2019届四川省成都石室中学高三适应性考试(一)数学理科试题

合集下载

成都石室中学12月份一诊模拟数学(理科参考答案)

成都石室中学12月份一诊模拟数学(理科参考答案)
(2)设 M ( x1 , y1 ) , N ( x2 , y2 ) ,
x2 y 2 1 ; ……………………5 分 6 2
6km x1 x2 3k 2 1 x2 y 2 1 3m 2 6 2 2 2 (1 3 k ) x 6 kmx 3 m 6 0 x x 2 6 1 2 3k 2 1 y kx m 12(2 m2 6k 2 ) 0
· · · · · · · · · · · 9分
n (1,0,1)
设直线 AE 与平面 CED 的所成角为
sin cos n, EA
3 6 6 ,则直线 AE 与平面 CED 的所成角的正弦值为 .· · · · · · · · · · · 12 分 4 4 22
(2)由(1)可知 DO EO, DO AB, EO AB ,如图,以 O 为坐标原点, OE 为 x 轴正方向, OB 为
理科数学参考答案 第1页 共 6页
y 轴正方向, OD 为 z 轴正方向建立空间直角坐标系 O xyz
由已知得 E
· · · · · · · · · · · 7分
2
……………………10 分
2 2 2
由 12(2 m 6k ) 0 对任意 k 恒成立,则 m 2 6k 0 m 2 , ( 标注:对于任意的 k ,直线 l : y kx m均与椭圆相交,直接得到点 (0, m) 位于椭圆内部,也可得
理科数学参考答案
第3页 共 6页
CBF 2 CBF 3 4
2 2
· · · · · · · · · · · 9分 · · · · · · · · · · · 10 分

成都石室中学2019届三诊模拟数学理科试题

成都石室中学2019届三诊模拟数学理科试题

9.
已知各项为正数的数列{an} 的前 n 项和 Sn 满足 Sn
an
2, 1且
0,

a6
,
1 2
a5
,
2a4
成等差数
列,则{ 1 }的前 6 项和为( ) anA. Leabharlann 26B. 25463
C.
64
31
D.
32
10.已知 A, B 为双曲线
x2 a2
y2 b2
1(a
0,b 0) 的左右顶点,过右顶点 B 与双曲线的一条渐近线平行的直线
积等于16 ,则球心 O 与圆 C 形成的圆锥的体积等于

16.已知抛物线 C : y2 4x 的焦点为 F ,过点 F 且斜率大于 0 的动直线 l 交抛物线 C 于 A, B 两点,B 在 x 轴
上方,P,Q 分别为圆 (x 1)2 y2 1 上的两个动点,当 4 AP BQ 最小时,原点 O 到 l 的距离为 _________.
A. 0.23
B. 0.27
C. 0.46
D. 0.54
5. 已知函数 f (x) 是定义在 R 上的偶函数,且当 x 0 时, f (x) log2 (1 x) ,若 f (a2 1) 1,则实数 a
的取值范围是( )
A. ( 2,0) (0, 2)
B. ( 2, 2)
C. (1,0) (0,1)
t2, 70 M 75
5
20.(本小题满分 12 分)
已知椭圆
C
:
x2 a2
y2 b2
1(a b 0) ,焦距为 2 ,直线 l :
y
x 与椭圆 C
交于 A, B 两点,

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

成都石室中学 一诊模拟试卷数学 理科

成都石室中学 一诊模拟试卷数学 理科

成都石室中学高2019届十二月份一诊模拟试卷数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R U =,集合{|A x y ==,集合12{|,0}B y y x x ==>,那么集合()U C A B =A .∅B .(0,1]C .(0,1)D .(1,)+∞2.若向量,a b 是非零向量,则“||||a b a b +=-”是“,a b 夹角为2π”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3. 已知等差数列{}n a 中,前n 项和n S 满足7235S S -=,则9S = A .54B .63C .72D .814. 已知双曲线C :2221(0)9y x b b-=>,其焦点F 到C 的一条渐近线的距离为2,该双曲线的离心率为 ABC .23D .325. 下列结论正确的是A .当0x >且1x ≠时,1ln 2ln x x+≥ B .当0x >时,ln x x > C .当2x ≥时,1x x-无最小值 D .当2x ≥时,12x x +≥6.72(a x的展开式中,常数项为14,则a =A . 14-B . 14C .2-D . 27.已知定义在R 上的奇函数()f x 满足(2)=(2)f x f x +-,且当(2,0)x ∈-时,2()log (3)f x x a =++,若(13)2(7)1f f =+,则a =A .43-B .34-C .43D .348.已知()cos22,cos68AB =,()2cos52,2cos38AC =,则ABC △的面积为A .12BCD .19. 如图,已知底面为直角三角形的直三棱柱111ABCA B C ,其三视图如图所示,则异面直线1B A 与1A C 所成角的余弦值为A.45 B.C.D.10.已知函数()3sin 22f x x x =,将()f x 图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移6π个单位,得到函数()g x 的图象,已知()g x 分别在1x ,2x 处取得最大值和最小值,则12x x +的最小值为 A.3π B.23π C.π D.43π11. 已知抛物线2:C y ax =的焦点坐标为(0,1),点(0,3)P ,过点P 作直线l 交抛物线C 于,A B 两点,过,A B 分别作抛物线C 的切线,两切线交于点Q ,则QAB ∆面积的最小值为A. B. C. D.12. 已知函数2()24(0)f x ax bx a a =+->,241()exx x g x ++=,且(2e)0f ->,则方程[()]0f g x =的实数根的个数不可能为A .3B .4C .5D .6二、填空题:本大题共4小题,每小题5分,共20分.13. 若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则5z x y =+的最大值为 . 14. 执行如图所示的程序框图,若输入12x =,则输出y 的值为______.15. 已知数列{}n a 中,121n n a a +=-,12a =,设其前n 项和为n S ,若对任意的*n N ∈,(1)23nSn k n +-≥-恒成立,则k 的最小值为________.16. 如图,四边形ABCD 是边长为1的正方形,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且1ED FB ==,G 为线段EC 上的动点,则下列结论中正确的是_________.①EC AF ⊥;②该几何体外接球的表面积为3π; ③若G 为EC 中点,则//GB 平面AEF ; ④22AG BG +的最小值为3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分 17.(本题满分12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知6C π=,2a =,ABC ∆F 为边AC 上一点.(1)求c ;(2)若CF =,求sin BFC ∠.18.(本题满分12分)如图,在四棱锥E ABCD -中,底面为菱形,已知60DAB EAB ∠=∠=︒,2AD AE ==,DE =.(1)求证:平面ABE ⊥平面ABCD ;(2)求直线AE 与平面CED 的所成角的正弦值.19.(本题满分12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:(1)请用相关系数说明可用线性回归模型拟合月度市场占有率y 与月份代码x 之间的关系; (2)求y 关于x 的线性回归方程,并预测该公司2018年12月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A ,B 两款车型报废年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?回归直线方程为ˆˆˆybx a =+,其中20. (本题满分12分)已知圆221:(2)24O x y ++=,点2(2,0)O ,C 为圆1O 上任意一点,点P 在直线1O C 上,且满足222O C O M =,20PM CO ⋅=,点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)若直线:l y kx m =+(不与坐标轴重合)与曲线E 交于,M N 两点,O 为坐标原点,设直线OM 、ON 的斜率分别为1k 、2k ,对任意的斜率k ,若存在实数λ,使得12()0k k k λ++=,求实数λ的取值范围.21. (本题满分12分)已知函数()=ln 1f x a x -,其中0a ≠,()2=1g x x -,()()()h x f x g x =+.(1)若23y x =-是()f x 的一条切线,求a 的值;(2)在(1)问的前提下,对任意的实数[1,2]λ∈,若存在正实数12,x x ,使得()1212()()h x h x x x λ+=+,求12x x +的最小正整数值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22. 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线1C 的参数方程为:2cos (1sin x t t y t αα=+⎧⎨=-+⎩为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为:=6cos 8sin ρθθ-,直线1C 与曲线2C 交于,A B 两点,(1)求曲线2C 的普通方程及AB 的最小值; (2)若点(2,1)P -,求22PA PB +的最大值.23. 选修4-5:不等式选讲(1)当2a =时,解不等式()2f x x +<;(2的解集非空,求b 的取值范围.。

成都石室中学高2019届三诊模拟考试-数学理科试题答案解析

成都石室中学高2019届三诊模拟考试-数学理科试题答案解析

一名高三学生,其成绩不低于 115 分的概率是( )
A. 0.23
B. 0.27
C. 0.46
D. 0.54
解 析 : 由 于 X N(105, 2 ) , P(95 X 115) 0.54 , 则 P(105 X 115) 0.27 , 所 以
P(x 1 1 5 ) 0 . 5 0 . 2,7故选0A. 2 3
解析:
z

i 2018 i2019 1

i50442 i50443 1

i2 i3 1

1 i 1


1 2

1 2
i
,所以复数
z
的虚部是

1 2
,故选
D
.
2.
已知集合 A {x | x 3}, B {x | log 4 x
1} ,则( 2

A. A B
B. (CU A) B R
2
2
B. ቤተ መጻሕፍቲ ባይዱ1 e2
D. [0, ] ,使 e1 e2 2
解析: e1 e2 | e1 | | e2 | cos cos 1,故选 D .
4. 经统计,成都市高三二诊理科数学成绩 X N(105, 2 ) ,且 P(95 X 115) 0.54 ,则从成都市任选

