求离心率取值范围—常见6法_

合集下载

求离心率取值范围的八种方法-求离心率的方法总结

求离心率取值范围的八种方法-求离心率的方法总结
例 1 在 给 定 椭 圆 中 , 焦 点 且 垂 直 于 长 轴 的 弦 长 : 过
为 , 焦点 到相 应 准 线 的 距 离 不 小 于 1 则 该 椭 圆 的 离 .
心 率 的 取值 范 围是 (
A.( , ) 1

B ( ) . 0,
解 析 : z一 2 C
解 析 :设 F一目 由 I — l :2 l , PF1 l PF2 1 a, PF】 一 l

5 ・ 4
数 学教 育研 究
21 0 1年第 4 期
4j PF
得I 警 l 警. 目 :F= ' l ' 一 P P 一 . F 2 一s
1 7 9
焦 点 F作 双 曲线 在 第 一 , 象 限 的渐 近 线 的垂 线 z若 z 三 . 与 曲 线 C的 两 支 各 有 一 个 交 点 . 双 曲 线 离 心 率 的 取 求 值范围.
2 1 年 第 4期 01
数 学 教 育 研 究
・ 3 5 ・
求 离 心率 取值 范 围的八 种方 法
方 海 兵 ( 安徽省太和县第八中学 260) 360
离 , 是 圆 锥 曲 线 的 一 个 重 要 性 质 , 近 几 年 高 l f 率 在
. ・ .
考 中频 繁 出现 , 求 离 心 率 的 取 值 范 围 又 是 较 为 复 杂 而 的 一种 , 面 介 绍 八 种 求 离 心 率 的 方 法 , 大 家 参 考 . 下 供
<2


’ . .
2 e< 5 . √ 。 P . < 。 ‘ <√ . l < ‘ 选 B .故 .

又 ・ . ・
一 1 .a - C ≥ ・ 2 ・ ≥ 2 2 .b ≥ .

求离心率的范围问题整理分类

求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率的五种求法

离心率的五种求法

离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。

例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。

解:易知A (-1,0),则直线l 的方程为1x y +=。

直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。

二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。

解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。

1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

求离心率的9种方法【解析版】

求离心率的9种方法【解析版】

求离心率的9种方法【解析版】专题:椭圆和双曲线的离心率第一节:常用求离心率的公式及推导过程汇总注:AFBFBF AF ==λλ或者而不是ABBFAB AF 或 ABBFAB AF 或 第二节:离心率求值一、椭圆离心率的求值1、定义法求离心率2、运用通径求离心率3、运用e=11k 12+-+λλ求离心率4、运用βαβαsin sin )sin(++==a c e 求离心率5、运用结论a k22b k AB OM-=•求离心率—— (A,B 为椭圆上的任意两点,M 为直线AB 的中点)6、运用正弦定理余弦定理求离心率7、运用相似比求离心率8、求出点的坐标带入椭圆方程建立等式 9、运用几何关系求离心率1、定义法求离心率【2018•新课标Ⅰ文】已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为( ) A.31 B.21 C.22 D.322 【答案】C【解析】 14222=+y a x ,∵ ,则 。

【2016 新课标Ⅰ(文)5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=22124b b c ⨯+12c e a ==,故选B 【2010•广东7】若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45 B.35 C.25D. 15【答案】B【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯ 即22222()44()a c b a c b a c +=⇒+==-. 整理得:2225230,5230c ac a e e +-=+-=35e e ⇒=或=-1(舍). 【2012江西文理】椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 . 【答案】55【解析】因为椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,所以(a ﹣c )(a+c )=4c 2,即a 2=5c 2,所以e=55. 2、运用通径求离心率【2014•江西文】设椭圆C 2222x y a b+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于 . 【答案】33【解析】解法一:不妨假设椭圆中的a=1,则F 1(﹣c ,0),F 2(c ,0),当x=c 时,由2222x y a b +=1得y=ab 2=b 2,即A (c ,b 2),B (c ,﹣b 2),设D (0,m ),∵F 1,D ,B 三点共线, ∴,解得m=﹣2b 2,即D (0,﹣2b 2),∴若AD ⊥F 1B ,在,即=﹣1,即3b 4=4c 2,则3b 2=2c=3(1﹣c 2)=2c ,即3c 2+2c ﹣3=0,解得c==,则c=,∵a=1,∴离心率e=a c =33,解法二:由题意得F 1(﹣c ,0),由通径长可得A (c,a 2b ),B (c,-a 2b ),又因DO ∥BF 2,,O 为F 1F 2中点所以D 为F 1B 的中点,则D (0,a 2b 2),若AD ⊥F 1B ,则,即1-cc 0-b -0c 2b -b 222=+•-a a a ,解得e=a c =33。

