2019版中考数学专题复习 专题三(12-2)一次函数与一元一次方程及不等式当堂达标题

合集下载

九年级中考复习数学考点专题训练——专题三:一次函数

九年级中考复习数学考点专题训练——专题三:一次函数

中考数学考点专题训练——专题三:一次函数1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB延长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN =AN,求线段PM的长.17.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.18.已知直线y=x+b与x轴交于点A,与y轴交于点B,(1)如图1,求∠BAO的度数;(2)如图2,点D在第三象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE且点E在第四象限,连接DE、OE,若DE=2OE,求证:S△ADE=2S△AOE;(3)如图3,点C为点A关于y轴的对称点,点D在第二象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE,点E在第四象限,连接OE且OE∥BC,过点A作AP⊥BE交BC于点P,点Q在AB上,BQ=BP,过点Q作QG⊥AP交x轴于点G.若OF=,CG=7,求S△AOE.19.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线1,点M是直线BC上的动点,点N是x轴上的动点,点P是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.20.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF ∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.备战2021中考数学考点专题训练——专题三:一次函数参考答案1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【答案】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•y C==.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【答案】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.【答案】解:(1)当t=1时,A(1,0),B(3,0),C(3,3),D(1,3),则三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,y2=﹣x+2,y3=x+2是矩形ABCD的关联直线;故答案为:y2=﹣x+2,y3=x+2;(2)由矩形的性质得D(t,3),当y=3时,t+2=3,解得t=1;当y=0时t+2+2=0,解得t=﹣4.故t的取值范围为﹣4≤t≤1;(3)由矩形的性质得D(t,3),当y=3时,t2+2=3,解得t=±1(负值舍去).故t的取值范围为0<t≤1.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.【答案】解:(1)当y=0时,0=﹣,解得x=4;则A(4,0);联立两直线的解析式得,解得.则B(2,2);(2)∵A(4,0),∴OA=4,∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);(3)如图,当OA为平行四边形的边时,∵OA=4,∴P1(6,2),P2(﹣2,);当OA为对角线时,P3(2,﹣2).综上所示,点P的坐标为:P1(6,2),P2(﹣2,2),P3(﹣2,2).5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.【答案】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【答案】解:(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【答案】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】解:(1)甲车改变速度前的速度为:500出5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(,800)代入得:,解得,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100();(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×=100(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=kx+b与y=﹣x﹣9平行,且过点A(2,3),则,解得,∴一次函数解析式为y=﹣x+4,当x=0时,y=4,∴A点坐标是(0,4);(2)证明:∵PM⊥x轴,PN⊥y轴,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,ND=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,OB=PD,∠O=∠CPD,OE=PC,∴△OBE≌△PDC(SAS),∴DC=BE,同理可证△MBC≌△NDE(SAS),∴DE=BC.∴四边形BCDE是平行四边形;(3)存在这样的点P,理由:设点P(m,﹣m+4),则CM=PC=|(4﹣m)|=|﹣m|,PD=m,当四边形BCDE为正方形时,则∠DCB=90°,DC=BC,而∠CBM+∠MCB=90°,∠MCB+∠DCP=90°,∴∠CBM=∠DCP,而∠DPC=∠CMB=90°,∴△DPC≌△CMB(AAS),∴CM=PD,即=|﹣m|=m,解得:m=或﹣8,故P点坐标是(,)或(﹣8,8).10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?【答案】解:(1)由图象知,520+12a﹣2×10a=424,∴a=12;(2)设当12≤x≤20时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=﹣53x+1060,当x=16时,y=212,即排队到第16分钟时,食堂排队等候打饭菜的学生有212人.(3)设需同时开放n个打饭窗口,由题意知10n×8≥520+12×8解得:n≥7.7,∵n为整数,∴n最小=8.答:至少需要同时开放8个打饭窗口.11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C 是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.【答案】解:(1)把A(4,0),B(0,3)代入y1=kx+b,得到,解得:,∴y1=﹣x+3.(2)∵BC∥x轴,∴点C的纵坐标为3,当y=3时,3=﹣x+5,解得x=,∴C(,3),∵CD⊥AB,∴直线CD的解析式为y=x+,由,解得,∴D(,),∴BD==.(3)如图,当∠BCD=∠BEO时,过点A作AM⊥BC交BC的延长线于M,点M作MN⊥x轴于N.∵OB=3,OE=OA=,∴tan∠BEO==2,∵CD⊥AB,AM⊥AB,∴CD∥AM,∴∠AMB=∠BCD=∠BEO,∴tan∠AMB==2,∵AB===5,∴AM=AB=,∵∠AOB=∠ANM=∠BAM=90°,∴∠BAO+∠ABO=90°,∠BAO+∠MAN=90°,∴∠MAN=∠ABO,∴△ABO∽△MAN,∴==,∴==,∴AN=,MN=2,∴M(,2),∴直线BM的解析式为y=﹣x+3,由,解得x=,∴点C的横坐标为当∠CBD=∠BEO时,同法可得点C的横坐标为.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.【答案】解:(1)①如图1中,由题意A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,由题意A(﹣0.5,1),直线l:x=0.5,∵直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意A(t﹣1,0),B(t+1,0),∵△ABC上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得t≥2或t≤﹣2.故答案为t≥2或t≤﹣2.(2)如图3中,∵A(t﹣1,0),B(t+1,0),∴AB=t+1﹣(t﹣1)=2,∵△ABD是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,,∴当点D在AB上方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则0≤b≤3.当点D在AB下方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则﹣1≤b≤2.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.【答案】解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.把(﹣2,14)代入可得14=﹣+b,∴b=,∴直线RT的解析式为y=x+14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.【答案】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC 所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵AC所在直线解析式为y=﹣x+15,∴令x=0,y=15,令y=0.则﹣,解得x=9.∴A(9,0),C(0,15),B(9,15),。

2019年中考一次函数问题专题复习(共19张PPT)

