吸水膨胀橡胶的研究进展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸水膨胀橡胶的研究进展

吸水膨胀橡胶(WSR)是一种新型特种橡胶,由亲水组分(或亲水基团)与橡胶基体通过物理共混(或化学接枝)进行制备,吸水后其体积和质量可成倍数膨胀。因具有弹性止水和膨胀止水双重止水功能,被誉为“超级密封材料”。

WSR自20世纪70年代由日本开发以来,经20多年的发展,已研究出许多不同类型具有优良性能的产品。1988年日本的WSR制品销售量为1万t,1991年达到2.8万t,西德ITC公司也生产出高质量的硫化型及非硫化型吸水膨胀橡胶,应用在大型工程建设中取得了理想的效果[1]。而国却只有等地区有少量的厂家能生产聚氨酯型WSR。

随着WSR的快速发展,WSR的应用也越来越广泛。至今,WSR已在石油井下工具、工程变形缝、管道接口等诸多方面被广泛应用,并逐步取代了传统灌浆等方法在堵漏工程上的应用[2]。日本东京湾海底隧道及江底隧道都有成功运用了吸水膨胀材料[3],在中东等地区还将吸水膨胀橡胶制成膨胀封隔器应用于油田[4~6]。据国有关报道,2008年11月,勘探开发研究院装备所自主研发的自膨胀式封隔器在冀东油田高浅南区G160-P13井顺利下井进行现场试验应用[7]。WSR在不同的温度、pH值、盐的浓度下发生不同的反应,造成收缩或膨胀,使化学能直接转换成机械能,堪称机械化学调节器,因此在水敏传感器上、医用和生理等方面有广泛的应用前景[8]。国的吸水膨胀橡胶起步晚、发展慢,与国外同类产品相比,在质量和性能方面都存在一定差距,仍需进一步完善、改进。

1 WSR的吸水膨胀原理及分类

1.1 吸水膨胀原理

WSR的吸水作用主要来源于添加的亲水组分或接枝的亲水基团。当WSR与水接触时,水分子通过胶体表面吸附和毛细吸附等作用扩散进入胶体中;进入橡胶的水分子与亲水组分或亲水基团形成极强的作用力,水被保留在橡胶中使得胶体发生膨胀变形同时橡胶的弹性收缩力也在增加,进而形成的渗透压差使得外部的水分子进一步向橡胶渗透。当渗透压差与胶体自身的抗变形力相等时,吸水达到平衡,此时橡胶的膨胀程度被视为静水最大膨胀率,通常认为这个过程是受水分子的扩散和橡胶分子链断的松弛作用。如果遇水膨胀橡胶在封闭条件下使用,遇

水后膨胀率并不能达到其静水最大膨胀率,因此就产生了膨胀橡胶与约束体间的接触压力。依靠这种接触压力,遇水膨胀橡胶就可以发挥其密封止水的作用[9]。书香等[10]通过DSC和TG对WSR中水的存在状态进行了研究,发现了有自由水、束缚冻结水和非冻结水三种状态水,并研究了水的状态和聚丙烯酸钠(PAANa)之间的关系。研究表明非冻结水含量与总水量相关,并且与PAANa上-COONa基团的摩尔量之比约为4;总水量对冻结水的影响不明显,而显著影响自由水的含量。

1.2 WSR的分类

从硫化角度可分为非硫化型吸水膨胀橡胶和硫化型吸水膨胀橡胶(即制品型和腻子型)[11];按亲水组分可分为聚丙烯酸类、马来酸酐接枝物、改性高纳基膨润土、白炭黑与聚乙二醇、亲水性聚氨酯预聚体等多种;按吸水后的膨胀程度可分为低膨胀率(50%~200%)、中膨胀率(200%~350%)、高膨胀率(>350%)三种[12];按制备方法可分为物理共混和化学接枝。

2 接枝型WSR的制备

与物理共混法相比,通过化学接枝法制备的吸水膨胀弹性体具有微观相容性好、强度高、反复性能好等优点。但接枝反应困难,工艺繁琐。由于材料的膨胀率高低取决于亲水基团或亲水链段的多少,很难进行工业化生产,所以目前WSR 的工业生产都是以共混型为主。