离心率的常见求法

离心率的常见求法

离心率的常见求法
离心率是一个有重要意义的机械物理概念,是描述物质或者物体在离心力作用下运动的特性。

常见的离心率求法有:
1、对角法:对角法测量离心率的原理是:根据观察介质的同心圆状态,用视线衡量介质的对角线,从而获得两个半径,离心率就是两个半径之比。

3、椭圆法:椭圆法测量离心率的原理是:由介质形成的椭圆形折线变化,衡量介质的长轴和短轴,利用椭圆长轴和短轴之比,进行求解离心率。

4、三角法:三角法测量离心率的原理是:根据三角形的相关公式,利用介质的试样在极坐标系下的不同的极坐标点的坐标,计算出夹角的正弦、余弦,再求出离心率。

离心率的测量方法有很多,上述的这五种比较常用,其中对角法和三角法最为简单方便,但测量精度较低,旋转法和椭圆法测量精度较高,但较复杂,重力法测量不受介质的影响,推荐使用。

求解圆锥曲线离心率“六法”

求解圆锥曲线离心率“六法”
题.
3 50 2 50
曾安 雄

故有 :÷ : 上 : 口
, 选A 故 .
3 变用 公式 。 整体 求 出 e
例 3 (0 6 20 年高考全 国卷 Ⅱ)已知双
曲线 一
口 D
=1 的一 条渐 近线 方 程为 Y =
例 1 (0 6年高考辽 宁文科卷 ) 20 方程 2 一 5 + 2 = 0的 两 个 根 可 分 别 作 为 x x
中 , 焦 点 且 垂 直 于 长 轴 的 弦 长 为 , 点 过 焦 到相 应准线 的 距 离 为 1 则 该 椭 圆 的 离 心 率 , 为
A . B. C. D 1
.4
的交 点 分 别 为 1( 3一

)c 、

)又 I f f c f 得 b , 彻 = , B 解 =9 则 c= ,
2 n.
c. 盟



即 2 2 +2 √ c c= 2 贝 n,4 a= (2 ) , √ +1 c
维普资讯
中学数学杂志( 高中) 20 0 6年第 5期
3 3
求 解 圆 锥 曲线 离 心 率 “ 法 ’ 六 ’
浙江泰 顺县 第一 中学 离心率 是 圆锥 曲线 的一 个 重 要性 质 , 在 高考中频繁出现, 下面例析几种常用求法. 1 根 据离 心率 的范 围 , 算 e 估 即利 用 圆锥 曲 线 的离 心 率 的范 围来 解

锥 曲线 统 一 定 义 , 离 心 率 : 得


n = 詈X一 ) n 2 , 一 (号 一 , — 即c 得c
2 一2 c= 0 有 e a a , 一2 e一2:0 解得 e= ,

圆锥曲线离心率的取值范围的解题方法

圆锥曲线离心率的取值范围的解题方法

圆锥曲线离心率的取值范围的解题方法
一、利用曲线的范围,建立不等关系
例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。

解:设因为,所以
将这个方程与椭圆方程联立,消去y,可解得
二、利用曲线的几何性质数形结合,构造不等关系
例2.直线L过双曲线的右焦点,斜率k=2。

若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。

解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均
在右支上,
例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。