2019年中考一次函数问题专题复习(共19张PPT)
y y=2x+3
B
M A x y=-0.5x
O
小结
学习路径


方程
函数
知识发展路径 思考:二次函数可以怎么复习?
ax2 bx c 0
二次函数
一元二次方程 一元二次不等式(高中)
ax 2 bx c 0
当堂检测
1.一次函数y kx 3与y 3x 6的图象的交点在x轴上,求k的值.
2.设二次函数y1 a( x x1 )( x x2 )(a 0, x1 x2 )的图象与一次函数 y2 dx e(d 0)的图象交于点( x1 ,0),若函数y y2 y1的图象与x轴仅有一个 交点,则( ) A. a( x1 x2 ) d C. a( x1 x2 )2 d B. D. a( x2 x1 ) d a( x1 x2 ) 2 d
x 3 _ . 范围为 ______
一元一次不等式
你能构造一个一次函数来解决问题吗?
一次函数问题专题复习
置换角度
九年级:再探函数
5.函数y 2 x 1的图象与x轴有交点吗?与x轴交点 的横坐标可以看成是哪个方程的解?图象在x轴上 方时,求x的取值范围.
在同一平面直角坐标系中,再画出另一条直线 y x 2.
• 8. (2018•淮安)如图,在平面直角坐标系中,一 次函数y=kx+b的图象经过点A(﹣2,6),且与x轴 相交于点B,与正比例函数y=3x的图象相交于点C, 点C的横坐标为1. • (1)求k、b的值; 1 • (2)若点D在y轴负半轴上,且满足S△COD= 3 S△BOC ,求点D的坐标.
函数
转化
方程
第二组

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式基础题知识点1 一次函数与一元一次方程1.(1)一元一次方程-2x+4=0的解是;(2)函数y=-2x+4,当x=时,函数值y=0;(3)直线y=-2x+4与x轴的交点坐标是;(4)由上述问题可知,一元一次方程ax+b=0的解就是一次函数y=ax+b当y=0时所对应的的值;从图象上看,就是一次函数y=ax+b的图象与轴交点的.2.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+n与x轴的交点坐标是.3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.如图所示,已知直线y=ax-b,则关于x的方程ax-b=1的解是.5.若一次函数y=ax+b(a,b为常数且a≠0)中x 与y的部分对应值如下表,则方程ax+b=0的解是( )x -2 -1 0 1 2 3y 6 4 2 0 -2 -4C.x=2 D.x=36.已知方程kx+b=0的解是x=3,则函数y=kx +b的图象可能是( )A B C D7.已知关于x的方程kx+b=3的解为x=7,则直线y=kx+b的图象一定过点( )A.(3,0) B.(7,0)C.(3,7) D.(7,3)知识点2 一次函数与一元一次不等式(组)8.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是( ) A.x>2B.x<2C.x≥2D.x≤29.(2019·遵义)如图所示,直线l1:y=32x+6与直线l2:y=-52x-2交于点P(-2,3),则不等式32x+6>-52x-2的解集是( )A.x>-2B.x≥-2C.x<-2D.x≤-210.如图,已知一次函数y=kx+b的图象分别与x 轴、y轴交于点(2,0)、点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②当x>2时,y<0;③当x<0时,y<3.其中正确的是( )A.①②B.①③C.②③D.①②③11.(2020·遵义)如图,直线y=kx+b(k,b是常数,k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.12.已知函数y =kx +b 的图象如图所示,利用函数图象回答:(1)当x 取何值时,kx +b =0? (2)当x 取何值时,kx +b =1.5? (3)当x 取何值时,kx +b <0? (4)当x 取何值时,0.5<kx +b <2.5?中档题13.如图是直线y =x -5的图象,点P(2,m)在该直线的下方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <-314.(2020·湘潭)如图,直线y =kx +b(k <0)经过点P(1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >115.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0)、点B(3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0的解集为( )A .x <-2B .x >3C .x <-2或x >3D .-2<x <316.已知一次函数y =-2x +4,完成下列问题: (1)在所给的平面直角坐标系中画出此函数的图象. (2)根据函数图象回答:①方程-2x +4=0的解是 .②当x 时,y >2.③当-4≤y ≤0时,相应x 的取值范围是 .17.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(-1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是 ,关于x 的不等式kx +b <0的解集是 .(2)直接写出关于x 的不等式组⎩⎪⎨⎪⎧kx +b >0,k 1x +b 1>0的解集.(3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.答案1.(1)x=2;(2)2;(3)(2,0);(4)x;x 横坐标.2.(-3,0).3.x=2.4.x=4.5.A6.C7.D8.B9.A10.A11.x<4.12.解:(1)x=-0.5.(2)x=1.(3)x<-0.5.(4)0<x<2. 13.D14.A15.D16.(1)(2)①x=2.②x<1.③2≤x≤4.17.解:(1)x=-1,x>2.(2)-1<x<2.(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x >1.∵AB=3,∴S△ABC=12AB·y C=12×3×3=92.。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