解 : 设 OC h, OMC 30 , OM 2h,OA 3h, 延 长 MC 交 圆 C 于 B , 在 RT OBC 中 ,
BC 2 2h 4 h 2 , S 42 2 16 2 ;
3
3
16.已知抛物线 C : y2 4x 的焦点为 F ,过点 F 且斜率大于 0 的动直线 l 交抛物线 C 于 A, B 两点,B 在 x 轴

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题(解析版)

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题(解析版)

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题一、单选题1.已知集合{}211|10,|24,2x M x x N x x Z +⎧⎫=-≤=<<∈⎨⎬⎩⎭,则M N ⋂=( )A .{}1,0B .{}1C .{}1,0,1-D .φ【答案】A【解析】试题分析:{}{}{}{}2|10|11,1,0,1,0M x x x x N M N =-≤=-≤≤=-∴⋂=-,故选A.【考点】集合的运算.2.设1z i =-(i 是虚数单位),则2z z+=( ) A .22i - B .22i +C .3i -D .3i +【答案】B【解析】利用复数的除法运算、共轭复数的定义可计算出2z z+的值. 【详解】1z i =-Q ,1z i =+,则()()()()2122112122111i z i i i i z i i i ++=++=++=+=+--+, 故选:B. 【点睛】本题考查复数的计算,考查复数的除法、共轭复数的相关计算,考查计算能力,属于基础题.3.若多项式()210011x x a a x +=++()()91091011a x a x +++++L ,则9a =( )A .9B .10C .-9D .-10【答案】D【解析】()()9011010019910999991...1[...]n n n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 4.一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A .(4)3π+B (8)3π+C .(8)3π+D .(43π+【答案】B【解析】试题分析:该几何体是圆锥的一半与一四棱锥的组合体.圆锥底半径为1,四棱锥的底面是边长为2的正方形,高均为2×3(8)3π+选B .【考点】本题主要考查三视图,几何体的体积计算.点评:基础题,三视图是高考必考题目,因此,要明确三视图视图规则,准确地还原几何体,明确几何体的特征,以便进一步解题.5.设0x >,0y >,且1142x y+=,422log log z x y =+,则z 的最小值是( ) A .4- B .3-C .2log 6-D .232log 8【答案】B【解析】利用基本不等式可求出xy 的最小值,利用换底公式以及对数的运算律可得出z 的最小值. 【详解】0x Q >,0y >,且1142x y +=,11111422222x y x y xy ∴=+≥⋅=122xy≤,18xy ∴≥,当且仅当2x y =时取等号.42222212log log log log log log 38z x y x y xy =+=+=≥=-,则z 的最小值是3-. 故选:B. 【点睛】本题考查利用基本不等式求最值,同时也考查了换底公式以及对数运算性质的应用,考查计算能力,属于基础题.6.若A 为不等式组0{02x y y x ≤≥-≤所示的平面区域,则当a 从-2连续变化到1时,动直线x+ y =a 扫过A 中的那部分区域面积为( ) A .2 B .1 C .34 D .74【答案】D【解析】试题分析:如图,不等式组0{02x y y x ≤≥-≤表示的平面区域是,动直线在轴上的截距从变化到1,知是斜边为3等腰直角三角形,是直角边为1的等腰直角三角形,所以区域的面积,故选D.【考点】二元一次不等式(组)与平面区域点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.7.函数y=sin(πx+)(>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB=θ,则sin2θ的值是( )A .1665B .6365C .1665-D .1663-【答案】A【解析】由周期公式可知函数周期为2,∴AB =2,过P 作P C ⊥AB 与C ,根据周期的大小看出直角三角形中直角边的长度,解出∠APC 与∠BPC 的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ. 【详解】. ,BAP a PBA β∠=∠=()a θπβ=-+P C ⊥AB 与C115||,||||142AC T AP PC ====||255sin ,cos ||55PC a a AP ===3313||,||422BC T PB '===213313sin ββ==16sin 22sin cos 2sin()cos()2(sin cos cos sin )(cos cos 65=a a a θθθβαβαβββ=-++=-+=, 故选:A. 【点睛】本题主要考查三角函数的图象与性质,考查了两角和的正弦公式以及二倍角的正弦公式,属于综合题.8.下列命题中:①若“x y >”是“22x y >”的充要条件;②若“x R ∃∈,2210x ax ++<”,则实数a 的取值范围是()(),11,-∞-+∞U ;③已知平面α、β、γ,直线m 、l ,若αγ⊥,m γα=I,l γβ=I ,l m ⊥,则l α⊥;④函数()13xf x ⎛⎫= ⎪⎝⎭11,32⎛⎫ ⎪⎝⎭. 其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【解析】利用充分条件与必要条件的关系判断①的正误;根据特称命题成立的等价条件求实数a 的取值范围,可判断②的正误;由面面垂直的性质定理可判断③的正误;利用零点存在定理可判断④的正误. 【详解】①由x y >,可知0x >,所以有22x y >,当0x y <<时,满足22x y >,但x y >不成立,所以①错误;②要使“x R ∃∈,2210x ax ++<”成立,则有对应方程的判别式>0∆,即2440a ->,解得1a <-或1a >,所以②正确; ③因为αγ⊥,m γα=I,l γβ=I ,所以l γ⊂,又l m ⊥,所以根据面面垂直的性质定理知l α⊥,所以③正确;④因为111332111103333f ⎛⎫⎛⎫⎛⎫⎛⎫==-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,111222111102332f ⎛⎫⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,且函数()y f x =连续,所以根据零点存在定理可知在区间11,32⎛⎫⎪⎝⎭上,函数()y f x =存在零点,所以④正确.所以正确的是②③④,共有三个. 故选:C. 【点睛】本题考查命题的真假判断.正确推理是解题的关键.要求各相关知识必须熟练,考查推理能力,属于中等题.9.某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有( )A .474种B .77种C .462种D .79种【答案】A【解析】试题分析:根据题意,由于某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),所有的上课方法有99A ,那么连着上3节课的情况有533A 种,则利用间接法可知所求的方法有99A -533A =474,故答案为A. 【考点】排列组合点评:主要是考查了排列组合的运用,属于基础题. 10.已知函数()xf x xe =,方程()()2+1=0fx tf x +()t R ∈有四个实数根,则t 的取值范围为( )A .21,e e ⎛⎫++∞ ⎪⎝⎭B .21,e e ⎛⎫+-∞- ⎪⎝⎭C .21,2e e ⎛⎫+-- ⎪⎝⎭D .212,e e ⎛⎫+ ⎪⎝⎭【答案】B【解析】利用导数,判断函数()f x 的单调性及最值,从而画出该函数的图像;再用换元,将问题转化为一元二次方程根的分布问题,即可求解参数范围. 【详解】令()xg x xe =,故()()1xg x ex '=+,令()0g x '=,解得1x =-,故函数()g x 在区间(),1-∞-单调递减,在()1,-+∞单调递增, 且在1x =-处,取得最小值()11g e-=-. 根据()f x 与()g x 图像之间的关系,即可绘制函数()f x 的图像如下:令()f x m =,结合图像,根据题意若要满足()()2+1=0fx tf x +有四个根,只需方程210m tm ++=的两根1m 与2m 满足:其中一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根21m e >或20m =.①当方程210m tm ++=的一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根20m =, 将0m =代入,可得10=矛盾,故此种情况不可能发生; ②当方程210m tm ++=的一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根21m e>()2 1m m tm ϕ=++,要满足题意,只需()10,00e ϕϕ⎛⎫⎪⎝⎭即可 即2110,?1?0te e++, 解得21,e t e ⎛⎫+∈-∞- ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数研究函数的单调性,以及二次方程根的分布问题,属重点题型.二、填空题11.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=________. 【答案】【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A 的概率,同样利用古典概型概率计算公式求出事件AB 的概率,然后直接利用条件概率公式求解. 解:P (A )=,P (AB )=.由条件概率公式得P (B|A )=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.12.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有________个.【答案】3【解析】试题分析:该程序框图是计算分段函数的函数值,从自变量的取值情况看,由三种情况,故应考虑1x x=,224,x x x x -==所得x 值,有3个. 【考点】本题主要考查程序框图的功能识别,简单方程的求解.点评:简单题,注意到应考虑1x x=,224,x x x x -==所得x 值,一一探讨. 13.已知在平面直角坐标系中,()2,0A -,()1,3B ,O 为原点,且OM OA OB αβ=+u u u u r u u u r u u u r,(其中1αβ+=,α,β均为实数),若()1,0N ,则MN u u u u v的最小值是_____.32【解析】根据OM OA OB αβ=+u u u u ru u u ru u u r可化简为BM BA α=u u u u r u u u r,可得出A 、B 、M 三点共线,求出直线AB 的方程,然后利用点到直线的距离公式可计算出MN u u u u v的最小值.【详解】OM OA OB αβ=+u u u u r u u u r u u u rQ (其中1αβ+=,α、β均为实数), ()1OM OA OB αα=+-u u u u v u u u v u u u v ,即()OM OB OA OB α-=-u u u u v u u u v u u u v u u u v ,即BM BA α=u u u u r u u u r,//BM BA ∴u u u u r u u u r ,A ∴、B 、M 三点共线,MN ∴u u u u v的最小值即为点N 到直线AB 的距离, 直线AB 的方程为23012y x +=-+,即20x y -+=, 因此,MN u u u u v的最小值为()221232211d +==+-.故答案为:2【点睛】本题考查利用向量判断三点共线,同时也考查了点到直线距离公式计算线段长度的最小值,考查化归与转化思想的应用,属于中等题.14.已知双曲线()2222:10x y C a b a b -=>>的右焦点为F ,过F 的直线交C 于A 、B 两点,若4AF FB =u u u r u u u r,则C 的离心率为______.【答案】65【解析】设()()1122,,,A x y B x y ,将直线的方程和双曲线的方程联立消元得出24121222223,33c b y y y y a b a b-+==--,由4AF FB =u u u r u u u r 可得124y y =-,这几个式子再结合222b c a =-化简可得65c a = 【详解】因为直线AB 过点(c,0)F所以直线AB 的方程为:)y x c =-与双曲线22221x y a b-=联立消去x ,得222241033b a y cy b ⎛⎫-++= ⎪⎝⎭设()()1122,,,A x y B x y所以24121222223,33c b y y y y a b a b-+==-- 因为4AF FB =u u u r u u u r,可得124y y =-代入上式得24222222233,433c b y y a b a b--=-=-- 消去2y 并化简整理得:22243(3)34c a b =- 将222b c a =-代入化简得:223625c a =解之得65c a =因此,该双曲线的离心率65c e a == 故答案为:65【点睛】1.