平和王广佳[13]以过氧化苯甲酰为引发剂,甲苯为溶剂,在共聚条件为90℃×4h的情况下,进行丙烯酸和苯乙烯系嵌段共聚物(SBS)(质量比为8)接枝共聚,合成了支链为聚丙烯酸钠的吸水性接枝离子聚合物。研究表明,当AA/SBS值为8,中和度在70%~80%时,聚合物的吸水性能最佳可达到500倍以上。Abbasi[14]研究合成了聚二甲基硅氧烷/聚(2-羟乙基甲基丙烯酸酯)连续互穿聚合物网络。2-羟乙基异丁酸酯单体在溶胀硅橡胶中聚合并迅速交联,通过优化反应温度、单体和引发剂浓度、交联剂用量等影响因素,得到了具有互穿聚合物网络结构及吸水膨胀性能的复合橡胶。宗良等[15]采用过硫酸铵/硫代硫酸钠氧化还原引发体系,将丙烯酸单体与天然橡胶接枝共聚,制得腻子型吸水膨胀天然橡胶。此研究通过红外图分析证实了产物是NR与丙烯酸的接枝共聚物。制得的WSR吸水6h后膨胀率达到1751%,经5次反复吸水,恢复率仍保持在98%。青彬等[16]采用波聚合工

艺完成了丙烯酰胺与天然橡胶接枝共聚,制得了性能优良的WSR。该方法聚合时间短(为传统间歇聚合法的1/8),制得的产物接枝率达到51.8%,最大吸水倍率为7.66g/g。

3 共混型WSR的制备

物理共混又可分为机械共混和乳液共混两种方法。机械共混法是先将橡胶在炼胶机上塑炼至生胶包辊,再加入各种助剂和吸水组分混炼,使得吸水组分宏观均匀的分散在橡胶中,最后将混炼胶进行硫化。乳液共混法是将橡胶基体、相应的各种助剂和吸水组分在搅拌器中搅拌均匀后真空脱水、熟成、注模硫化,所得的制品较机械共混法分散性和均一性更高,且具有较小的微区尺寸。科技大学的邵水源等[17]以丁苯橡胶SBR/CR为基体,吸水性高岭土为亲水组分,并与其他添加剂采用物理共混法制备了吸水膨胀橡胶。该研究讨论了增强剂(改性白炭黑)、硫磺用量、亲水组分等因素对吸水膨胀橡胶吸水性能和力学性能的影响。研究表明加入4%~8%的增容剂可以提高组分间的相容性,加入5%~10%的发泡剂可以提高WSR的吸水速率。Charoen Nakason等[18]将淀粉接枝的聚丙烯酰胺、膨润土和各类天然橡胶共混制备了WSR。发现橡胶的交联会降低材料的吸水性能,而添加适量的聚环氧树脂(PEO)可以适当地提高材料的拉伸性能和吸水性能;三羟甲基丙烷丙烯酸酯(TMPTMA)和PEO的协同效应能减少橡胶的硫化时间。

应用于不同工况环境的WSR有不同的性能要求(耐高温、耐油性、耐老化、阻燃性、高强度等),橡胶基体的弹性等力学性能决定了WSR的物理性能,而亲水组分或亲水基团(亲水链段)决定了WSR的吸水膨胀性能[19]。在既定基体和亲水组分的基础上,加入各种添加剂(增强剂、阻燃剂、防老化剂等)可以改善WSR的各项性能或赋予WSR一些特殊性能。因此,基体、亲水组分以及添加剂是WSR性能的主要影响因素。

3.1 WSR的基体

目前,应用于制备WSR的橡胶基体主要是氯丁橡胶(CR)、天然橡胶(NR)、丁苯橡胶(SBR)、丁腈橡胶(NBR)、三元乙丙橡胶(EPDM)等,也有报道用氯化聚乙烯(CPE)和聚氯乙烯(PVC)作为基体[20~22]或是按一定比例混合的两种橡胶作为基体[17]。对于基体的选择主要从物理机械性能、特种橡胶的特性、与亲水组分的相容性等几个方面考虑。例如NR具有优异的物理机械性能,但与亲水组分

相关文档
最新文档