
2.公元三世纪,我国汉代数学家___在注解《周髀算经》时给出的“___图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)=()A。
1/5B。
5/5C。
35/5D。
9/5答案】A解析】根据正方形的面积公式可得大正方形的边长为5√5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解。
详解】解:因为大正方形的面积是125,小正方形面积是25,所以大正方形的边长为5√5,小正方形的边长为5.因此,55cosθ-55sinθ=5,cosθ-sinθ=2/5.因此,(sinθ-cosθ)=1/5.故选:A。
点睛】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出cosθ-sinθ=2/5.3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为()A。
锐角三角函数练习题
1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 .B C .03.等腰直角三角形一个锐角的余弦为( ) A 、12 B C .l 4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3cosA+b 3cosB 等于( ) A .abc B .(a+b )c3C .c3D ().abc a b c+5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(); ); ) .()2222A B C D -- 6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+ cosA 的值为( )B C D7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )sin(90°-B ),则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 8.sin35°·cos55°十cos35°·sin55°=_______9. 已知0°<a <4510.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 60--+o 1||451)2O O -- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)6033π-O +÷-+- ()012sin 60-︒+-(结果保留根号......)____= 1tan 60|2|2-+-+o sin 30tan 45sin 60-o o o13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数基础题1-30
锐角三角函数基础题1-30一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米.C D.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.2D.9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m.C D.C D.二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=_________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.(2014•常州)若∠α=30°,则∠α的余角等于_________度,sinα的值为_________.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________.17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为_________.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC 的顶点都在方格的格点上,则cosA=_________.19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是_________.20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为_________.21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________.22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________.23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为_________.24.(2014•铜仁)cos60°=_________.三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)27.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.29.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)锐角三角函数基础题1-30参考答案与试题解析一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.AB=cosA=2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米CM=BC=50BM=CM=50.C D.AB==13=.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.tanA==.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()tanA=,代入求出即可.tanA=,sinA=,cosA=.,7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.sinA=,=12x=.2D.×9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()=10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m:tanA=10AB=.C D=.C D..二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75),然后把,即=14.(2014•常州)若∠α=30°,则∠α的余角等于60度,sinα的值为.,.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.tanA=)求出即可.tanA=,故答案为:sinA=,cosA=.