19.3.1 一次函数与一元一次方程、不等式基础对点练知识点1 一次函数与一元一次方程1.已知方程ax +b =0的解为x =32-,则一次函数y =ax +b 图象与x 轴交点的横坐标为( )A .3B .23-C .﹣2D .32-【答案】D【解析】【分析】关于x 的一元一次方程ax +b =0的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y =ax +b 的图象与x 轴交点的坐标.【详解】解:方程ax +b =0的解为x =32-,则一次函数y =ax +b 的图象与x 轴交点的坐标为(32-,0),即一次函数y =ax +b 图象与x 轴交点的横坐标为32-.故选:D .【点睛】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.2.函数1y kx =-与x 轴的交点坐标为(13-,0),则关于x 的方程10kx -=的解为( )A.1x =B.13x =-C.1x =-D.13x =【答案】B 3.已知方程()00kx b k +=¹的解是3x =,则函数()0y kx b k =+¹的图象可能是( )A .B .C .D .【答案】C【解析】【分析】由方程0kx b +=的解是3x =可得函数y kx b =+的图象与x 轴的交点坐标为()3,0,据此判断即可.【详解】解:因为方程0kx b +=的解是3x =,所以函数y kx b =+的图象与x 轴的交点坐标为()3,0.故选C .【点睛】本题考查了一次函数与一次方程的关系,解题的关键是正确理解方程0kx b +=的解是3x =Û函数y kx b =+的图象与x 轴的交点坐标为()3,0,注意方程与函数及函数图象的转化.4.如图所示,一次函数()0y kx b k =+¹的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定【答案】C【解析】【分析】将点()3,2P 代入直线解析式,然后与方程对比即可得出方程的解.【详解】解:一次函数()0y kx b k =+¹的图象经过点()3,2P ,∴23k b =+,∴3x =为方程2kx b =+的解,故选:C .【点睛】题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5.一次函数37y x =+的图象与y 轴的交点坐标是二元一次方程218x by -+=的解,则b 的值是 。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式
9.如图,直线y=kx+b经过A(2,1),B(-1,-2)两点, 则不等式-2<kx+b<1的 解集为________________.
2
易错小结
-1<x<2
易错点:利用函数图象解不等式时,对函数值和点的坐 标的关系不理解导致出错(数形结合思想).
例1
利用函数图象解出x:3x-2=x+4.
先将方程化为ax+b=0的形式, 再在坐标系中画出函数y=ax+ b的图象,然后观察出直线y= ax+b与x轴的交点坐标,从而 取定所求x的值.
导引:
由3x-2=x+4得2x-6=0画函 数y=2x-6的图象,如图所示, 由图可知,直线y=2x-6与x轴的交点为(3,0), 所以x=3.
3
C
已知一次函数y=2x+n的图象如图所示,则方程2x+n=0的解可能是( ) A.x=1 B.x= C.x=- D.x=-1
4
C
【2017·湘潭】一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是( ) A.x≥2 B.x≤2 C.x≥4 D.x≤4
5
B
【2017·菏泽】如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( ) A.x>2 B.x<2 C.x>-1 D.x<-1
D
【中考·合肥】已知方程 x+b=0的解是x= -2,下列可能为直线y= x+b的图象的是 ( )
2
C
如图,若一次函数y=-2x+b的图象交y轴于点A(0,3),则不等式-2x+b>0的解集为( ) A.x> B.x>3 C.x< D.x<3
2
已知小刚从家出发7分钟时与家的距离是1 200米, 从上公交车到他到达学校共用10分钟.下列说法: ①公交车的速度为400米/分钟; ②小刚从家出发5分钟时乘上公交车; ③小刚下公交车后跑向学校的速度是100米/分钟; ④小刚上课迟到了1分钟.其中正确的有( ) A.4个 B.3个 C.2个 D.1个

中考数学专题复习 专题三(12-2)一次函数与一元一次方程及不等式教案

中考数学专题复习 专题三(12-2)一次函数与一元一次方程及不等式教案

一次函数与一元一次方程及不等式一、【教材分析】点一元一次析:取值范围?于C=、根据下列一次函数的图像,直接写出下列不等式1.直线y=ax+b过点A(0,2)和点B(﹣3,0),A从形的角度看:四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。

本节课的成功与遗憾有:成功之一:在问题探究中,挖掘了四个“一次”间的相互联系,方程刻画数量之间的相等关系,不等式刻画数量之间的不等关系,函数刻画数量之间的变化关系。

当函数中的一个变量的值确定时,可以利用方程来确定另一个变量的值;当已知函数中的某一个变量取值范围时,可以利用不等式(组)来确定另一个变量的范围。

成功之二:利用所学知识培养了学生数形结合的思想,让学生体会到华罗庚所说的“数无形时少直观,形无数时难入微”。

数形结合思想是重要的数学思想之一,也是解决数学问题的重要方法之一,通过数和形相互转化我们常常能把数学问题化难为易,化抽象为具体,成功之三:这节内容把不同的知识点融合在一起,在学生已有的知识基础上,让学生初步领略了数学学习中对知识的整合很有必要,为今后学习二次函数、二次方程、二次不等式的综合作了一个很好的铺垫。

起到了呈上启下的作用。

由于函数在高中阶段也是核心内容,数形结合法在高中数学学习中同样有着广泛的应用,因此,在设计问题载体时,它既反映初中函数学习的重点知识和技能,又能够体现初中与高中学习方法的衔接。

教学是门遗憾的艺术。

由于本节课是是对知识的一个小综合,时间紧,对基础扎实的同学有较好的效果,对基础差的学生理解起来比较吃力.此资源为word格式,您下载后可以自由编辑,让智慧点亮人生,用爱心播种未来。