若△ABF2是锐角三角形,求双曲线的离心率的取值范围。

解:如图2,因为△ABF2是等腰三角形,所以只要∠AF2B是锐角即可,即∠AF2F1<45°。


三、利用定义及圆锥曲线共同的性质,寻求不等关系
例4.已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。

解:因为P在右支上,所以
又得
所以又
所以
例5.已知双曲线的左、右焦点分别是F1、F2,P是双曲线右支上一点,P到右准线的距离为d,若d、|PF2|、|PF1|依次成等比数列,求双曲线的离心率的取值范围。

解:由题意得因为,所以,从而
,。

又因为P在右支上,所以。

四、利用判断式确定不等关系
例6.例1的解法一:
解:由椭圆定义知
例7.设双曲线与直线相交于不同的点A、B。

求双曲线的离心率e的取值范围。

解:。

离心率问题的7种题型15种方法(教师版)

离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。

离心率取值范围问题的求解方法

离心率取值范围问题的求解方法

线 z:3z一 4y— O交 椭 圆 E 于 A ,B 两 点 。 若 l AF l+ l BF l一 4,点 M 到 直 线 £的 距 离 不 小
a z

一 十 n,3P 2— 5g一 2> O,所 以 8> 2 或 e<

于 了4 则 椭 圆 E 的 离 心 率 的 取 值 范 围 是 ( )。
I p I
一 e 得 :—
一 e。 由 焦 半 径 公 式 得 :
高 考 中 解 析 几 何 试 题 的 一 个 倍 受 青 睐 的 考 查 点 ,其 求 解 策 略 的 关 键 是 建 立 目 标 不 等 式 ,建 立 不 等 式 的 方 法 一 般 有 :利 用 曲 线 定 义 ,利 用
南 一 的离心率e的取值范围是‘
+ 1。
又 >l,所以 ∈(1, +1)。


, 则
:::一
“1_组
≤ 一 ,即 一 。
e - 2e~ 1≥ 0,解 得 1< e≤ 1+ 。
曲 线 的 几 何 性 质 ,利 用 题 设 指 定 条 件 等 。

借助 定义 求离心 率
由 圆 锥 曲 线 的 统 一 定 义 知 ,圆 锥 曲 线 的
立 竿 见 影 :若 双 曲 线 一 一 1( > o ,

倒 9 已知双曲线 LC 2一 y 2—1(“>。 ,
左 、右 焦 点 分 别 为 F.、F ,如 果 椭 圆 上 存 在 点 6> o)的 左 ,右 焦 点 分 别 为 F l( O),F 2(
P ,使 F·PFz一 90 ̄求 离 心 率 的 取 值 范 围 。
解 析 :由 椭 圆 定 义 ,有 2a — l PF f+ I PF。l,平 方 后 得 :

高中数学圆锥曲线离心率知识点归纳总结

高中数学圆锥曲线离心率知识点归纳总结

⾼中数学圆锥曲线离⼼率知识点归纳总结
基础知识点记忆
离⼼率是描述圆锥曲线“扁平程度”或“张⼝⼤⼩”的⼀个重要数据。

求离⼼率或取值范围题型综合性强,是解析⼏何的⼀个难点!
求离⼼率的常⽤⽅向
【具体⽅法】
1、利⽤椭圆上⼀点 P(x,y)坐标的取值范围,构造关于 a,b,c 的不等式
关于a,b,c 不等式
3、利⽤圆锥曲线的“焦三⻆形”+余弦定理+均值不等式
4、利⽤圆锥曲线的定义,结合完全平⽅数(式)⾮负的属性构造关于a,b,c 的不等式
5、将题中已知不等关系巧妙转化为关于 a,b,c 的不等式
6、利⽤圆锥曲线参数⽅程设点,结合正余弦函数的有界性,构造关于a,b,c 的不等式
与离⼼率有关的⼆级结论。