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.cosB=,求出∠)cosB=17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4.cosB=cosB=,AB==.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.解:如图,,故答案为:19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是75°.cosA=,20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为30°.sinA==,21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.,cosB=22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.==故答案为:23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.==2=42.24.(2014•铜仁)cos60°=..故答案为:三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75))=37,26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)CEH=×=10(CD=20cm20≈DEI=,×=10 DG=2DI=2027.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.BAD=BAD==×=9AC==13sinC==28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.40+x=x+40=60+2060+2029.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)CE=≈30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)cmcmcmcmAB=BD+AD=20。
初中锐角三角函数习题及详细答案
锐角三角函数一、选择题1. sin30°的值为〔 〕 A .32B .22C .12D .332.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是〔 〕 A . 3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B =3.三角形在方格纸中的位置如图所示,则tan α的值是〔 〕 A .34B .43 C .35 D .454.如图,在平地上种植树木时,要求株距〔相邻两树间的水平距离〕为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为〔 〕 A .5m B .6m C .7m D .8m5.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为〔 〕A .(21),B .(12),C .(211)+,D .(121)+,6.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为〔 〕 A .43.4C .23.27.图是某商场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是〔 〕A 833m B .4 mC .43 mD .8 m8)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为〔 〕米.A .25B .253C .10033D .253+9.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是〔〕A .23 B .32C .34D .4310.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是〔〕A .233cmB .433cmC .5cmD .2cm 11.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是〔〕 A .3B .5C .25D .225 12.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是〔 〕A .172B .52C .24D .713.如图4,在Rt ABC △中, 90=∠ACB ,86AC BC ==,,将ABC △绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为〔 〕 A .30π B .40πC .50π D .60π14.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A .C 两地的距离为〔 〕 〔A 〕km 3310 〔B 〕km 335〔C 〕km 25 〔D 〕km 35 15.如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=54,BC =10,则AB 的值是〔 〕 A .3B .6C .8D .916.如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=〔 〕A .35 B .45 C .34 D .4317.为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是〔 〕 A .14B .4C .117D .41718.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为〔 〕 A. αcos 5 B.αcos 5 C. αsin 5 D. αsin 519. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为〔 〕 ①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个20.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ〔如图所示〕,则sinθ的值为〔 〕 〔A 〕125 〔B 〕135 〔C 〕1310 〔D 〕131221.如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是〔 〕. A .π5168 B .π24C .π584D .π12 22.如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为〔 〕A .2B .433C .23D .4323.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD.3米 24.〕已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3425. 