直线与双曲线相交的问题,常将两个的方程联立消元,用韦达定理表示出横(纵)坐标之和、积,然后再结合条件求解2.求离心率即是求a 与c 的关系.15.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则()f x 为M 上的l 高调函数,如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4高调函数,那么实数a 的取值范围是__________. 【答案】[1,1]-【解析】定义在R 上的函数()f x 是奇函数,当0x ≥时,222222,()||,0x a x a f x x a a x x a⎧-≥=--=⎨-≤<⎩,作出()y f x =的图像如图所示, ∵()f x 为R 上的4高调函数,当0x <时,函数的最大值为2a ,要满足(4)()f x f x +≥,4大于等于区间长度223()a a --,∴2243()a a ≥--,即244a ≤,解得11a -≤≤. 故实数a 的取值范围是[1,1]-.三、解答题16.已知向量()sin ,1a x =-r ,13,2b x ⎫=-⎪⎭r ,函数()()2f x a b a =+⋅-r r r .(1)求函数()f x 的最小正周期T 及单调减区间;(2)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边,其中A为锐角,a =4c =,且()1f A =.求A 、b 的长和ABC ∆的面积.【答案】(1)T π=,递减区间是()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)3A π=,2b =,ABC S ∆=【解析】(1)利用平面向量数量积的坐标运算得出()()2f x a b a =+⋅-v v v,并利用三角恒等变换思想化简函数()y f x =的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭,利用正弦函数周期公式及其单调性即可得到函数()y f x =的最小正周期T 及单调减区间;(2)利用(1)即可得到A ,再利用正弦定理即可得到C ,利用三角形内角和定理即可得到B ,利用直角三角形含6π角的性质即可得出边b ,进而得到三角形的面积. 【详解】(1)()sin ,1a x =-vQ,1,2b x ⎫=-⎪⎭v ,()()233sin ,sin ,1sin cos 22a b a x x x x x x ⎛⎫∴+⋅=+-⋅-=+⎪⎝⎭v vv 1cos 2231sin 2cos 22sin 22222226x x x x x π-⎛⎫=++=-+=-+ ⎪⎝⎭, ()()2sin 26f x a b a x π⎛⎫∴=+⋅-=- ⎪⎝⎭v v v ,所以,22T ππ==,由()3222262k x k k Z πππππ+≤-≤+∈,解得536k x k ππππ+≤≤+()k Z ∈,所以,函数()y f x =的单调递减区间是()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)()1f A =Q ,sin 216A π⎛⎫∴-= ⎪⎝⎭, A Q 为锐角,即02A π<<,52666A πππ∴-<-<,262A ππ∴-=,解得3A π=.由正弦定理得sin sin a cA C=,4sin sin 3sin 123c A C a π⨯∴===, ()0,C π∈Q ,2C π∴=,6B AC ππ∴=--=,122b c ∴==, 因此,ABC ∆的面积为1223232ABC S ∆=⨯⨯=. 【点睛】本题综合考查了向量数量积的坐标运算、正弦函数的单调性及其性质、正弦定理、直角三角形的边角关系及其面积等基础知识与基本技能,考查了推理能力和计算能力. 17.如图,AB 为圆O 的直径,点E 、F 在圆O 上,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)求三棱锥C OEF -的体积. 【答案】(Ⅰ)见解析;(Ⅱ3【解析】【详解】试题分析:(Ⅰ)平面ABCD ⊥平面ABEF ,CB AB ⊥, 平面ABCD I 平面ABEF AB =,CB ∴⊥平面ABEF ,∵AF 在平面ABEF 内,∴AF CB ⊥, 又AB 为圆O 的直径,∴AF BF ⊥, ∴AF ⊥平面CBF .(Ⅱ)由(1)知CB ABEF ⊥面即CB OEF ⊥面, ∴三棱锥C OEF -的高是CB , ∴1CB AD ==,连结OE 、OF ,可知1OE OF EF ===∴OEF ∆为正三角形,∴正OEF ∆∴11111332C OEF OEF V CB S -∆=⨯=⨯⨯=18.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功,每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得获品的价值,写出X 的概率分布列,并求X 的数学期望. 【答案】(1)725;(2)分布列见详解,2160EX = 【解析】(1)小王过第一关但未过第二关,包括小王第一关两道题都答对,第二关第一道题答错,或者小王第一关两道题都答对,第二关第一道题答对,第二道题答错,据此计算概率;(2)根据题意,分别写出X 可取的值,再计算每个可取值对应的概率,求得分布列即可. 【详解】(1)设小王过第一关但未过第二关的概率为1P ,则容易知2141317544425P ⎛⎫⎛⎫=+⨯=⎪ ⎪⎝⎭⎝⎭. (2)X 的取值为0,1000,3000,6000, 则()1419055525P X ==+⨯=, ()2413171000544425P X ⎛⎫⎛⎫==+⨯=⎪ ⎪⎝⎭⎝⎭,()222212432217300015433375P X C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==--⨯=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()22221243221460005433315P X C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==+⨯=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,∴X 的概率分布列为∴X 的数学期望97740100030006000216025257515EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的计算,离散型随机变量的分布列和数学期望,以及计算能力,属中档题.19.各项均为正数的数列{}n a 前n 项和为n S ,且2421n n n S a a =++,n ∈+N .(1)求数列{}n a 的通项公式;(2)已知公比为()q q N +∈的等比数列{}n b 满足11b a =,且存在m N +∈满足m m b a =,13m m b a ++=,求数列{}n b 的通项公式.【答案】(1)21n a n =-;(2)17n n b -=或13n n b -=.【解析】(1)令1n =,利用数列递推式求出1a 的值,由2421n n n S a a =++得出2111421n n n S a a +++=++,两式相减,结合数列{}n a 各项均为正数,可得数列{}n a 是首项为1,公差为2的等差数列,从而可求数列{}n a 的通项公式;(2)利用m m b a =,13m m b a ++=,求出公比q ,即可求得数列{}n b 的通项公式. 【详解】(1)当1n =时,211114421S a a a ==++,整理得()2110a -=,11a ∴=. 2421n n n S a a =++Q ,2111421n n n S a a +++∴=++,两式相减得22111422n n n n n a a a a a +++=-+-,即2211220n n n n a a a a ++---=,即()()1120n n n n a a a a +++--=,Q 数列{}n a 各项均为正数,10n n a a ++>∴,12n n a a +∴-=,∴数列{}n a 是首项为1,公差为2的等差数列,故()12121n a n n =+-=-;(2)111b a ==Q ,111n n n b b q q --=∴=,依题意得12125m m q m q m -⎧=-⎨=+⎩,相除得25612121m q N m m ++==+∈--211m ∴-=或213m -=,所以17m q =⎧⎨=⎩或23m q =⎧⎨=⎩, 当1m =时,17n n b -=;当2m =时,13n n b -=. 综上所述,17n n b -=或13n n b -=.【点睛】本题考查数列递推式,考查数列的通项,考查学生分析解决问题的能力,属于中档题.20.已知椭圆2222:1(0)x y C a b a b +=>>(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【答案】(1)2214x y +=;(2) (0,1).【解析】【详解】(1)由已知得222222{a bc a c a b =⨯==-⇒2{1a b ==∴C 方程:2214x y += (2)由题意可设直线l 的方程为:y kx m =+(0,0)k m ≠≠联立2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得:222(14)84(1)0k x kmx m +++-= 则△22226416(14)(1)k m k m =-+-2216(41)0k m =-+>,此时设11(,)M x y 、22(,)N x y ∴212122284(1),1414km m x x x x k k-+=-=++ 于是2212121212()()()y y kx m kx m k x x km x x m =++=+++又直线OM 、MN 、ON 的斜率依次成等比数列,∴2221211121212()y y k x x km x x m k x x x x +++⋅==⇒22228014k m m k-+=+ 由0m ≠得:214k =⇒12k =±.又由△0>得:202m <<显然21m ≠(否则:120x x =,则12,x x 中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,矛盾!) 设原点O 到直线l 的距离为d ,则212211·1221OMNmS MN d k x x k ==+-+V 2212121()4(1)12m x x x x m =+-=--+ 故由m 得取值范围可得△OMN 面积的取值范围为(0,1) 21.已知f (x )=x-ax(a>0),g (x )=2lnx+bx 且直线y=2x -2与曲线y=g (x )相切.(1)若对[1,+∞)内的一切实数x ,小等式f (x )≥g (x )恒成立,求实数a 的取值范围;(2)当a=l 时,求最大的正整数k ,使得对[e ,3](e=2.71828是自然对数的底数)内的任意k 个实数x 1,x 2,,x k 都有121()()()16()k k f x f x f x g x -+++≤L 成立; (3)求证:*2141(21)()41ni i n n n N i =>+∈-∑. 【答案】(1);(2)的最大值为.(3)见解析. 【解析】【详解】试题分析:(1)设点为直线与曲线的切点,则有. (),. ()由()、()两式,解得,.由整理,得,,要使不等式恒成立,必须恒成立. 设,,,当时,,则是增函数, ,是增函数,,因此,实数的取值范围是. (2)当时,,,在上是增函数,在上的最大值为.要对内的任意个实数都有成立,必须使得不等式左边的最大值小于或等于右边的最小值,当时不等式左边取得最大值,时不等式右边取得最小值.,解得.因此,的最大值为.(3)证明(法一):当时,根据(1)的推导有,时,,即.令,得,化简得,.(法二)数学归纳法:当时,左边=,右边=,根据(1)的推导有,时,,即.令,得,即.因此,时不等式成立.(另解:,,,即.)假设当时不等式成立,即,则当时,,要证时命题成立,即证,即证.在不等式中,令,得.时命题也成立.根据数学归纳法,可得不等式对一切成立.【考点】函数的性质;导数的几何意义;利用导数研究函数的单调性;数学归纳法.点评:(1)本题主要考查导数的几何意义及其应用和数学归纳法等综合知识,考查学生的计算推理能力及分析问题、解决问题的能力及创新意识.对学生的能力要求较高,尤其是分析问题解决问题的能力.(2)解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题,思路1:在上恒成立;思路2:在上恒成立.。