离心率的五种求法

离心率的五种求法

离心率的五种求法离心率的五种求法一、直接求出a、c,求解e当已知圆锥曲线的标准方程或a、c易求时,可利用离心率公式e=c/a来解决。

例如,已知双曲线2-x^2/y^2=1(a>c)的一条准线与抛物线y^2=-6x的准线重合,则该双曲线的离心率为(3a^2c^2-13c^2)/(2a^2c)。

解法为:抛物线y=-6x的准线是x=2c^2/3,即双曲线的右准线x=c^2/(a-c)=2c^2/3-1/3.由此得到c=2,a=3,e=c/a=2/3.因此,选D。

变式练1:若椭圆经过原点,且焦点为F1(1,0)、F2(-1,0),则其离心率为√(2/3)。

解法为:由F1(1,0)、F2(-1,0)知2c=2,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=2,解得a=3/2,e=c/a=√(2/3)。

因此,选C。

变式练2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为√13/2.解法为:由题设a=2,2c=6,则c=3,e=c/a=√13/2.因此,选C。

变式练3:点P(-3,1)在椭圆4x^2/a^2+2y^2/b^2=1(a>b)的左准线上,过点P且方向为(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为√113/5.解法为:由题意知,入射光线为y-1=-x/2,关于y=-2的反射光线(对称关系)为y+5=-2(x+3),解得a=3,c=√5,则e=c/a=√113/5.因此,选A。

二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。

1到l1的距离,又AB的长为2a,∴XXX的长为a。

设AB的中点为M,则MF1为椭圆的半长轴,由于F1在x轴右侧,∴F1的横坐标为c,且c>a。

设F1为(c,0),则根据椭圆的统一定义,可得c2x2y2a2c2。

其中c为椭圆的半焦距,由题意可得AD的长为a,即MF1的长为a,又MF1为椭圆的半长轴,∴a=c,代入上式得x2y2122c离心率为e=cacc1故选D。

高考数学离心率的求值或取值范围问题解题模板

高考数学离心率的求值或取值范围问题解题模板
以 ,因为 ,所以 ,所以 ,故应选 .
考点:1、双曲线的简单几何性质;2、双曲线的概念.
【方法点评】本题考查了双曲线的简单几何性质和双曲线的概念,考查学生综合知识能力和图形识别能力,
数中档题.其解题的一般思路为:首先根据矩形的性质并将直线 代入双曲线 方程中即可得出点 的坐标,再由矩形的几何性质可得 ,最后可得出所求的结果.其解题的关键是正确地运用矩形的几何性质求解双曲线的简单几何性质.
离心率的求值或取值范围问题解题模版
【高考地位】
圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题,究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础.
因为 为等边三角形,所以 ,
所以 ,
因为 ,所以 ,
因为在 中, , ,
所以 ,
即 ,
所以 ,
所以双曲线的离心率为 ,
故选:B
方法四借助题目中给出的不等信息
万能模板
内容
使用场景
离心率的求值或取值范围
解题模板
第一步找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立, 的范围等;
第二步列出不等式,化简得到离心率的不等关系式,从而求解.
【详解】解:因为过 作垂直于 轴的直线与椭圆交于 两点( 在 轴上方),
所以 为椭圆的一条通径,
所以 , , , ,
因为 ,
所以 ,即: ,
整理得: ,
所以 .
故选:C.
方法三借助平面几何图形中的不等关系

