中考数学复习考点专题练习---图形的旋转综合(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习考点专题练习---图形的旋转综合
一.选择题
1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数为( )
A.55°B.75°C.85°D.90°
2.下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有( )
A.①②③B.②③④C.①②④D.①②③④
3.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC 交于点F,则∠AFB的度数是( )
A.60°B.70°C.80°D.90°
4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE 绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有( )个是正确的.
①∠DAF=45° ②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2
A.4B.3C.2D.1
5.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是( )
A.75°B.78°C.80°D.92°
6.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是( )
A.8B.6C.4D.5
7.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(﹣2,0).将△OAB绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是( )
A.B.C.2D.
8.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为( )
A.B.C.D.
9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<
90°).若∠1=116°,则∠α的大小是( )
A.64°B.36°C.26°D.22°
10.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A
面积的,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的( )
A.B.C.D.
二.填空题
11.如图,△ABC为等边三角形,D是△ABC内一点,将△ABD绕点A按逆时针方向旋转到△ACP位置,则∠PAD= °.
12.如图,在△ABC中,∠C=90°,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是 cm.
13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为 .
14.如图,将矩形ABCD绕点B顺时针旋转90°至EBGF的位置,连接AC,EG,取AC,EG的中点M,N连接MN,若AB=8,BC=6,则MN= .
15.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′,当α+β=60°时,我们称△AB′C′是△ABC的“双旋三角形”,如果等边△ABC的边长为a,那么它所得的“双旋三角形”中B′C′= (用含a的代数式表示).
16.如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相
交于点G,若DF=6,则GF的长为 .
17.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD= .
18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2019的坐标为 .
19.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC,连接B′C′,当α+β=60°时,我们称△AB′C’是△ABC的“双展三角形”,已知一直角边长为2的等腰直角三角形,那么它的“双展三角形”的面积为 .
20.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是 .
三.解答题
21.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为 ;
(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:
①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;
②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在
△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.
22.在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,求△BCD的面积;
(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)
23.如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B (3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:
(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.
①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标
及点D到直线RQ的距离;