成都石室中学高2019届高考适应性考试(一)理综答案

成都石室中学高2019届高考适应性考试(一)理综答案

成都石室中学高2019届高考适应性考试(一)理科综合试卷答案1答案:D解析:真核细胞的线粒体和叶绿体中有核酸,原核细胞的拟核区有核酸,A错误;RNA和内质网膜共有的化学元素有C、H、O、N 、P,B错误;磷脂分子及大部分蛋白质分子的运动性决定了细胞膜的流动性,C错误;同一个体不同细胞的膜蛋白可以不同,其原因是基因的选择性表达,D正确。

2答案:A解析:自由扩散不需要膜蛋白,A正确;葡萄糖进入红细胞是协助运输的过程,B错误;小分子物质如神经递质可以通过胞吐出细胞,C错误;神经细胞内K+浓度明显高于膜外是主动运输的结果,D错误。

3答案:C解析:癌细胞具有无限增殖的特点,A错误;有丝分裂后期DNA分子数目是原有数目的两倍,减II 后期的DNA分子数等于原有数目,B错误;人体成熟红细胞已无细胞核,不可能再分化为造血干细胞,C正确;衰老细胞能合成酪氨酸酶,但其活性降低,使老年人头发,D错误。

4答案:C解析:从题干信息“红色色素的形成需要经历一系列生化反应,每一个反应所涉及的酶都与相应的基因有关”,可知红色色素这一性状由多对基因控制,每对基因控制相应酶合成来控制色素形成,A、B正确;密码子在mRNA上,而非在控制红眼的基因上,C错误;若控制红眼的基因发生突变,但密码子有简并性,仍可能形成具有正常功能的酶,从而形成红色色素,D正确。

5答案:D解析:短期记忆主要与神经元的活动及神经元之间的联系有关,A错误;内分泌腺所分泌的激素也可以影响神经系统的发育和功能,如甲状腺分泌的甲状腺激素,B错误;兴奋传导是从一个神经元的轴突传递给下一个神经元的树突或细胞体,C错误;焦虑紧张时神经支配肾上腺分泌肾上腺素的分泌并发挥作用,此过程是神经—体液调节,D正确。

6答案C解析:年龄结构影响种群的出生率和死亡率,性别比例影响种群的出生率,对种群密度的影响很大,故A错误;统计植物的种群密度通常使用样方法,故B错误;对于有趋光性的昆虫,可以使用黑光灯进行灯光诱捕的方法调查它们的种群密度,C正确;在理想条件下种群数量的变化符合“J”型增长曲线,液体培养基中振荡培养的酵母菌的生长环境不是理想条件,D错误。

2019年5月四川省成都石室中学高2019届高2016级高考适

2019年5月四川省成都石室中学高2019届高2016级高考适

18. (本小题满分 12 分)
已知在平面四边形 ABCD 中, ∠ABC =3π,AB ⊥ AD,AB =1,∆ABC 的面积为 1 .
4
2
(Ⅰ)求 AC 的长;
(Ⅱ)已知 CD = 17 ,求 tan ∠ADC . 2
解析:(Ⅰ)在△ ABC 中,由面积公式:
S ABC
=1 × | 2
AB
|×|
C.2+ 3 或 2- 3
D.2- 3 或 3 -1
解析:设 PQ 与曲线=y 13 − x2 相切于点 Q ,则 | PQ |2 =| PA | ⋅ | PB |=| PA | ⋅(| PA | +|AB |)
适应性考试一理答 第 3 页
= 7 | PA |2 =| PO |2 − | OQ |2 = 35 ,所以= | PA | 5= ,| AB | 2 , O 到弦 AB 的距离为 2 3 , 5
解 析 : 依 题 意 an (an−1 + 2an+1) = 3an−1an+1 , 两 边 同 时 除 以 an−1 ⋅ an ⋅ an+1 得
1 23 11 11
+ = ⇒ − = 2( − )
an+1 an−1 an
an+1 an
an an−1
,所以
1 − 1 = 2n−1

an an−1
1 =( 1 − 1 ) + ( 1 − 1 ) + + ( 1 − 1 ) + 1 =1 + 2 + 22 + + 2n−1 =2n −1,
A.-7 B.-3
C.2
D.3
适应性考试一理答 第 2 页

四川省成都石室中学2019届高三12月一诊模拟数学理试卷(解析版)

四川省成都石室中学2019届高三12月一诊模拟数学理试卷(解析版)