2sin 30°的值等于〔 〕A .1 BCD .2 26.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3427.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD米 28.一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角60ACD ∠=°,则AB 的长为〔 〕 A .12米B米C.2米 D.3米 二、计算题〔每小题3分,共12分〕 1.计算:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°2.10120094sin 3022⎛⎫--+-- ⎪⎝⎭-(3.计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.4.先化简.再求值.22 ()2111a a a a a ++÷+-- 其中a =tan60°-2sin30°.三、解答题1.〕如图,AC 是O ⊙的直径,PA ,PB 是O ⊙的切线,A ,B 为切点,AB =6,PA =5.求〔1〕O ⊙的半径;〔2〕sin BAC ∠的值.2.〔4分〕〔20XXXX 〕如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.〔结果保留根号〕CDBA北60°30°CCAB60° 45°北北3.〕为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰〔如图9所示〕,便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该据:2 1.43 1.7≈,≈〕商船所在的位置C 处?〔结果精确到个位.参考数4.如图,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,若测得飞机到目标B 的距离AB 约为2400米,已知sin 0.52α=,求飞机飞行的高度AC 约为多少米?5.如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕BC AαC AB1.C 2. D 3。
《锐角三角函数》习题(含答案)
《锐⾓三⾓函数》习题(含答案)《锐⾓三⾓函数》⼀、选择题1. 4sin tan 5ααα=若为锐⾓,且,则为 ( )933425543A B C D ....2.在Rt△ABC 中,∠C = 90°,下列式⼦不⼀定成⽴的是()A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90°3.直⾓三⾓形的两边长分别是6,8,则第三边的长为()A .10B .C .10或D .⽆法确定4.在Rt△ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是()A .c =B .c =C .c = a·tanAD .c = sin a A cos a A tan a A 5、的值等于()o o 45cos 45sin +A. B. C. D. 12213+36.在Rt△ABC 中,∠C=90°,tan A=3,AC 等于10,则S△ABC 等于( )A. 3B. 300C.D. 155037.当锐⾓α>30°时,则cosα的值是()A .⼤于B .⼩于CD 12128.⼩明沿着坡⾓为30°的坡⾯向下⾛了2⽶,那么他下降()A .1⽶B ⽶C .9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()(A )4 (B )5 (C )(D10.已知Rt△ABC 中,∠C=90°,tanA=,BC=8,则AC 等于()43 A .6 B . C .10 D .12323⼆、填空题11.计算2sin30°+2cos60°+3tan45°=_______.12.若sin28°=cosα,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡⾯的坡度为1,则坡⾓是_______度.15.在△ABC 中,∠C =90°,AB =10cm ,sinA =,则BC 的长为_______cm .5416.如图,在⾼楼前点测得楼顶的仰⾓为,向⾼楼前进60⽶到点,⼜测得仰⾓为,则该⾼楼的D 30?C 45?⾼度⼤约为A.82⽶B.163⽶C.52⽶D.70⽶17.如图,⼩鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的⾼度CD =1m ,测得旗杆顶端B 的仰⾓=60°,则旗杆AB 的⾼度为.(计算结果保留根号)α(16题)三、解答题18.由下列条件解直⾓三⾓形:在Rt△ABC 中,∠C=90°:(1)已知a=4,b=8,(2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in 230°+cos 2sin60°·tan45°;(2)+ sin45°22cos 30cos 60tan 60tan 30?+四、解下列各题20.如图所⽰,平地上⼀棵树⾼为5⽶,两次观察地⾯上的影⼦,第⼀次是当阳光与地⾯成45°时,第⼆次是阳光与地⾯成30°时,第⼆次观察到的影⼦⽐第⼀次长多少⽶?(第21.如图,AB 是江北岸滨江路⼀段,长为3千⽶,C 为南岸⼀渡⼝,为了解决两岸交通困难,拟在渡⼝C 处架桥.经测量得A 在C 北偏西30°⽅向,B 在C 的东北⽅向,从C 处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A 是⼀个半径为300⽶的圆形森林公园的中⼼,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修⼀条长为1000⽶的笔直公路将两村连通,经测得∠ABC=45o ,∠ACB=30o ,问此公路是否会穿过该森林公园?请通过计算进⾏说明。
锐角三角函数练习及答案
锐角三角函数练习及答案1.在Rt △ABC 中,∠C=90°,若AB=√5,BC=2,则sin B 的值为 ( ) A .√55B .2√55 C .12D .22.如图K24-1,已知△ABC 的三个顶点均在格点上,则cos A 的值为( )图K24-1A .√33B .√55C .2√33 D .2√553.如图K24-2,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图K24-2A .1B .1.5C .2D .3 4.在Rt △ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC= ( )A .3sin40°B .3sin50°C .3tan40°D .3tan50°5.如图K24-3,在矩形ABCD 中,AB=8,BC=12,点E 是BC 的中点,连接AE.将△ABE 沿AE 折叠,使点B 落在点F 处,连接FC ,则sin ∠ECF= ( )图K24-3A .34 B .43 C .35 D .456.