感谢您的选用。

一次函数、一次方程和一元一次不等式(基础)知识讲解

一次函数、一次方程和一元一次不等式(基础)知识讲解

一次函数、一次方程和一元一次不等式(基础)责编:杜少波【学习目标】1.能用函数的观点认识一次函数、一次方程与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程的解及不等式的解,建立数形结合的思想及转化的思想.2.能运用一次函数的性质解决简单的不等式问题及实际问题.【要点梳理】要点一、一次函数与一元一次方程一次函数y kx b =+(k ≠0,b 为常数).当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值.要点二、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点三、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点四、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【典型例题】类型一、一次函数与一元一次方程1、若直线y kx b =+与x 轴交于(5,0)点,那么关于x 的方程0kx b +=的解为______.【答案】5x =【解析】kx b +=0的解是直线y kx b =+与x 轴交点横坐标.【总结升华】当函数0y =时,就得到了一元一次方程kx b +=0,此时自变量x 的值就是方程kx b +=0的解.举一反三:【变式1】如图,已知直线y ax b =-,则关于x 的方程1ax b -=的解x =_________.【答案】4;提示:根据图形知,当y =1时,x =4,即1a x b -=时,x =4.∴方程1ax b -=的解x =4.【变式2】如图,直线y kx b =+分别交x 轴和y 轴于点A 、B ,则关于x 的方程kx b +=0的解为_______.【答案】2x =-;提示:方程kx b +=0的解其实就是当0y =时一次函数y kx b =+与x 轴的交点横坐标.由图知:直线y kx b =+与x 轴交于点(-2,0),即当x =-2时,y kx b =+=0.类型二、一次函数与一元一次不等式2、(2015•乐山模拟)如图,直线y=kx+b 交坐标轴于A (﹣3,0)、B (0,1)两点,则不等式﹣kx ﹣b <0的解集为( )A .x >﹣3B .x <﹣3C .x >3D .x <3【思路点拨】求﹣kx ﹣b <0的解集,即为kx+b >0,就是求函数值大于0时,x 的取值范围.【答案】A ;【解析】解:∵要求﹣kx ﹣b <0的解集,即为求kx+b >0的解集,∴从图象上可以看出等y >0时,x >﹣3.故选:A .【总结升华】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.举一反三:【高清课堂:393614 一次函数与一元一次不等式,例2】【变式】如图,直线y kx b =+与坐标轴的两个交点分别为A (2,0)和B (0,-3),则不等式kx b ++3≥0的解集是( )A .x ≥0B .x ≤0C .x ≥2D .x ≤2【答案】A ;提示:从图象上知,直线y kx b =+的函数值y 随x 的增大而增大,与y 轴的交点为B (0,-3),即当x =0时,y =-3,所以当x ≥0时,函数值kx b +≥-3.3、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为( ).A .1->xB .1-<xC .2-<xD .无法确定【答案】B ;【解析】从图象上看x k b x k 21>+的解,就是找到1l 在2l 的上方的部分图象,看这部分图象自变量的取值范围.当1-<x 时,x k b x k 21>+,故选B.【总结升华】本题考察了用数形结合的方法求解不等式的大小关系,解题的关键是找出表示两条直线的交点的横坐标,再根据在上方的图象表示的函数值大,下方的图象表示的函数值小来解题.举一反三:【变式】直线1l :1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式1k x b +<2k x c +的解集为( )A .x >1B .x <1C .x >-2D .x <-2【答案】B ;提示:1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的交点是(1,-2),根据图象得到x <1时不等式1k x b +<2k x c +成立.4、画出函数21y x =+的图象,并利用图象求:(1)方程2x +1=0的解;(2)不等式2x +1≥0的解集;(3)当y ≤3时,x 的取值范围;(4)当-3≤y ≤3时,x 的取值范围.【思路点拨】可用两点法先画出函数21y x =+的图象,方程2x +1=0的解从“数”看就是自变量x 取何值时,函数值是0,从“形”看方程2x +1=0的解就相当于确定直线21y x =+与x 轴的交点,故图象与x 轴交点的横坐标就是方程2x +1=0的解.同理:图象在x 轴上方所有点的横坐标的集合就构成不等式2x +1>0的解集.【答案与解析】解:列表:在坐标系内描点(0,1)和1,02⎛⎫-⎪⎝⎭,并过这两点画直线,即得函数21y x =+的图象.如图所示.(1)由图象可知:直线21y x =+与x 轴交点1,02⎛⎫-⎪⎝⎭, ∴ 方程2x +1=0的解为12x =-; (2)由图象可知:直线21y x =+被x 轴在1,02⎛⎫-⎪⎝⎭点分成两部分,在点1,02⎛⎫- ⎪⎝⎭右侧,图象在x 轴的上方.故不等式2x +1≥0的解集为12x ≥-; (3)过点(0,3)作平行于x 轴的直线交直线21y x =+于点M ,过M 点作x 轴的垂线,垂足为N .则N 点坐标为(1,0);从图象上观察,在点(1,0)的左侧,函数值y ≤3,则当y ≤3时,自变量x 的取值范围是x ≤1;(4)过(0,-3)作x 轴的平行线交直线21y x =+于点P ,过P 作x 轴的垂线,垂足为H ,则点H 的坐标为(-2,0).观察图象,在(-2,0)的右侧,在(1,0)的左侧,函数值-3≤y ≤3.∴ 当-3≤y ≤3时,自变量的取值范围是-2≤x ≤1.【总结升华】仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程0kx b y +=(0y 是已知数)的解就是直线y kx b =+上0y y =这点的横坐标;(2)一元一次不等式1y ≤kx b +≤2y (1y ,2y 是已知数,且1y <2y )的解集就是直线y kx b =+上满足1y ≤y ≤2y 那条线段所对应的自变量的取值范围;(3)一元一次不等式kx b +≤0y (或kx b +≥0y )(0y 是已知数)的解集就是直线y kx b =+上满足y ≤0y (或y ≥0y )那条射线所对应的自变量的取值范围.举一反三:【变式】(2015秋•蒙城县校级月考)画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式2x+6>0的解;(3)若﹣2≤y≤2,求x 的取值范围.【答案】解:图象为:(1)观察图象知:该函数图象经过点(﹣3,0),故方程2x+6=0的解为x=﹣3;(2)观察图象知:当x >﹣3时,y >0,故不等式2x+6>0的解为x >﹣3;(3)当﹣2≤y≤2时,﹣4≤x≤﹣2.类型三、用一次函数的性质解决不等式的实际问题5、(1)如图,是函数y kx b =+的图象,它与x 轴的交点坐标是(-3,0),则方程kx b +=0的解是_________;不等式kx b +>0的解集是__________.(2)如图:OC ,AB 分别表示甲、乙两人在一次赛跑中.各自的路程S (米)和时间t (秒)的函数图象,根据图象写出一个正确的结论___________.【答案】(1)3x =-;3x <-;(2)根据图象的性质可以得到,两个两个函数的交点意义是当x =9秒时,两个人跑的路程相等,即两个人相遇;或者从图象上看出乙的速度比甲的速度快.【解析】(1)从图象上得到函数的增减性及与x 轴的交点的横坐标,即能求得方程kx b +=0的解和不等式kx b +>0的解集.(2)根据图象的性质可以得到,两个两个函数的交点意义是当x =9秒时,两个人跑的路程相等,即两个人相遇;或者从图象上看出乙的速度比甲的速度快.【总结升华】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解数形结合思想的应用.。