四川省成都石室中学2019届高三12月一诊模拟数学理试卷(解析版)一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,集合,那么集合A. [0,1)B.C.D.【答案】C【解析】解:解得,;;;;;;.故选:C.可以求出集合A,B,然后进行补集、交集的运算即可.考查对数函数和幂函数的单调性,描述法、区间的定义,以及交集和补集的运算.2.若向量,是非零向量,则“”是“,夹角为”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:,向量,是非零向量,,夹角为“”是“,夹角为”的充要条件.故选:C.根据充分条件和必要条件的定义结合向量的运算进行判断即可.本题主要考查充分条件和必要条件的判断,根据向量的运算是解决本题的关键.3.已知等差数列中,前n项和,满足,则A. 54B. 63C. 72D. 81【答案】B【解析】解:等差数列中,前n项和,满足,,,.故选:B.利用等差数列前n项和公式得,求出,再由,能求出结果.本题考查等差数列的前9项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4.已知双曲线C:,其焦点F到C的一条渐近线的距离为2,该双曲线的离心率为A. B. C. D.【答案】A【解析】解:双曲线C:,其焦点到C的一条渐近线的距离为2,可得,可得,,所以,所以双曲线的离心率为:.故选:A.求出双曲线的焦点坐标以及双曲线的渐近线方程,然后利用已知条件求解即可.本题考查双曲线的简单性质的应用,渐近线方程以及离心率求法,考查计算能力.5.下列结论正确的是A. 当且时,B. 当时,C. 当时,无最小值D. 当时,【答案】B【解析】解:当时,,可得;当时,,,故A 错误;由的导数为,当时,函数y递增;当时,函数y递减,可得函数y的最小值为1,即,即,故B正确;当时,递增,可得时,取得最小值,故C错误;当时,递增,可得最小值为,故D错误.故选:B.讨论,,结合对数的性质,以及基本不等式可判断A;由的导数,判断单调性和最小值,可判断B;由当时,递增,可判断C;由当时,递增,可判断D.本题考查函数的最值求法,注意运用基本不等式和导数判断单调性,考查分类讨论思想方法,以及运算能力,属于中档题.6.的展开式中,常数项为14,则A. B. 14 C. D. 2【答案】D【解析】解:的展开式的通项为.取,得.则,即.故选:D.写出二项展开式的通项,由x的指数为0求得r值,再由常数项为14求得a值.本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.7.已知定义在R上的奇函数满足,且当时,,若,则A. B. C. D.【答案】A【解析】解:根据题意,函数满足,则有,即函数的周期为4,故,,若,则有,又由函数为奇函数,则有,变形可得,又由当时,,则有,解可得;故选:A.根据题意,分析可得函数的周期为4,进而可得,,据此可得,则有,结合函数的周期性可得,结合函数的解析式可得答案.本题考查函数的周期性与奇偶性的应用,注意分析函数的周期,属于基础题.8.已知,则的面积为【答案】A【解析】解:根据题意,,,有,,则可得,则则故选:A.根据向量数量积和面积公式可求得.本题考查了平面向量数量积的性质及其运算,属基础题.9.如图,已知底面为直角三角形的直三棱柱,其三视图如图所示,则异面直线与所成角的余弦值为A. B. C. D.【答案】D【解析】解:如图所示,可以将四三棱柱补形为长方体,可得,则异面直线与所成角为,由三视图可知,,.即异面直线与所成角的余弦值为.故选:D.由题意,可以将四三棱柱补形为长方体,得到异面直线与所成角,再由余弦定理求解.本题考查空间几何体的三视图,考查异面直线所成角的求法,关键是找出异面直线所成角,是中档题.10.已知函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,再向左平移个单位,得到函数的图象,已知分别在,处取得最大值和最小值,则的最小值为【答案】B【解析】解:函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,可得的图象;再向左平移个单位,得到函数的图象.已知分别在,处取得最大值和最小值,,.则,故当时,取得最小值为,故选:B.利用三角恒等变换化简的解析式,再利用函数的图象变换规律求得的解析式,根据正弦函数的最值条件求得的最小值.本题主要考查三角恒等变换,函数的图象变换规律,正弦函数的最值,属于中档题.11.已知抛物线C:的焦点坐标为,点,过点P作直线l交抛物线C于A,B两点,过A,B分别作抛物线C的切线,两切线交于点Q,则面积的最小值为A. B. C. D.【答案】C【解析】解:物线C:的焦点坐标为,,,抛物线C:,设,,,,过点A的切线方程为,过点B的切线方程为,则两切线的交点为,由AB过点,设直线方程为,由,消y可得,,,,,点Q到直线AB的距离当时,此时面积最小,最小值为,故选:C.先求出抛物线的方程,再分别表示出两个切线方程,联立可求得Q的坐标表示出点Q到直线AB的距离,设直线AB的方程,抛物线联立求,根据韦达定理和弦长公式求出AB,利用三角形面积公式表示出三角形面积,即可求出面积的最大值本题主要考查了抛物线与直线的位置关系,点到直线距离公式的应用考查了学生分析推理和运算的能力,属于中档题12.已知函数,,且,则方程的实数根的个数不可能为A. 3B. 4C. 5D. 6【答案】D【解析】解:设,则,由题意知有两个根,,且,,不妨设,则,,当或时,,当时,,则在时,取得极小值,在处取得极大值,当,,,,则由图象知,当,时,方程,有5个不同的解,当,时,方程,有4个不同的解,当,时,方程,有3个不同的解,即方程的实数根的个数为3或4或5,不可能是6个,故选:D.利用换元法设,则,结合t的范围,以及,的根的个数,利用数形结合进行判断即可.本题主要考查函数与方程的应用,利用换元法转化为两个函数图象交点个数,结合数形结合是解决本题的关键综合性较强.二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件,则的最大值______.【答案】12【解析】解:x,y满足约束条件的可行域如图,由图象可知:目标函数过点时z取得最大值,,故答案为:12.先画出x,y满足约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数的最小值.在解决线性规划的问题时,我们常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解.14.执行如图所示的程序框图,若输入,则输出y的值为______.【答案】【解析】解:模拟程序的运行,可得当时,,此时;当时,,此时;当时,,此时;当时,,此时;故输出的y的值为:.故答案为:.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.已知数列中,,,设其前n项和为,若对任意的,恒成立,则k的最小值为______.【答案】【解析】解:由,变形为:,,数列是公比为2,首项为1的等比数列...对任意的,恒成立,.令,则时,.时,.,数列的前3项单调递增,从第3项开始单调递减.时,数列取得最大值,.故答案为:.由,变形为:,,利用等比数列的通项公式可得,利用求和公式可得代入,化简,通过作差利用数列的单调性即可得出最小值.本题考查了等比数列的通项公式与求和公式、转化法、作差法,考查了推理能力与计算能力,属于中档题.16.如图,四边形ABCD是边长为1的正方形,平面ABCD,平面ABCD,且,G为线段EC上的动点,则下列结论中正确的是______;该几何体外接球的表面积为;若G为EC中点,则平面AEF;的最小值为3.【答案】【解析】解:以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,可得0,,0,,1,,1,,1,,0,,即有1,,1,,由,可得,故正确;由球心在过正方形ABCD的中心的垂面上,即为矩形BDEF的对角线的交点,可得半径为,即有该几何体外接球的表面积为,故正确;若G为EC中点,可得1,,0,,0,,1,,设平面AEF的法向量为y,,可得,且,可设,可得一个法向量为,由,可得则平面AEF,故正确;设t,,,当时,取得最小值,故错误.故答案为:.以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,分别求得D,A,B,C,F,E的坐标,由,的坐标表示,可判断;确定球心为矩形BDEF的对角线交点,求得半径,可判断;求得G的坐标,求得平面AEF的法向量,计算可判断;设出G的坐标,由两点的距离公式,结合二次函数的最值求法,可判断.本题考查空间线面的位置关系和空间线线角的求法,以及向量法解决空间问题,考查运算能力,属于中档题.三、解答题(本大题共7小题,共70.0分)17.的内角A,B,C的对边分别为a,b,c,已知,,的面积为,F为边AC上一点.求c;若,求.【答案】本题满分为12分解:,,的面积为,解得:,分由余弦定理可得:,分由可得,,,分在中,由正弦定理,可得:,,,分,,分分【解析】由已知利用三角形的面积公式可求b的值,根据余弦定理可得c的值;由可得,可求,,由已知根据正弦定理,由,可求,根据两角和的正弦函数公式即可计算得解的值.本题主要考查了三角形的面积公式,余弦定理,正弦定理,两角和的正弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.如图,在四棱锥中,底面为菱形,已知,,.求证:平面平面ABCD;求直线AE与平面CED的所成角的正弦值.【答案】证明:如图,过D作,连结EO,,,,≌,,,,,由勾股定理逆定理得,,,,面ABE,面ABE,面ABE,面ABCD,平面平面ABCD.解:由知,,,如图,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,由已知得0,,,0,,2,,,,,设面CED的法向量y,,则,取,得0,,设直线AE与平面CED所成角为,则,直线AE与平面CED的所成角的正弦值为.【解析】过D作,连结EO,推导出≌,,,从而面ABE,由此能证明平面平面ABCD.由,,,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AE与平面CED的所成角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型报废年限各不相同考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据如果你是该公司的负责人,你会选择采购哪款车型?参考数据:,,.参考公式:相关系数,回归直线方程为其中:,.【答案】解:散点图如图所示,,,所以两变量之间具有较强的线性相关关系,故可用线性回归模型拟合两变量之间的关系.,又,,回归直线方程为,2018年2月的月份代码,,所以估计2018年2月的市场占有率为.用频率估计概率,A款单车的利润X的分布列为:元.B款单车的利润Y的分布列为:元以每辆单车产生利润的期望值为决策依据,故应选择B款车型.【解析】画出散点图,求出相关系数,判断线性相关性即可;求出回归方程的系数,求出回归方程,代入函数值检验即可;求出分布列,求出数学期望比较即可判断.本题考查了散点图,考查回归方程以及分布列和数学期望,是一道中档题.20.已知圆:,点,C为圆上任意一点,点P在直线OC上,且满足,,点P的轨迹为曲线E.求曲线E的方程;若直线l:不与坐标轴重合与曲线E交于M,N两点,O为坐标原点,设直线OM、ON的斜率分别为、,对任意的斜率k,若存在实数,使得,求实数的取值范围.【答案】解:由,可得,则点P的轨迹是以为焦点的椭圆,则,,,则曲线E的方程为,设,,则,消y可得,,,当时,,当时,,由于对任意k恒成立,则,,,综上所述.【解析】由题意可得点P的轨迹是以为焦点的椭圆,即可求出曲线E的方程,设,根据韦达定理结合斜率公式,以及,可得,再分类讨论,根据判别式即可求出的取值范围本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要灵活运用圆锥曲线性质,注意合理地进行等价转化,是中档题.21.已知函数,其中,,.若是的一条切线,求a的值;在间的前提下,对任意的实数,若存在正实数,,使得,求的最小正整数值.【答案】解:的导数为,设与相切于,可得,,化为,设,导数为,当时,递增;时,递减,可得处取得最小值0,则,;,可得,即,设,令,,时,递减;时,递增,可得,即有,设,对恒成立,令,,在递减,可得,可得舍去,由n为正整数,可得n的最小值为4,即的最小值为4.【解析】求得的导数,设出切点,可得切线的斜率,可得a,m的方程,解得m,a;由题意可得可得,即,设,令,求得导数和单调性,可得最小值,再由不等式恒成立和一次函数的单调性,解不等式可得所求最小值.本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查构造函数法,以及化简整理的运算能力,属于中档题.22.在平面直角坐标系xOy中,直线的参数方程为:为参数,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为:,直线与曲线交于A,B两点,求曲线的普通方程及的最小值;若点,求的最大值.【答案】解:曲线的极坐标方程为:,,曲线的普通方程为,即.直线的参数方程为:为参数,直线与曲线交于A,B两点,最小时,圆心距最大为,的最小值为:.设直线上点A,B对应参数方程为参数的参数分别为,,将直线与方程联立方程,得:,,,,,当时,取最大值70.【解析】由曲线的极坐标方程,能求出曲线的普通方程由最小时,圆心距最大为,能求出的最小值.将直线与方程联立方程,得,从而,,进而,由此能求出的最大值.本题考查曲线的普通方程的求法,考查弦长的求法,考查两线段平方和的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,当时,解不等式;若存在,使得不等式的解集非空,求b的取值范围.【答案】解:当时,函数,解不等式化为,即,,解得,不等式的解集为;由,得,设,则不等式的解集非空,等价于;由,;由题意知存在,使得上式成立;而函数在上的最大值为,;即b的取值范围是【解析】时不等式化为,根据绝对值的定义求出解集即可;由不等式得,构造函数,不等式的解集非空等价于,利用绝对值不等式求出在上的最大值即可.本题考查了绝对值不等式的解法与应用问题,也考查了函数在某一区间上的最值问题,是中档题.。