如图K24-4,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .图K24-4图K24-57.如图K24-5,每个小正方形的边长都为1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为.8.在△ABC中,∠A=45°,AB=√6,BC=2,则AC的长为.图K24-6,则▱ABCD的9.如图K24-6,在▱ABCD中,对角线AC,BD相交于点O.若AB=4,BD=10,sin∠BDC=35面积是.10.如图K24-7,根据图中数据完成填空,再按要求答题:图K24-7sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3= .(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= ;(2)如图K24-8,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,利用三角函数的定义和勾股定理,证明你的猜想.图K24-8.锐角三角形ABC 11.如图K24-9,线段BC长为13,以C为顶点,CB为一边的∠α满足cosα=513.求△ABC的高BD及AB边的长,并结合你的的顶点A落在∠α的另一边l上,且满足sin A=45计算过程画出高BD及AB边.(图中提供的单位长度供补全图形使用)图K24-9参考答案1.A2.D[解析] 如图,设小正方形的边长为1,AC与网格的一个交点为D,连接BD,由题意,得∠BDC=45°+45°=90°,∴∠BDA=90°,∵AD=√22+22=2√2,AB=√12+32=√10,∴cos A=AD AB =√2√10=2√55.故选D .3.C [解析] ∵点A (t ,3)在第一象限,∴AB=3,OB=t.又∵tan α=AB OB =32,∴t=2. 4.D [解析] ∵∠B=90°-∠A=90°-40°=50°,tan B=ACBC ,∴AC=BC ·tan B=3tan50°. 5.D [解析] ∵点E 是BC 的中点,BC=12,∴BE=6. ∵矩形ABCD ,∴∠B=90°, ∵AB=8,∴AE=10.由翻折的性质,得∠AEB=∠AEF ,BE=EF=CE. ∴∠ECF=∠EFC.∵∠BEF=∠ECF+∠EFC , ∴∠AEB=∠ECF ,∴sin ∠ECF=sin ∠AEB=AB AE =45.故选D .6.34 7.√228.√3+1或√3-19.24 [解析] 如图,作CE ⊥BD 于E ,在Rt △CDE 中,∵sin ∠BDC=35=CE CD =CE AB ,AB=4,∴CE=125,S ▱ABCD=2×12×BD ×CE=24.10.解:1 1 1 (1)1(2)证明:∵sin A=ac ,sin B=bc ,a 2+b 2=c 2,∴sin 2A+sin 2B=a 2c 2+b 2c 2=a 2+b 2c 2=1.11.解:如图,作BD ⊥l 于点D.在Rt △CBD 中,∠CDB=90°,BC=13,cos C=cos α=513,∴CD=BC ·cos C=13×513=5,∴BD=√BC 2-CD 2=√132-52=12.在Rt △ABD 中,∠ADB=90°,BD=12,sin A=45,∴AB=BD sinA =1245=15,AD=BD tanA =1243=9.作图:以点D 为圆心,9为半径作弧与射线l 交于点A ,连接AB.。
中考数学专项复习《锐角三角函数》练习题(附答案)
中考数学专项复习《锐角三角函数》练习题(附答案)一、单选题1.如图,在△ABC中CA=CB=4,cosC=14,则sinB的值为()A.√102B.√153C.√64D.√1042.在Rt△ABC中,△C=90°,cosA=35,那么tanB=()A.35B.45C.43D.34 3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sinA=√32B.tanA=12C.cosB=√32 D.tanB=√34.如图,已知△ABC内接于△O,△BAC=120°,AB=AC,BD为△O的直径,AD=6,则BC的长为()A.2√3B.6C.2√6D.3√3 5.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里6.在矩形ABCD中AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F设∠AGE=α(0°<α<90°),下列四个结论:①AE= CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=1cos2α,正确的个数是()A.1B.2C.3D.4 7.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得△PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinαB.11+sinαC.11−cosαD.11+cosα8.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论:①△ABC的形状是等腰三角形;②△ABC的周长是2√10+√2;③点C到AB边的距离是38√10;④tan∠ACB的值为2,正确的个数为()A .0个B .1个C .2个D .3个9.在Rt△ABC 中△ACB=90°,BC=1,AB=2,则下列结论正确的是( )A .sinA=√32B .cosA=√32C .tanA=12D .cotA=√3310.已知:如图,正方形网格中∠AOB 如图放置,则cos∠AOB 的值为( )A .2√55B .2C .12D .√5511.如图,菱形ABCD 的周长为20cm ,DE△AB ,垂足为E ,cosA=45,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD =15cm 2A .3个B .2个C .1个D .0个12.如图,在Rt △ABC 中 ∠ABC =90°,以其三边为边向外作正方形,连接EH ,交AC 于点P ,过点P 作PR ⊥FG 于点R.若tan∠AHE =12,EH =8√5,则PR 的值为( )A.10B.11C.4√5D.5√5二、填空题13.如图,在RtΔABC中∠B=90°,AB=3 ,BC=4 ,点M、N分别在AC、AB两边上,将ΔAMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当ΔDCM是直角三角形时,则tan∠AMN的值为.14.如图,在△ABC中∠ABC=60°,AB=6,BC=10将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1,A1落在边BC上,连接AC1,则AC1的长为.15.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C 的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.16.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.17.