2019年中考数学必考知识点梳理一元一次方程一元二次方程和不等式

2019年中考数学必考知识点梳理一元一次方程一元二次方程和不等式

2019年中考数学必考知识点梳理一元一次方程一元二次方程和不等式何编辑)
一元一次方程一元二次方程和不等式
[知识要点]
1o方程的有关概念:方程、方程的解
2.—元一次方程:
(1)定义:只含有一个未知数,并且未知数的次数是一次的方程。

(ax二b, a 羊0)
(2)解法:去分母、去括号、移项、合并同类项、系数化1
3o -元二次方程
(1)定义:只含有一个未知数,并且未知数的最高次数是2的方
程.
—般形式:ax'+bx+c二0 (a#=0)(2)解法:1)直接开平方法
2)因式分解法
-b±7b2-4ac
3)公式法:X~ 亦
4.—元一次不等式:ax+b>0或ax+b〈0 (a羊0)
5o 一元一次不等式组
解法:1)求岀各个不等式的解集
2)利用数轴确定不等式组的解集。

3
会员升级服务第一拨•清北季。

第19讲 一次函数与方程、不等式(解析版)

第19讲 一次函数与方程、不等式(解析版)

第19讲 一次函数与方程、不等式一、一次函数与一元一次方程的关系一次函数(≠0,为常数).当函数=0时,就得到了一元一次方程,此时自变量的值就是方程=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值. 从图象上看,这相当于已知直线(≠0,为常数),确定它与轴交点的横坐标的值.二、一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 要点: 1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数与图象的交点为(3,-2),则就是二元一次方程组的解. 2.当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数与的图象就平行,反之也成立. 3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.三、方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解的情况:根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.四、一次函数与一元一次不等式 由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点:求关于的一元一次不等式>0(≠0)的解集,从“数”的角度看,就是为何值时,y kx b =+k b y 0kx b +=x kx b +y kx b =+k b x 24y x =-+31322y x =-2431322y x y x =-+ìïí=-ïî35y x =-31y x =+ax b +ax b +ax b +ax b +a b a y ax b =+x ax b +a x函数的值大于0?从“形”的角度看,确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围.五、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.六、如何确定两个不等式的大小关系(≠,且)的解集的函数值大于的函数值时的自变量取值范围直线在直线的上方对应的点的横坐标范围.A .13x y =ìí=îB 2.如图,直线153l x y -=:A .12x y =ìí=îB .3.直线2y ax =+与直线A .3a =y axb =+y ax b =+x y ax b cx d +>+ac 0ac ¹Ûy ax b =+y cxd =+x Ûy ax b =+y cx d =+A .12x =题型2:一次函数与一元一次方程6.若关于x 的方程2x A .()1,0-. .. ..已知方程0ax b +=的解为,则一次函数y ax b =+的图象与A .1x =B .2x =C .3x =D .4x =10.如图,直线5y x =+和直线y ax b =+相交于点(2025)P ,,则方程5x ax b +=+的解是( )A .25x =B .20x =C .15x =D .5x =题型3:一次函数与一元一次不等式(组)11.如图,直线()0y ax b a =+¹过点()0,3A ,()4,0B ,则不等式0ax b +>的解集是( )A .4x >B .4x <C .3x >D .3x <12.如图,已知一次函数y kx b =+的图像经过点()2,1,则不等式10kx b +->的解集为( )A .2x <B .2x >C .1x >D .1x <13.直线y kx b =+经过点()1,2--A 和点()2,0B -,则不等式20x kx b <+<的解集为( )A .<2x -B .2<<1x --C .20x -<<D .10x -<<14.如图,已知直线1y x m =+与21y kx =-相交于点()1,1P -,关于x 的不等式1x m kx +>-的解集是()A .1x >-B .1x ³-C .1x £-D .1x <-15.如图,在平面直角坐标系中,若直线1y x a =-+与直线24y bx =-相交于点P ,则下列结论错误的是( )A .方程4x a bx -+=-的解是1x =B .不等式3x a -+<-和不等式43bx ->-的解集相同C .不等式组40bx x a -<-+<的解集是2<<1x -D .方程组4y x a y bx +=ìí-=î,的解是13x y =ìí=-î16.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b =+来说,y 随x 的增大而减小;②函数y ax d =+的图象不经过第一象限;③不等式ax b cx d +>+的解集是3x >;④()23a b a c -=-.其中正确的有( )A .①②B .②③④C .①②④D .②③一、单选题1.如图,若一次函数y kx b =+的图象经过点()0,1A -,()1,1B ,则不等式1kx b +>的解集为( )A .1x >B .1x <C .0x >D .0x <【答案】A【分析】利用图象得出答案即可.【解析】解:如图:不等式1kx b +>的解集为:1x >.故选:A .【点睛】此题主要考查用函数的观点看方程(组)或不等式,利用数形结合思想解题是关键.2.如图,一次函数y mx n =+和y kx =的图象交于点P ,则关于x ,y 的方程组0y mx ny kx =+ìí-=î的解是( )A .23x y =ìí=îB .23x y =-ìí=-îC .32x y =-ìí=-îD .32x y =-ìí=î【答案】C【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标进行求解即可.【解析】解:由函数图象可知,一次函数y mx n =+和y kx =的图象交于点()32P --,,∴关于x ,y 的方程组0y mx n y kx =+ìí-=î的解是32x y =-ìí=-î.故选C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.如图,一次函数()0y kx b k =+¹的图像经过点()1,2--A 和点()2,0B -,一次函数2y x =的图像过点A ,则不等式2x kx b £+的解集为( )A .1x £-B .2x £-C .1x ³D .21x -£<-【答案】A【分析】根据图像知正比例函数2y x =和一次函数()0y kx b k =+¹的图像的交点,即可得出不等式2x kx b £+的解集.【解析】解:∵由图像可知:正比例函数2y x =和一次函数()0y kx b k =+¹的图像的交点是()1,2--A ,∴不等式2x kx b £+的解集是1x £-,故选:A .【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4.已知方程组1122y k x b y k x b =+ìí=+î的解为35x y =ìí=-î,则直线11y k x b =+与直线22y k x b =+的交点坐标为( )A .(3,5)B .(3,5)-C .(3,-5)-D .(3,5)-【答案】D【分析】由二元一次方程组的解对应两个方程所表示的一次函数的交点坐标,从而可得答案.【解析】解:Q 方程组1122y k x b y k x b =+ìí=+î的解为35x y =ìí=-î,\直线11y k x b =+与直线22y k x b =+的交点坐标为(3,5)-,故选:D .