2019年四川省成都市石室中学高考数学一诊试卷和答案(理科)

2019年四川省成都市石室中学高考数学一诊试卷和答案(理科)

2019年四川省成都市石室中学高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,集合A={x|y=},集合B={y|y=x,x>0},那么集合(∁U A)∩B=()A.∅B.(0,1]C.(0,1)D.(1,+∞)2.(5分)若向量,是非零向量,则“|+|=|﹣|”是“,夹角为”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知等差数列{a n}中,前n项和S n,满足S7﹣S2=35,则S9=()A.54B.63C.72D.814.(5分)已知双曲线C:=1(b>0),其焦点F到C的一条渐近线的距离为2,该双曲线的离心率为()A.B.C.D.5.(5分)下列结论正确的是()A.当x>0且x≠1时,lnx+≥2B.当x>0时,x>lnxC.当x≥2时,x﹣无最小值D.当x≥2时,x+≥26.(5分)()7的展开式中,常数项为14,则a=()A.﹣14B.14C.﹣2D.27.(5分)已知定义在R上的奇函数f(x)满足f(x+2)=f(x﹣2),且当x∈(﹣2,0)时,f(x)=log2(x+3)+a,若f(13)=2f(7)+1,则a=()A.﹣B.﹣C.D.8.(5分)已知=(cos22°,cos68°),=(2cos52°,2cos38°).则△ABC的面积为()A.B.C.D.19.(5分)如图,已知底面为直角三角形的直三棱柱ABC﹣A1B1C1,其三视图如图所示,则异面直线B1A与A1C所成角的余弦值为()A.B.C.D.10.(5分)已知函数f(x)=3sin2x+cos2x,将f(x)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移个单位,得到函数g(x)的图象,已知g(x)分别在x1,x2处取得最大值和最小值,则|x1+x2|的最小值为.()A.B.C.πD.11.(5分)已知抛物线C:y=ax2的焦点坐标为(0,1),点P(0,3),过点P作直线l 交抛物线C于A,B两点,过A,B分别作抛物线C的切线,两切线交于点Q,则△QAB 面积的最小值为()A.6B.6C.12D.1212.(5分)已知函数f(x)=ax2+2bx﹣4a(a>0),g(x)=,且f(﹣2e)>0,则方程f[g(x)]=0的实数根的个数不可能为()A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分13.(5分)若x,y满足约束条件,则z=5x+y的最大值.14.(5分)执行如图所示的程序框图,若输入x=12,则输出y的值为.15.(5分)已知数列{a n}中,a n+1=2a n﹣1,a1=2,设其前n项和为S n,若对任意的n∈N*,(S n+1﹣n)k≥2n﹣3恒成立,则k的最小值为.16.(5分)如图,四边形ABCD是边长为1的正方形,ED⊥平面ABCD,FB⊥平面ABCD,且ED=FB=1,G为线段EC上的动点,则下列结论中正确的是①EC⊥AF;②该几何体外接球的表面积为3π;③若G为EC中点,则GB∥平面AEF;④AG2+BG2的最小值为3.三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=,a=2,△ABC 的面积为,F为边AC上一点.(1)求c;(2)若CF=BF,求sin∠BFC.18.(12分)如图,在四棱锥E﹣ABCD中,底面为菱形,已知∠DAB=∠EAB=60°,AD =AE=2,DE=.(1)求证:平面ABE⊥平面ABCD;(2)求直线AE与平面CED的所成角的正弦值.19.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y 与月份代码x 之间的关系;(2)求y 关于x 的线性回归方程,并预测该公司2018年2月份的市场占有率; (3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A ,B 两款车型报废年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下: 经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型? 参考数据:,,.参考公式:相关系数=,回归直线方程为其中:,.20.(12分)已知圆O1:(x+2)2+y2=24,点O2(2,0),C为圆O1上任意一点,点P在直线O1C上,且满足,=0,点P的轨迹为曲线E.(1)求曲线E的方程;(2)若直线l:y=kx+m(不与坐标轴重合)与曲线E交于M,N两点,O为坐标原点,设直线OM、ON的斜率分别为k1、k2,对任意的斜率k,若存在实数λ,使得λ(k1+k2)+k=0,求实数λ的取值范围.21.(12分)已知函数f(x)=alnx﹣1,其中a≠0,g(x)=x2﹣1,h(x)=f(x)+g(x).(1)若y=2x﹣3是f(x)的一条切线,求a的值;(2)在(1)间的前提下,对任意的实数λ∈[1,2],若存在正实数x1,x2,使得h(x1)+h(x2)=λ(x1+x2),求x1+x2的最小正整数值.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线C1的参数方程为:(t为参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为:ρ=6cosθ﹣8sinθ,直线C1与曲线C2交于A,B两点,(1)求曲线C2的普通方程及|AB|的最小值;(2)若点P(2,﹣1),求|P A|2+|PB|2的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+a|+1,(1)当a=2时,解不等式f(x)+x<2;(2)若存在a∈[﹣,1],使得不等式f(x)≥b+|2x+a2|的解集非空,求b的取值范围.2019年四川省成都市石室中学高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:解lnx≥0得,x≥1;∴A=[1,+∞);∵x>0;∴;∴B=(0,+∞);∴∁U A=(﹣∞,1);∴(∁U A)∩B=(0,1).故选:C.2.【解答】解:∵|+|=|﹣|⇔||2+||2+2=||2+||2﹣2⇔=0,∵向量,是非零向量,∴=0⇔⊥⇔,夹角为∴“|+|=|﹣|”是“,夹角为”的充要条件.故选:C.3.【解答】解:∵等差数列{a n}中,前n项和S n,满足S7﹣S2=35,∴a3+a4+a5+a6+a7=5a5=35,∴a5=7,∴S9==9a5=63.故选:B.4.【解答】解:双曲线C:=1(b>0),其焦点F(0,)到C的一条渐近线y=的距离为2,可得=2,可得b=2,a=3,所以c=,所以双曲线的离心率为:e=.故选:A.5.【解答】解:当x>1时,lnx>0,可得lnx+≥2;当)<x<1时,lnx<0,lnx+≤﹣2,故A错误;由y=x﹣lnx的导数为y′=1﹣,当x>1时,函数y递增;当0<x<1时,函数y递减,可得函数y的最小值为1,即x﹣lnx≥1,即x>lnx,故B正确;当x≥2时,x﹣递增,可得x=2时,取得最小值,故C错误;当x≥2时,x+递增,可得最小值为,故D错误.故选:B.6.【解答】解:()7的展开式的通项为.取,得r=6.则,即a=2.故选:D.7.【解答】解:根据题意,函数f(x)满足f(x+2)=f(x﹣2),则有f(x+4)=f(x),即函数的周期为4,故f(13)=f(1),f(7)=f(﹣1),若f(13)=2f(7)+1,则有f(1)=2f(﹣1)+1,又由函数f(x)为奇函数,则有﹣f(﹣1)=2f(﹣1)+1,变形可得f(﹣1)=﹣,又由当x∈(﹣2,0)时,f(x)=log2(x+3)+a,则有log2(2)+a=a+1=﹣,解可得a=﹣;故选:A.8.【解答】解:根据题意,=(cos22°,sin22°),=(2sin38°,2cos38°),有||=1,||=2,则•=2(cos22°sin38°+sin22°cos38°)=2sin60°=可得cos A==,则∠A=30°则S△ABC=||||sin∠A=×故选:A.9.【解答】解:如图所示,可以将四三棱柱补形为长方体ABCD﹣A1B1C1D1,可得B1D∥A1C,则异面直线B1A与A1C所成角为∠DB1A,由三视图可知,,∴cos.即异面直线B1A与A1C所成角的余弦值为.故选:D.10.【解答】解:∵函数f(x)=3sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),将f(x)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得y=2sin(x+)的图象;再向左平移个单位,得到函数g(x)=2sin(x+)的图象.已知g(x)分别在x1,x2处取得最大值和最小值,∴x1+=2kπ+k∈Z,x2+=2nπ﹣n∈Z.则|x1+x2|=|2kπ+2nπ﹣|,故当k+n=0时,|x1+x2|取得最小值为,故选:B.11.