如图,某高为60米的大楼AB旁边的山坡上有一个“5G”基站DE,从大楼顶端A 测得基站顶端E的俯角为45°,山坡坡长CD=10米,坡度i=1:√3,大楼底端B 到山坡底端C的距离BC=30米,则该基站的高度DE=米.18.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)三、综合题19.(1)已知Rt△ABC中△C=90°,△A=30°,BC= √3,解直角三角形.(2)已知△ABC中△A=45°,AB=4,BC=3,求AC的长.20.如图1,已知∠PAQ=60°.请阅读下列作图过程,并解答所提出的问题.△如图2,以点A为圆心,任意长为半径画弧,分别与AP,AQ交于B,C两点;△如图3,分别以B,C两点为圆心,以大于12BC的长为半径画弧,两弧交于点D;△如图4,作射线AD,连接BC,与AD交于点E.问题:(1)∠ABC的度数为.(2)若AB=4,求AE的长.21.如图,在△ABC中△C=60°,△O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是△O的切线;(2)若AB=2 √3,求图中阴影部分的面积.(结果保留π和根号)22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中在OA的位置时俯角△EOA=30°,在OB的位置时俯角△FOB=60°,若OC△EF,点A比点B高7cm.求:(1)单摆的长度(√3≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).23.已知:如图,AB是△O的直径,C是△O上一点,OD△BC于点D,过点C作△O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与△O相切;(2)连接AD并延长交BE于点F,若OB=9,sin△ABC= 23,求BF的长.24.如图,AB是△O的直径,OE垂直于弦BC,垂足为F,OE交△O于点D,且△CBE=2△C.(1)求证:BE与△O相切;(2)若DF=9,tanC= 34,求直径AB的长.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】A12.【答案】B13.【答案】1或214.【答案】1415.【答案】(20√3−20)16.【答案】√31817.【答案】(25﹣5 √3)18.【答案】45.8米19.【答案】(1)解:在Rt△ABC中△C=90°,△A=30°∴△B=90°-△A=60°,AB=2BC=2 √3∴AC= √AB2−BC2=√(2√3)2−(√3)2=3;(2)解:如图,过点B作BD△AC于D∵△A=45°∴△ABD=△A=45°∴AD=BD∵AB=4,AD2+BD2=AB2∴AD=BD= 2√2在Rt△BCD中BC=3∴CD=√BC2−BD2=1∴AC=AD+CD= 2√2+1.20.【答案】(1)60°(2)由作图可知AB=AC,AD平分∠PAQ∴AE⊥BC.∵∠PAQ=60°∴∠BAE=30°.在Rt△ABC中AE=AB⋅cos30°=4×√32=2√3.答:AE的长为2√3.21.【答案】(1)解:如图,连接OA;∵△C=60°∴△AOB=120°;而OA=OB∴△OAB=△OBA=30°;而AB=AP∴△P=△ABO=30°;∵△AOB=△OAP+△P∴△OAP=120°﹣30°=90°∴PA是△O的切线.(2)解:如图,过点O作OM△AB,则AM=BM= √3∵tan30°= OMAM sin30°=OMAO∴OM=1,OA=2;∴S△AOB=12·AB·OM= 12× 2√3×1= √3S扇形OAB =120π⋅22360= 4π3∴图中阴影部分的面积= 4π3−√3.22.【答案】(1)解:如图,过点A作AP△OC于点P,过点B作BQ△OC于点Q∵△EOA=30°、△FOB=60°,且OC△EF∴△AOP=60°、△BOQ=30°设OA=OB=x则在Rt△AOP中OP=OAcos△AOP= 1 2x在Rt△BOQ中OQ=OBcos△BOQ= √32x由PQ=OQ﹣OP可得√32x﹣12x=7解得:x=7+7 √3≈18.9(cm)答:单摆的长度约为18.9cm(2)解:由(1)知,△AOP=60°、△BOQ=30°,且OA=OB=7+7 √3∴△AOB=90°则从点A摆动到点B经过的路径长为90⋅π⋅(7+7√3)180≈29.295答:从点A摆动到点B经过的路径长为29.295cm 23.【答案】(1)证明:连接OC∵OD△BC∴△COE=△BOE在△OCE和△OBE中∵{OC=OB∠COE=∠BOEOE=OE∴△OCE△△OBE∴△OBE=△OCE=90°,即OB△BE∵OB 是△O 半径∴BE 与△O 相切.(2)解:过点D 作DH△AB ,连接AD 并延长交BE 于点F∵△DOH=△BOD ,△DHO=△BDO=90°∴△ODH△△OBD∴OD OB =OH OD =DH BD又∵sin△ABC= 23,OB=9 ∴OD=6易得△ABC=△ODH∴sin△ODH= 23 ,即 OH OD = 23∴OH=4∴DH= √OD 2−OH 2 =2 √5又∵△ADH△△AFB∴AH AB = DH FB 1318 = 2√5FB∴FB= 36√51324.【答案】(1)证明:∵OE 垂直于弦BC∴△BOE+△OBF=90°∵△CBE=2△C , △BOE=2△C∴△CBE=△BOE∴△CBE+△OBF=90°∴△OBE=90°∴BE 与△O 相切;(2)解:∵OE 垂直于弦BC∴△CFD=△BFO=90°,CF=BF.∵DF=9,tanC= 34∴CF=BF=12.设半径长是x,则OF=x-9在Rt△BOF中∵x2=(x-9)2+122∴x= 25 2∴直径AB=25.。
锐角三角函数的概念专项练习
锐角三角函数的概念专项练习一.选择题(共3小题)1.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.3.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.二.填空题(共3小题)4.在△ABC中,∠C=90°,若tanA=,则sinB=.5.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为.6.如图,在Rt△ABC中,∠C=90°,BC=12,tanA=,则sinB=.三.解答题(共2小题)7.在△ABC中,∠C=90°,AC=4,BC=2,求∠B的余弦值.8.在△ABC中,∠C=90°,AB=13,BC=5,求∠A的正弦值、余弦值和正切值.参考答案与试题解析一.选择题(共3小题)1.A【解答】解:在Rt△ABC中,∵AB=10、AC=8,∴BC===6,∴sinA===,故选:A.2.A【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.3.A【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.二.填空题(共3小题)4.【解答】解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.5.【解答】解:如图所示:∵∠C=90°,AB=6,cosB=,∴cosB===,解得:BC=4.故答案为:4.6.【解答】解:由在Rt△ABC中,∠C=90°,BC=12,tanA=,得=,即=,∴AC=5.由勾股定理,得AB==13.sinB==,故答案为:.三.解答题(共2小题)7.【解答】解:如图,在Rt△ABC中,∵BC=2、AC=4,∴AB===2,则cosB===.8.【解答】解:∵∠C=90°,AB=13,BC=5,∴.∴sin∠A==,cos∠A==tan∠A==.。