【点睛】本题考查的是二元一次方程组的解与两个一次函数的交点坐标之间的联系,掌握“二元一次方程组的解是这两个方程对应的一次函数的交点坐标”是解题的关键.5.在直角坐标平面内,一次函数y ax b =+的图像如图所示,那么下列说法正确的是( )A .当0x <时,20y -<<B .方程 0ax b +=的解是2x =-C .当2y >-时,0x >D .不等式 0ax b +<的解集是0x <【答案】C【分析】根据函数的图象直接进行解答即可.【解析】解:由函数y ax b =+的图象可知,当0x <时,2y <-,A 选项错误,不符合题意;方程 0ax b +=的解是1x =,B 选项错误,不符合题意;当2y >-时,0x >,故C 正确,符合题意;不等式 0ax b +<的解集是1x <,故D 错误,不符合题意.故选:C .【点睛】本题考查的是一次函数的图象,利用数形结合求解是解答此题的关键.6.如图所示,已知一次函数y 1=kx +b 的图象经过A (1,2)、B (-1,0)两点,y 2=mx +n 的图象经过A 、C (3,0)两点,则不等式组0<kx +b <mx +n 的解集是( )A .01x <<B .13x -<<C .11x -<<D .13x <<【答案】C【分析】由函数图象可知,当-1<x <1时一次函数y 1=kx +b 的图象在x 轴的上方且在一次函数y 2=mx +n 的图象的下方,故可得出结论.【解析】解:∵当-1<x <1时一次函数y 1=kx +b 的图象在x 轴的上方且在一次函数y 2=mx +n 的图象的下方,∴不等式组0<kx +b <mx +n 的解集是-1<x <1.故选:C .【点睛】本题考查的是一次函数与一元一次不等式组,能利用数形结合求出不等式组的取值范围是解答此A .关于x 的方程mx kx b =+的解是1x =B .关于x 的不等式mx kx b ³+的解集是1x >C .当0x <时,函数y kx b =+的值比函数y mx =的值大D .关于,x y 的方程组 0y mx y kx b-=ìí-=î的解是 12x y =ìí=î【答案】B 【分析】根据条件结合图象对各选项进行判断即可.【解析】解:Q 一次函数,y kx b k b =+(是常数,0k ¹)与正比例函数y mx m =(是常数,0m ¹)的图象相交于点()1,2M ,\关于x 的方程mx kx b =+的解是1x =,选项A 判断正确,不符合题意;关于x 的不等式mx kx b ³+的解集是1x ³,选项B 判断错误,符合题意;当0x <时,函数y kx b =+的值比函数y mx =的值大,选项C 判断正确,不符合题意;关于,x y 的方程组0y mx y kx b-=ìí-=î的解是12x y =ìí=î,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质,知道方程组的解就是两个相应的一次函数图象的交点坐标是解题的关键.9.一次函数y mx n =+与y ax b =+在同一平面直角坐标系中的图像如图所示.根据图像有下列五个结论:①0a >;②0n <;③方程0mx n +=的解是1x =;④不等式3ax b +>的解集是0x >;⑤不等式mx n ax b +£+的解集是2x £-.其中正确的结论个数是( )A .1B .2C .3D .4【答案】C 【分析】根据一次函数图像所经过的象限、一次函数图像与y 轴交点的位置以及函数与一元一次不等式的关系进行一一判断即可.二、填空题x>【答案】1【分析】观察图象,根据两函数图象的交点即可得出结论.=【解析】解:Q直线1y kx<\当1x>时,不等式y y∴当12y y >时,求x 的取值范围为x <-2或x >1,故答案为:x <-2或x >1.【点睛】本题考查了一次函数的图像,一次函数与不等式,解题的关键是画出图像,利用数形结合的方法解决问题.16.已知一次函数124y kx k =+-的图象不过第二象限.(1)k 的取值范围为 .(2)对于一次函数()10y ax a a =-+¹,若对任意实数x【答案】84m --≤≤【分析】解方程组求出交点C 的坐标,过点C 时,分别求出m 的值即可得到答案.【解析】解:∵直线24y x =-+与直线三、解答题19.如图,一次函数y kx b =+的图象经过点()1,3A -和点()2,3B -.(1)求出这个一次函数的解析式;(2)直接写出不等式0kx b +³的解集.【答案】(1)一次函数的解析式为:y =(2)12x £【分析】(1)根据直线y kx b =+的图象经过点解出k ,b ,即可;(2)由(1)得,函数的解析式:y =-(1)求直线AB 的表达式;(2)求点C 的坐标.【答案】(1)5y x =-+(2)()3,2C 【分析】(1)利用待定系数法即可求得函数的解析式;(2)解两个函数解析式组成方程组即可求解.【解析】(1)解:Q 直线y kx b =+经过点(5,0)(1,4),,A B 得504k b k b +=ìí+=î,解得:15k b =-ìí=î,直线AB 的表达式为5y x =-+;(2)解:联立245y x y x =-ìí=-+î,解得:32x y =ìí=î,故点C 的坐标为()3,2C .【点睛】本题考查了待定系数法求一次函数的解析式,及求两条直线的交点问题,本题的关键是求两条直线的交点,转化为解两个函数解析式组成方程组.21.如图,根据图中信息解答下列问题:(1)求关于x 的不等式1mx n +<的解集;(2)当12y y £时,求x 的取值范围;(3)当210y y <<时,求x 的取值范围.【答案】(1)0x <(2)当12y y £时, 2x £(3)当210y y <<时, 24x <<【分析】(1)利用直线y mx n =+与x 轴的交点为()0,1,然后利用函数图象可得到不等式1mx n +<的解集.(2)结合两条直线的交点坐标为()2,1.8来求得12y y £解集.(3)结合函数图象直接写出答案.【解析】(1)解:∵直线1y mx n =+与y 轴的交点是()01,,∴当0x <时,11y <,即不等式1mx n +<的解集是0x <;(2)解:由一次函数的图象知,两条直线的交点坐标是()2,1.8,当函数1y 的图象在2y 的下面时,有2x £.∴当12y y £时, 2x £;(3)解:由图可知,两条直线的交点坐标是()2,1.8,当函数1y 的图象在2y 的上面时21y y <,则2x >,又20y =Q 时,4x =,(1)直按写出关于x 的不等式组1122k x b k x b +>ìí+>î(2)若点C 坐标为()2,3,①关于x 的不等式1122k x b k x b +>+的解集是②求ABC V 的面积为______.【答案】(1)23x -<<(1)求一次函数表达式;(2)求D 点的坐标;(3)求COP V 的面积;(4)不解关于x y 、的方程组y y kx =-ìí=î(1)求点B的坐标及b的值;V的面积;(2)求AOB∴2AD =,3OB =,∴11233S AD OB =·=´´=∵3AOB S =△,1131S S ==´=(2)以自变量x 的值为横坐标,相应的函数值线;(3)根据表格及函数图象,探究函数性质:①该函数的最小值为__________;②当1x >-时,函数值y 随自变量x 的增大而③若关于x 的方程11x b +=-有两个不同的解,则【答案】(1)1k =,6m =(3)根据图象可得,①该函数的最小值为1;②当1x >-时,函数值y 随自变量x 的增大而增大;③∵关于x 的方程11x b +=-有两个不同的解,∴由图象可得,b 的取值范围为1b >.故答案为:1;增大;1b >.【点睛】本题主要考查了求一次函数的函数值和自变量,画一次函数图象,一次函数的性质等等,熟知一(1)求点A的坐标;V(2)若点C在第二象限,ACD①求点C的坐标;x+>②直接写出不等式组4V沿x轴平移,点③将CAD把0x =代入4y x =+得:y ∴点B 的坐标为()0,4,设直线BD 的解析式为y k =4b ¢=ìí,(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt V 90BPM Ð=°,直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段求出线段OQ 的长度;若变化,求线段OQ 的取值范围.【答案】(1)直线AB 的表达式为6y x =-+(2)04x <<∵90BPM Ð=°,∴90BPO MPN ÐÐ+=°.∵90BPO PBO ÐÐ+=°,∴MPN PBO ÐÐ=.∵90BOP PNM ÐÐ==°,PB =∴6OQ OA ==.【点睛】本题考查一次函数的综合应用,涉及待定系数法,一元一次不等式与一次函数的关系,等腰直角三角形判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题.。