【解答】解:物线C:y=ax2的焦点坐标为(0,1),∴=1,∴a=,抛物线C:x2=4y,设A(x1,x12),B(x1,x12),∵y=x2,∴y′=x,过点A的切线方程为y=x1x﹣x12,过点B的切线方程为y=x2x﹣x22,则两切线的交点为Q(,),由AB过点(0,3),设直线方程为y=kx+3,由,消y可得x2﹣4kx﹣12=0,∴x1+x2=4k,x1x2=﹣12,∴Q(2k,﹣3),∴|AB|=•|x1﹣x2|=•=4•,∵点Q到直线AB的距离d=∴S△QAB=×4•×=4(k2+3)≥12当k=0时,此时面积最小,最小值为12,故选:C.12.【解答】解:设t=g(x),则f(t)=0,由题意知f(t)=0有两个根t1,t2,且t1t2==﹣4<0,∵f(﹣2e)>0,∴不妨设﹣2e<t1<0,则t2=﹣>,g′(x)=,当x<﹣3或x>1时,g′(x)<0,当﹣3<x<1时,g′(x)>0,则在x=﹣3时,g(x)取得极小值g(﹣3)=﹣2e3,在x=1处取得极大值g(1)=,当x→﹣∞,f(x)→+∞,x→+∞,f(x)→0,则由图象知,当﹣2e<t1<0,<t2<时,方程g(x)=t,有5个不同的解,当﹣2e<t1<0,t2=时,方程g(x)=t,有4个不同的解,当﹣2e<t1<0,t2>时,方程g(x)=t,有3个不同的解,即方程f[g(x)]=0的实数根的个数为3或4或5,不可能是6个,故选:D.二、填空题:本大题共4小题,每小题5分,共20分13.【解答】解:x,y满足约束条件的可行域如图,由图象可知:目标函数z=5x+y过点A(2,2)时z取得最大值,z max=12,故答案为:12.14.【解答】解:模拟程序的运行,可得当x=12时,y=5,此时|y﹣x|=7;当x=5时,y=,此时|y﹣x|=;当x=时,y=﹣,此时|y﹣x|=;当x=﹣时,y=﹣,此时|y﹣x|=<1;故输出的y的值为:﹣.故答案为:﹣.15.【解答】解:由a n+1=2a n﹣1,变形为:a n+1﹣1=2(a n﹣1),a1﹣1=1,∴数列{a n﹣1}是公比为2,首项为1的等比数列.∴a n=1+2n﹣1.∴S n=+n=2n﹣1+n.∵对任意的n∈N*,(S n+1﹣n)k≥2n﹣3恒成立,∴k≥.令b n=,则n=1时,b1=﹣<0.n≥2时,b n>0.b n+1﹣b n=﹣=,数列{b n}的前3项单调递增,从第3项开始单调递减.∴n=3时,数列b n取得最大值,b3=.故答案为:.16.【解答】解:以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,可得D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),F(1,1,1),E(0,0,1),即有=(0,1,﹣1),=(0,1,1),由•=0+1﹣1=0,可得EC⊥AF,故①正确;由球心在过正方形ABCD的中心的垂面上,即为矩形BDEF的对角线的交点,可得半径为=,即有该几何体外接球的表面积为4π•=3π,故②正确;若G为EC中点,可得G(,1,),=(﹣,0,),=(﹣1,0,1),=(0,1,1),设平面AEF的法向量为=(x,y,z),可得﹣x+z=0,且y+z=0,可设x=1,可得一个法向量为(1,﹣1,1),由•=﹣+=0,可得⊥.则GB∥平面AEF,故③正确;设G(0,t,1﹣t)(0≤t≤1),AG2+BG2=1+t2+(1﹣t)2+1+(1﹣t)2+(1﹣t)2=4t2﹣6t+5=4(t﹣)2+,当t=时,取得最小值,故④错误.故答案为:①②③.三、解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.【解答】(本题满分为12分)解:(1)∵C=,a=2,△ABC的面积为=ab sin C=,∴解得:b=2,…3分∴由余弦定理可得:c===2, (6)分(2)∵由(1)可得a=c=2,∴A=C=,∠ABC=π﹣A﹣C=,…7分∵在△BCF中,由正弦定理,可得:sin∠CBF=,∵CF=,∴sin∠CBF=,…9分∵∠CBF,∴∠CBF=,…10分∴sin∠CBF=sin(∠CBF+∠BCF)=sin(+)=sin cos+cos sin=.…12分18.【解答】证明:(1)如图,过D作DO⊥AB,连结EO,∵∠DAB=∠EAB=60°,AD=AE=2,AO=AO,∴△DAO≌△EAO,∴∠DOA=∠EOA=90°,DO=EO=,∵DE=,∴DO2+EO2=DE2,由勾股定理逆定理得∠DOE=90°,∴DO⊥EO,∵DO⊥AB,AB∩EO=O,AB⊂面ABE,EO⊂面ABE,∴DO⊥面ABE,∵DO⊂面ABCD,∴平面ABE⊥平面ABCD.解:(2)由(1)知DO⊥EO,DO⊥AB,EO⊥AB,如图,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,由已知得E(,0,0),A(0,﹣1,0),D(0,0,),C(0,2,),∵=(),=(0,﹣2,0),=(﹣,﹣1,0),设面CED的法向量=(x,y,z),则,取x=1,得=(1,0,1),设直线AE与平面CED所成角为θ,则sinθ=|cos<>|==,∴直线AE与平面CED的所成角的正弦值为.19.【解答】解:(1)散点图如图所示=(11+13+16+15+20+21)=16,∴=76,∴r=≈0.96,所以两变量之间具有较强的线性相关关系,故可用线性回归模型拟合两变量之间的关系.(2)==2,又=(1+2+3+4+5+6)=3.5,∴=﹣=9,∴回归直线方程为=2x+9,2018年2月的月份代码x=7,∴y=23,所以估计2018年2月的市场占有率为23%.(3)用频率估计概率,A款单车的利润X的分布列为:∴E(X)=﹣500×0.1+0×0.3+500×0.4+1000×0.2=350(元).B款单车的利润Y的分布列为:∴E(Y)=﹣300×0.15+200×0.4+700×0.35+1200×0.1=400(元)以每辆单车产生利润的期望值为决策依据,故应选择B款车型.20.【解答】解:(1)由|CP|=|PO2|,可得|PO2|+|PO1|=2>4,则点P的轨迹是以O1O2为焦点的椭圆,则a=,c=2,∴b==,则曲线E的方程为+=1,(2)设M(x1,y1),N(x2,y2),则,消y可得(1+3k2)x2+6kmx+3m2﹣6=0,∴△=36k2m2+4(1+3k2)(3m2﹣6)=12(2﹣m2+6k2)>0∴x1+x2=﹣,x1x2=,∵λ(k1+k2)+k=λ(+)+k=λ(+)+k=λ[2k+]+k=当k=0时,λ∈R,当k≠0时,λ==,由于△=12(2﹣m2+6k2)>0对任意k恒成立,则m2<2+6k2,∴0≤m2<2,∴﹣≤λ<0,综上所述λ∈[﹣,0).21.【解答】解:(1)f(x)=alnx﹣1的导数为f′(x)=,设y=2x﹣3与f(x)相切于(m,n),可得2m﹣3=alnm﹣1,2=,化为mlnm﹣m+1=0,设F(x)=xlnx﹣x+1,导数为F′(x)=lnx,当x>1时,F(x)递增;0<x<1时,F(x)递减,可得x=1处F(x)取得最小值0,则m=1,a=2;(2)h(x1)+h(x2)=λ(x1+x2),可得2lnx1x2+x12+x22﹣4=λ(x1+x2),即(x1+x2)2﹣λ(x1+x2)﹣4=2x1x2﹣2lnx1x2,设x1x2=t>0,令m(t)=2t﹣2lnt,m′(t)=2﹣,0<t<1时,m(t)递减;t>1时,m(t)递增,可得m(t)≥m(1)=2,即有(x1+x2)2﹣λ(x1+x2)﹣4≥2,设x1+x2﹣=n>0,n2﹣λn﹣6≥0对λ∈[1,2]恒成立,令φ(λ)=﹣nλ+n2﹣6,﹣n<0,φ(λ)在[1,2]递减,可得φ(λ)≥φ(2)=n2﹣2n﹣6≥0,可得n≥1+(n≤1﹣舍去),由n为正整数,可得n的最小值为4,即x1+x2的最小值为4.[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵曲线C2的极坐标方程为:ρ=6cosθ﹣8sinθ,∴ρ2=6ρcosθ﹣8ρsinθ,∴曲线C2的普通方程为x2+y2=6x﹣8y,即(x﹣3)2+(y+4)2=25.∵直线C1的参数方程为:(t为参数),直线C1与曲线C2交于A,B两点,∴|AB|最小时,圆心距最大为,∴|AB|的最小值为:2=2.(2)设直线C1上点A,B对应参数方程(t为参数)的参数分别为t1,t2,将直线C1与C2方程联立方程,得:(t cosα﹣1)2+(t sinα+3)2=25,∴t2﹣2t cosα+6t sinα﹣15=0,∴t1+t2=2cosα﹣6sinα,t1t2=﹣15,∴|P A|2+|PB|2==(2cosα﹣6sinα)2+30=4cos2α+36sin2α﹣24sinαcosα+300=34+16(1﹣cos2α)﹣12sin2α=50﹣20sin(2α+γ)≤70(sin),当sin(2α+γ)=﹣1时,取最大值70.[选修4-5:不等式选讲]23.【解答】解:(1)当a=2时,函数f(x)=|2x+2|+1,解不等式f(x)+x<2化为|2x+2|+1+x<2,即|2x+2|<1﹣x,∴x﹣1<2x+2<1﹣x,解得﹣3<x<﹣,∴不等式的解集为{x|﹣3<x<﹣};(2)由f(x)≥b+|2x+a2|,得b≤|2x+a|﹣|2x+a2|+1,设g(x)=|2x+a|﹣|2x+a2|+1,则不等式的解集非空,等价于b≤g(x)max;由g(x)≤|(2x+a)﹣(2x+a2)|+1=|a2﹣a|+1,∴b≤|a2﹣a|+1;由题意知存在a∈[﹣,1],使得上式成立;而函数h(a)=|a2﹣a|+1在a∈[﹣,1]上的最大值为h(﹣)=,∴b≤;即b的取值范围是(﹣∞,].。