离心率的取值范围

离心率的取值范围

离心率的取值范围离心率是刻画圆锥曲线几何特点的一个重要尺度.常用的方法:(1)直接求出a c、,求解e:已知标准方程或a c、易求时,可利用离心率公式cea=来求解;(2)变用公式,整体求出e:以椭圆为例,如利用22222221c a b bea a a-===-,2222211cebc bc==++;(3)构造a c、的齐次式,解出e:根据题设条件,借助a b c、、之间的关系,构造出a c、的齐次式,进而得到关于e的方程,通过解方程得出离心率e的值.1 借助平面几何图形中的不等关系根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,然后将这些量结合曲线的几何性质用,,a b c进行表示,进而得到不等式,从而确定离心率的范围.例1.已知椭圆的中心在O,右焦点为F,右准线为l,若在l上存在点M,使线段OM的垂直平分线经过点F,则椭圆的离心率的取值范围是_____________.FO牛刀小试1.(1)已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是______________.(2)已知双曲线2222:1(0,0)x y C a b a b -=>>,若在双曲线C 的渐近线上存在点P 使212113PF PF F F -=,则双曲线C 离心率的取值范围是( )A.B.(1,3)C.)+∞D.(3,)+∞2借助题目中给出的不等信息根据试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等,进一步得到离心率的不等关系式,从而求解.例2.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则椭圆离心率的取值范围是_____________.【解析】左焦点为1F ,连接1,AF BF 可得四边形1AF BF 为矩形,AO OF OB c ∴===,2,AB c AF BF =⊥ 2sin ,2cos AF c BF c αα∴==又11,2AF BF AF AF a =+=Q2sin 2cos 2c c a αα∴+=x化简可得,14e πα=⎛⎫+ ⎪⎝⎭,又,124ππα⎡⎤∈⎢⎥⎣⎦Qe ∴∈⎣⎦牛刀小试2.过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若1132k <<,则椭圆的离心率的取值范围是.【解析】2AF a c =+|,222a c BF a -=,()2222222tan a c BF a c a k BAF AF a c a a c --=∠===++, 又∵1132k <<,∴()221132a c a a c -<<+,∴2111312e e -<<+,解得1223e <<.3 借助函数的值域求解范围根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式,通过确定函数的定义域后,利用函数求值域的方法求解离心率的范围.[来源:学|科|网例3.(1)已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为_________________.(2)已知椭圆221112211:1(0)x y C a b a b +=>>与双曲线222222222:1(0,0)x y C a b a b -=>>有相同的左、右焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1224FF PF =,设1C与2C 的离心率分别为12,e e ,则21e e -的取值范围是( ) A.1(,)3+∞B.1(,1)3C.1(,)2+∞D.1(,2)2牛刀小试3.(1)已知两定点()2,0A -和()2,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值2212e e +为______________.(2)已知椭圆和双曲线有相同的焦点12,F F ,设点P 是该椭圆和双曲线的一个公共点,且123F PF π∠=,若椭圆和双曲线的离心率分别为12,e e ,则1211e e +的最小值为__________.【解析】由题意可知,2c =,由2c e a a==可知e 最大时需a 最小,由椭圆的定义||||2PA PB a +=,即使得||||PA PB +最小,如图,设(2,0)A -关于直线3y x =+的对称点(,)D x y ,由011202322y x y x -⎧⋅=-⎪⎪+⎨+-+⎪=+⎪⎩,可知(3,1)D -.所以||||||||||PA PB PD PB DB +=+≥==2a ≥a ≥,则2c e a=≤=.4 根据椭圆或双曲线自身的性质求范围在求离心率的范围时有时常用椭圆或双曲线自身的性质,如椭圆()222210,0x y a b a b+=>>中,a x a -≤≤,P 是椭圆上任意一点,则1a c PF a c -≤≤+等。

(2021年整理)求离心率取值范围—常见6法

(2021年整理)求离心率取值范围—常见6法

求离心率取值范围—常见6法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(求离心率取值范围—常见6法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为求离心率取值范围—常见6法的全部内容。

求离心率取值范围—常见6法在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中。

离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据,在每年的高考中它常与“定义"、“焦点三角形”等联系在一起。