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。

中考数学《不等式》考点:一元一次不等式、一元一次方程与一次函数的关系

中考数学《不等式》考点:一元一次不等式、一元一次方程与一次函数的关系

中考数学《不等式》考点:一元一次不等式、一元一次方程与
一次函数的关系
为您整理“中考数学《不等式》考点:一元一次不等式、一元一次方程与一次函数的关系”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。

中考数学《不等式》考点:一元一次不等式、一元一次方程与一次函数的关系
1.一元一次不等式ax+b>0(a≠0)是一次函数y=ax+b(a≠0)的函数值>0的情形;
一元一次不等式ax+b<0(a≠0)是一次函数y=ax+b(a≠0)的函数值<0的情形。

2.直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;
使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集。

3.一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值=0的情形;
反之,使函数值y=0的x的取值就是方程ax+b=0(a≠0)的解。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 —11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=—ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b〉0或ax+b〈0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b〉0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b〈0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=—3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=—3x+12的图像,利用图像求:(1)不等式-3x+12〉0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在—6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y〉0时,x的取值范围为x〈4,∴不等式—3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式—3x+12≤0的解集为x≥4.(3)当—6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y〉0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y〈0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x—4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3〈3x—4,解得x〉74,∴当x>74时,y1〈y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4〉2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x—6〉0,画出直线y=3x—6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6〉0,所以不等式的解集为x〉2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x。

一次函数与一元一次方程、一元一次不等式PPT

一次函数与一元一次方程、一元一次不等式PPT
函数值与不等式解的范围
通过观察函数值的正负变化,可以确定不等式解的范围。当函数值从负数变为正数时, 对应的x值范围即为不等式的解集。
函数图像与不等式解的关系
函数图像与不等式解的交点
一次函数图像与不等式的交点即为满足不等式条件的x值。在图像上表现为直线上的某些点。
函数图像与不等式解的个数
函数图像与不等式的交点个数即为满足不等式条件的x值的个数。若只有一个交点,则不等式有一个 解;若有多个交点,则不等式有多个解。
详细描述
一元一次方程的标准形式是 ax + b = 0, 其中 a 和 b 是常数,且 a ≠ 0。这个方 程只有一个未知数 x,且 x 的最高次数 为1。
一元一次方程的解法
总结词
求解一元一次方程通常涉及移项、合并同类项和系数化为1等 步骤。
详细描述
解一元一次方程时,首先将方程中的未知数项移到等式的一侧, 常数项移到另一侧。然后合并同类项,最后将方程两边的系数 化为1,即可得到未知数的解。
一次函数与一元一次方程、一元一 次不等式
目录
• 一次函数 • 一元一次方程 • 一元一次不等式 • 一次函数与一元一次方程、一元一次不等
式的关系 • 综合应用
01 一次函数
一次函数的定义
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是常数,
且 $k neq 0$。
$k$ 称为函数的斜率,$b$ 称为 函数的截距。
一元一次方程与一元一次不等式的综合应用
一元一次方程与一元一次不等式在形式上具有相似性,可 以通过对方程或不等式进行变形,转化为对方的形式,从 而利用对方的形式进行求解。
例如,对于方程 $y = kx + b$ 和不等式 $y < kx + b$,可 以通过将方程变形为 $y - kx - b = 0$,将不等式变形为 $y - kx - b < 0$,从而利用对方的形式进行求解。