《锐角三角函数》基础练习
《锐角三角函数》基础练习二、练习1、 在Rt △ABC 中,∠C =900,AB =13,BC =5, 求A sin , A cos ,A tan ,2、填空题(1)Rt △ABC 中,∠C =900,若AB =5,AC =4,则sinB= . (2)Rt △ABC 中,∠C =900,sinA =54,cosA= (3)=︒⨯︒45cos 2260sin 21 .(4)∠B 为锐角,且2cosB - 1=0,则∠B = .(5)等腰三角形中,腰长为5,底边长8,则底角的正切值是 . 3、选择题(1)在Rt △ABC 中,∠C =900,下列式子中正确的是( ). A. sinA=sinB B. sinA=cosB C. tanA=tanB D. cosA= cosB (2)在Rt △ABC 中,∠C =900,已知a 和A ,则下列关系式中正确的( ) A. c=a ·sinA B. c=A a sin C. c=a ·cosA D. c=Aacos (3)在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形 (4)在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( )A .不变B .扩大5倍C .缩小5倍D .不能确定 4、计算(1)tan30°sin60°+cos 230°-sin 245°tan45° (2)23tan 303cos 302sin 30︒︒-︒5、巩固练习(1).在△ABC 中,∠C =90°,tan A =125,△ABC 周长为60,则面积=_________.(2).在Rt △ABC 中,sin A =54,AB =10,则BC =______,cos B =_______. (3).在△ABC 中,∠C =90°,若cos A =21,则sin A =__________.(4). 已知在△ABC ,∠C =90°,且2BC =AC ,那么sin A =_______. (5)如图,在距旗杆4米的A 处,用测角仪测得旗杆顶端C 的仰角为60,已知测角仪AB 的高为1.5米,则旗杆CE 的高等于 米.(6).如图,河堤横断面是梯形,上底为4m ,堤高为6m ,斜坡为AD 的坡比为1︰3,斜坡BC 的坡角为45°,则河堤的横断面积为 ㎡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《锐角三角函数》A
姓名_____________
1、在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan ,
2.在Rt △ABC 中,sin A =5
4
,AB =10,则BC =______,cos B =_______.
3.在△ABC 中,∠C =90°,若cos A =2
1,则sin A =__________. 4. 已知在△ABC ,∠C =90°,且2BC =AC ,那么sin A =_______. 5、=︒⨯︒45cos 2
260sin 2
1 .
6、∠B 为锐角,且2cosB - 1=0,则∠B = .
7、等腰三角形中,腰长为5,底边长8,则底角的正切值是 .
8、如图,在距旗杆4米的A 处,用测角仪测得旗杆顶端C 的仰角为60,已知测角仪AB 的高为1.5米,则旗杆CE 的高等于 米.
三、选择题
9、在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( )
A .不变
B .扩大5倍
C .缩小5倍
D .不能确定 10.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )
A .sinA = sin
B B .cosA=sinB
C .sinA=cosB
D .∠A+∠B=90° 11.
在Rt
△ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )
A .c =sin a A
B .c =cos a A
C .c = a ·tanA
D .c = tan a
A
12、 45cos 45sin +的值等于( )
A.
2 B.
2
1
3+ C. 3 D. 1
D E
60
13.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C.
50
3
D. 15 14.当锐角α>30°时,则cos α的值是( )
A .大于12
B .小于1
2 C 15.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )
A .1米
B
C ..
3
16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )
(A )4 (B )5 (C )(D )3
17.已知Rt △ABC 中,∠C=90°,tanA=4
3
,BC=8,则AC 等于( )
A .6
B .32
3
C .10
D .12 18、计算
(1)tan30°sin60°+cos 230°-sin 245°tan45° (2)
23tan 303cos 302sin 30︒
︒-︒
19、如图,在△ABC中,AD是BC上的高,tan cos
B DAC
=∠,
(1) 求证:AC=BD;
(2)若
12
sin
13
C=,BC=12,求AD的长.
20.如图,点E是矩形ABCD中CD边上一点,⊿BCE沿BE折叠为⊿BFE,
点F落在AD上.(1)求证:⊿ABF∽⊿DFE;(2)若sin∠DFE=
3
1,求tan∠EBC
的值.
21.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°,A C=10,试求CD的长.
22.如图,直角梯形纸片ABCD 中,AD ∥BC ,∠A =90°,∠C =30°.折叠纸片使BC 经过点D .点C 落在点E 处,BF 是折痕,且BF = CF =8.
(l )求∠BDF 的度数;(2)求AB 的长.
23.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长多少?
24、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为
F ,连接DE .
(1)求证:ABE △DFA ≌△;
(2)如果10AD AB =,=6,求sin EDF ∠的值.
D
A
B
C
E
F。