因此求离心率的取值范围,综合性强,是解析几何复习的一个难点.笔者从事高中数学教学二十余载,积累了六种求解这类问题的通法,供同仁研讨。

一、利用椭圆上一点P(x,y)坐标的取值范围,构造关于a,b,c的不等式例1 若椭圆上存在一点P,使,其中0为原点,A为椭圆的右顶点,求椭圆离心率e的取值范围。

解:设为椭圆上一点,则。

① 因为,所以以OA为直径的圆经过点P,所以。

② 联立①、②消去并整理得当时,P与A重合,不合题意,舍去。

所以又,所以,即得,即又,故的取值范围是二、利用圆锥曲线的焦点和曲线上一点构成的“焦三角形”三边大小关系,构造关于a,b,c不等式例2 已知双曲线左、右焦点分别为F1、F2,左准线为,l P是双曲线左支上一点,并且,由双曲线第二定义得,所以. ①由又曲线第一定义得②由①-②得在中,所以 ,即。

又,从而解得的取值范围是。

三、利用圆锥曲线的“焦三角形"+余弦定理+均值不等式例3 设椭圆的两焦点为F1、F2,问当离心率E在什么范围内取值时,椭圆上存在点P,使=120°.解:设椭圆的焦距为2c,由椭圆的定义知.在中,由余弦定理得==(所以所以.又,故的取值范围是四、利用圆锥曲线的定义,结合完全平方数(式)非负的属性构造关于a,b,c的不等式例4 如图1,已知椭圆长轴长为4,以y轴为准线,且左顶点在抛物线上,求椭圆离心率e的取值范围。

离心率范围问题的求解策略

离心率范围问题的求解策略

离心率范围问题的求解策略离心率是描述天体椭球轨道形状的一个重要参数,它是一个无量纲的数值,代表了轨道的椭圆程度,是衡量轨道形状和运动的重要指标之一。

在天体力学中,离心率的范围问题是一个值得深思的问题,因为离心率的取值范围直接影响了天体的运动状态和轨道形状。

本文将探讨离心率范围问题的求解策略,希望能够给读者一些启发和帮助。

我们需要了解离心率的定义。

离心率e是描述椭圆轨道形状的一个参数,它的取值范围在0到1之间,当离心率为0时,轨道是一个圆形;当离心率在0到1之间变化时,轨道是一个椭圆;当离心率为1时,轨道是一个抛物线;当离心率大于1时,轨道是一个双曲线。

离心率的取值范围对轨道形状和运动状态有着重要的影响,因此离心率范围问题需要被认真对待。

我们需要思考离心率的物理意义。

离心率的大小代表了轨道椭圆程度,是描述轨道形状和运动状态的重要指标之一。

离心率越接近于0,轨道的形状越接近于圆形,天体围绕中心天体的运动越稳定;离心率越接近于1,轨道的形状越接近于抛物线,天体的运动越趋向于离心运动。

离心率的物理意义是十分重要的,它直接影响了天体的轨道形状和运动状态。

面对离心率范围问题,我们首先可以从离心率的定义出发,明确离心率的取值范围在0到1之间。

这一点是天文学和天体力学研究中的一个基本知识,需要我们牢固掌握。

在实际问题中,我们可以根据离心率的取值范围来推导出一些结论和规律,从而更好地理解离心率的作用和影响。

我们可以从天体运动的角度来分析离心率范围问题。

离心率是描述轨道形状和运动状态的重要参数,它直接影响了天体围绕中心天体的运动方式和轨道形状。

在天体力学研究中,我们可以通过分析离心率的取值范围,来研究不同离心率下天体的轨道形状和运动状态,从而深入理解离心率的物理意义和作用。

我们还可以通过数学模型和计算模拟来探讨离心率范围问题。

通过建立数学模型和计算模拟,我们可以对离心率的取值范围进行定量分析和研究,从而得出一些有关离心率范围问题的结论和结论。

离心率的求值或取值范围问题

离心率的求值或取值范围问题

离心率的求值或取值范围问题【方法技巧】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式, 第三步 解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.【应用举例】【例题1】若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )A .34 B .23 C .12 D .14【答案】C 【解析】试题分析:根据椭圆定义,原点到两焦距之和为2a=1+2,焦距为2c=2,所以离心率为12. 考点:椭圆的定义. 【难度】较易【例题2】点P (-3,1,过点P 且方向为a =(2,-5)的光线经直线y=-2反射后通过椭圆的左焦点,则此椭圆离心率为( )【答案】A 【解析】试题分析:因为给定点P (-3,1根据光线的方向为a =(2,-5)y=-2与入射光线的斜率互为相反数可知焦点的坐标为(1,0),因此可知 A 考点:本试题考查了椭圆性质的知识点。