2019最新人教版19.2.3一次函数与方程、不等式

2019最新人教版19.2.3一次函数与方程、不等式

的解集是

方程组
2x+y=3 3x-y=2
的解
y 5
y=-2x+3 4
函数y=-2x+3与y=3x-2 的值相等时x的值。
3
2
1 P(1,1)
-4 -3 -2 -1 O 1 y2=33x-24 -1
x
-2
一次函数y=-2X+3和
-3
y=3X-2的图象的交点
-4 -5
坐标。
∴方程组 2x+y=3的解为:x=1
所示,则方程组
y

y
kx b mx n
的解
关于y轴对称的点的坐标


练习巩固
1.已知一次函数y=3x+5与y=2x+b的图象
交点为(-1,2),
y 3 x 5,
则方程组

y

2
x

b
的解是_______,
在同一平面直角坐标系中作出函数
y1=2x-5,y2=-2x+3的图象, 并根据图象说明
y
y=3x+2
3
2
y=2
1
-2 -1 O -1
12 x
用一用
不等式3x+2<-1的解
函数y=3x+2当y<-1 时对应的x的取值范 围。
y
y=3x+2
3 2
1
-2 -1 O -1
12 x
y=-1
用一用
不等式3x+2<0的解 函数y=3x+2当y<0
y
y=3x+2
3
时对应的x的取值范
2

19.2 一次函数 第8课时 一次函数与一元一次方程、不等式

19.2 一次函数  第8课时 一次函数与一元一次方程、不等式

(12-m)台.
根据题意,得W=4×300m+4×180·(12-m)=480m+
8 640.
由题意得:44
30m 415(12 m) 1080, 300m 4180(12 m) 12960,
解得6≤m≤9.
又因为m≠12-m,解得m≠6, 所以7≤m≤9. 所以共有三种调配方案: 方案一:当m=7时,12-m=5,即A型挖掘机7台、B型 挖掘机5台; 方案二:当m=8时,12-m=4,即A型挖掘机8台、B型 挖掘机4台;
返回
2.直线y=-2x+10与x轴的交点坐标是_(_5_,__0_)__,则方程 -2x+10=0的解是_x_=__5____.
返回
3.(中考·桂林)如图,直线y=ax+b过点A(0,2)和点B(-3,
0),则方程ax+b=0的解是( D )
A.x=2
B.x=0
C.x=-1
D.x=-3
返回
4.一元一次方程ax-b=0的解是x=3,则函数y=ax-b的
第十九章 一次函数
19.2 一次函数 第8课时 一次函数与一元一次方程、不等式
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
知识点 1 一次函数与一元一次方程
1.一元一次方程kx+b=0(k≠0,k,b为常数)的解即为函数y =k_x_+__b_(_k_≠_0_)_的图象与_x_轴______的交点的__横____坐标; 反 之 , 函 数 y = kx + b(k≠0 , k , b 为 常 数 ) 的 图 象 与 __x_轴_____的交点的__横____坐标即为方程kx+b=0的解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版中考数学专题复习 专题三(12-2)一次函数与一元
一次方程及不等式当堂达标题
一、选择题
1. 直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是( )
A .x ≤3
B .x ≥3
C .x ≥﹣3
D .x ≤0
2.如图,直线y =ax +b 过点A (0,2)和点B (﹣3,0),则方程
ax +b =0的解是( )
A .x =2
B .x =0
C .x =﹣1
D .x =﹣3
3.在函数14x y =-
+中,若y 的值不小于0.则x ( ) A .x ≤4 B .x ≥4 C .x ≤-4
D .x ≥-4 (第2题图) 4.已知直线y =kx +b 与直线y =3x -1交于y 轴同一点,则b 的值是( )
A .1
B .-1
C .13
D .-13
5.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( ).
A .x >5
B .x <
12
C .x <-6
D .x >-6 二、填空题
6. 如图,直线y =x +b 与直线y =kx +6交于点P (3,5),
则关于x 的不等式x +b >kx +6的解集是_____________.
7.已知关于x 的方程mx +n =0的解是x =-2,则直线y =mx +n
与x •轴的交点坐标是________. (第6题图)
8.已知y 1=2x -5,y 2=-2x +3,当_______时,y 1≤y 2.
三、解答题
9. 已知函数y=kx +b 的图像经过(-1,-5)和(1,1)点.
(1)当x 取怎样的值时,y ≥0;(2)当x <2时,y 值的范围是什么?
10. 某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.
(1)请写出制作纪念册的册数x与甲公司的收费y1(元)的函数关系式.
(2)请写出制作纪念册的册数x与乙公司的收费y2(元)的函数关系式.
(3)如果学校派你去甲、乙两甲公司订做纪念册,你会选择哪家公司?
一次函数与一元一次方程及不等式复习答案
1. A
2.D
3.A
4. B
5. C
6. x >3
7. (-2,0)
8. x ≤2
9.答案:根据题意得 23,2,(1)0320;(2)2, 4.3
k b y x x x y ==--<<即解得时≥≥≥
10.解:(1)1y =5x +1500;
(2)2y =8x ;
(3)因当1y =2y 时,5x +1500=8x ,x =500.
因当1y >2y 时,5x +1500>8x ,x <500
因当1y <2y 时,5x +1500<8x ,x >500
即当订做纪念册的册数为500时,选择甲、乙两家公司均可;
当订做纪念册的册数少于500时,选择乙公司;
当订做纪念册的册数多于500时,选择甲公司.
欢迎您的下载,资料仅供参考!。

相关文档
最新文档