点评:解决该试题的关键是利用椭圆的反射原理得到直线斜率的特点,结合平面反射光线与入射光线的斜率互为相反数,得到c 的值,同时得到a,b,c 的关系式,进而得到结论,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、利用椭圆上一点 P(x,y)坐标的取值范围,构造关于 a,b,c 的不等式
例 1 若椭圆
上存在一点 P,使
为椭圆的右顶点,求椭圆离心率 e 的取值范围。
解:设
为椭圆上一点,则
,其中 0 为原点,A
P,所以
.
① 因为
,所以以 OA 为直径的圆经过点
.
② 联立①、②消去 并整理得

时,P 与 A 重合,不合题意,舍去。
点 F2,与椭圆交于 A、B,与 Y 轴交于 C,B 为 CF2 的中点,若 的取值范围。
,求椭圆离心率 e
解 : 设 F2 (C,0),直 线

,代入椭圆方程得
.

所以
,所以

解得
因为
,所以


,所以
六、利用圆锥曲线参数方程设点,结合正余弦函数的有界性,构造关于 a,b,c 的不等式
例 6 若椭圆
所以

,所以



,即

,故 的取值范围

二、利用圆锥曲线的焦点和曲线上一点构成的“焦三角形”三边大小关系,构造关于
a,b,c 不等式
例 2 已知双曲线 是双曲线左支上一点,并且
左、右焦点分别为 F1、F2,左准线为 l, P
,由曲线第一定义得
②由①-②得

中,
所以
例 4 如图 1,已知椭圆长轴长为 4,以 y 轴为准线,且左顶点在抛物线
求椭圆离心率 e 的取值范围。
上,
解:设椭圆的中心为 ,并延长交 y 轴于 N,则 =
因为
,所以
。所以
所以椭圆离心率 的取值范围为 五、将题中已知不等关系巧妙转化为关于 a,b,c 的不等式
例 5 已知椭圆
的两焦点为 F1、F2,斜率为 K 的直线 过右焦
上存在一点 P,使
A 为椭圆的右顶点,求椭圆离心率 e 的取值范围。
解:设 P(
),由

,其中 O 为原点,


即(

解得

因此要使①有解,需


.

,故 e 的取值范围是
总之,求圆锥曲线的离心率范围首先从定义出发,利用圆锥曲线上点坐标的范围和焦三 角形的三边大小 关系,结合参数方程中三角函数有界性和均值不等式,有时也常常转化为 一元二次方程利用判别式或者完全平方数(式),具体问题具体对待,贵在划归转化。


.又 ,从而解得 的取值范围是

三、利用圆锥曲线的“焦三角形”+余弦定理+均值不等式
例 3 设椭圆 取值时,椭圆上存在点 P,使
的两焦点为 F1、F2,问当离心率 E 在什么范围内 =120°.
解:设椭圆的焦距为 2c,由椭圆的定义知
.

中,由余弦定理得
= 所以
=(
所以
.

,故 的取值范围是
四、利用圆锥曲线的定义,结合完全平方数(式)非负的属性构造关于 a,b,c 的不等式
求离心率取值范围—常见 6 法
在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中。离心率是描述圆锥曲线“扁 平程度”或“张口大小”的一个重要数据,在每年的高考中它常与“定义”、“焦点三角形”等联 系在一起。因此求离心率的取值范围,综合性强,是解析几何复习的一个难点。笔者从事高 中数学教学二十余载,积累了六种求解这类问题的通法,供同仁研讨。
相关文档
最新文档