【全国百强校】四川省成都石室中学2019届高三上学期入学考试数学(理)试题

【全国百强校】四川省成都石室中学2019届高三上学期入学考试数学(理)试题
P K
2
a b c d a c b d
0.05 3.841 0.025 5.024
n ad bc
2


2
k0

0.10 2.706
0.010 6.635
0.005 7.879
0.001 10.828
k0
20.(本小题满分 12 分) 如图 O 为坐标原点, 圆 O : x 2 y 2 4, 点 F1( 3, 以线段 F1 M 为直径的圆 N 0), F2( 3, 0), 内切于圆 O,切点为 P,记点 M 的轨迹为曲线 C. (I)证明: | F1M | | F2 M | 为定值,并求曲线 C 的方程; (II)设 Q 为曲线 C 上的一个动点,且 Q 在 x 轴的上方,过 F2 作直线
1.设 z A. 0
1 i 2i ,则 | z | 1 i
B.
1 2
C. 1
D. 2
2.设集合 A x | y log 2 ( 2 x ) ,若全集 U A , B x | 1 x 2,则 CU B A.
,1
B. ,1
C. 2,
18届涨100分学生达20人 罗老师18215571552
周末班、寒暑假班、全日制、志愿填报、自主招生 中学小班教学、一对一教学,针对性布局
书山有路勤为径 优径皆在为学溪
认为直播答题模式可持续 认为直播答题模式不可持续
360 240
280 120
(I)根据表格中的数据,能否在犯错误不超过 0.5% 的前提下,认为对直播答题模式的态度与性别 有关系? (II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默 认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答 题游戏中,前 8 个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该 网友本场答题个数 X 的分布列,并求该网友当期可平分奖金的概率. 参考公式: K 临界值表:

成都石室中学高2019届三诊模拟考试-数学理科试题答案

成都石室中学高2019届三诊模拟考试-数学理科试题答案

石室中学高2019届2018~2019学年三诊模拟考试数学参考答案(理科)1-5.DCDAA 6-10.CABCD 11-12.BC13.12-. 14. 14425. 15.17. 解:(Ⅰ)由题意知, 34ADC π∠=,AD = 由正弦定理得sin sin AD AC C ADC=∠……………………………………………2分 所以1sin 2C =,因为C 为锐角,所以6C π=………………………….4分所以sin sin()464BAC ππ∠=+=…………………………………6分 (Ⅱ)因为3BD CD =,所以ACD ∆面积14ACD ABC S S ∆∆=设,AB x BC y ==,所以1142216ACD S xy xy ∆=⋅⋅=,…………………..8分 在ABC ∆中,由余弦定理2242x y xy +=≥,所以 4xy ≤=+x y =时,xy 最大值是4+………………11分所以ACD ∆面积的最大值为14)164=……………………………12分 18. 解:(1)如图,连接CA 交BQ 于F ,//AP 面MQB ,又面MQB ⋂面PAC MF =,AP ⊆面//PAC MF AP ⇒, ………………………3分 又//AQ BC BCDQ =⇒为平行四边形,F ⇒平分AC M ⇒平分,PC 12PM PC =;…………5分(2)如图,以Q 为坐标原点O ,,,OA OB OP 分别为轴,y 轴,z 轴,建立空间直角坐标系o xyz -,则有x(0,0,0),(1,0,0),(O A B C-P ;则面BQC 的法向量为:1(0,0,1),n =过M 作MH QC ⊥交QC 于H ,作HE QB ⊥交QB 于E ,060MEH ∠=为二面角M BQ C --的平面角,设,,EH a MH ==由0,130,CD OB BC COB ===⇒∠=2,QH a ∴=,MH PQ ==2,CH a ∴=42CB a ∴==,12a ∴=,H ∴平分QC , M ∴平分PC ,…………………………………8分1(2M ∴-(AB ∴=-,1(,2CM =, 设ABM 的法向量为2(,,),n x yz =则22003002x n AB n AM x y z ⎧-=⎧⋅=⎪⎪⇒⇒⎨⎨⋅=-+=⎪⎪⎩⎩2(3,1,2),n =………………………10分2(|cos|14CM n ∴<⋅>== 故CM 与平面ABM ………………………12分19. 解:(Ⅰ)由题知用A 配方生产的产品为二级品的概率为25,用B 配方生产的产品为二级品的概率为14, 所以恰好抽到3件二级品的概率22112222222132319()()()()544554100P C C C C =⋅⋅+=; ……………..5分 (Ⅱ)A 配方生产的产品的分布列为: B 配方生产的产品的分布列为:∴A 配方生产的产品平均利润率2()20.6E A t t =+…………………..7分∴B 配方生产的产品平均利润率2() 1.30.7E B t t =+………………………..9分∴2()()0.70.10.1(71)E A E B t t t t -=-=-综上,当10,()()7t E A E B <<<,投资B 配方产品平均利润率较大;当1,()()7t E A E B ==,投资A 配方和B 配方产品平均利润率一样大; 11,()()75t E A E B <<>,投资A 配方产品平均利润率较大……………………………..12分 20. 【答案】(1)2212x y +=;【解析】(1)22222,c a b c ==+ 221a b ∴=+设(,)A A A x y,由对称性可知12OA BA == A A x y =223A A x x ∴=⇒=即A .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分将A 代入椭圆方程222211x y b b +=+422232(1)(32)0b b b b ⇒--=-+= 221,2b a ∴==,∴椭圆C 的方程为2212x y +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 (2) 设直线:(0)l y kx b b '=+≠,1122(,),(,)M x y N x y 联立方程2212x y y kx b ⎧+=⎪⎨⎪=+⎩消去y 可得222(12)4220k x kbx b +++-=因为有两个交点,即22222(4)4(12)(22)88160kb k b b k ∆=-+-=-+>2212b k ⇒<+① 由韦达定理12221224122212kb x x k b x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,121222()212b y y k x x b k ∴+=++=+⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 PM PN =即P 为MN 的中点,P ∴的坐标为222(,)1212kb b P k k -++ P 在y x =上222112122kb b k k k -∴=⇒=-++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 将12k =-代入①可得232b ⇒<12MN x =-,O 到直线l '的距离为o MN d-1122MON o MN S MN d -∴=⋅⋅=23b =23(0)2b <<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∴当234b =,即b =时, MON ∆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 21. 解析:(Ⅰ)当4a =时,()84x f x xe x =-+,(1)4f e =-,()8x x f x xe e '=+-,(1)28f e '=-,所以切线方程为(4)(28)(1)y e e x --=--,即(28)4y e x e =--+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 (Ⅱ)因为2()()()(2)(1)x h x f x g x x e a x =-=-+-,所以()(1)(2)x h x x e a '=-+.①当0a >时,()h x 在(1,)+∞上单调递增,在(,1)-∞上单调递减.因为(1)0,(2)0h e h a =-<=>,所以()h x 在(1,)+∞上有且只有一个零点.下面考虑()h x 在(,1)-∞上零点的情况(考虑到()h x 中含有x e ,为了化简()h x ,所以想到ln 2a ),取b ,使0b <,且ln 2a b <,则223()(2)(1)()022a hb b a b a b b >-+-=->,即()h x 有两个不同的零点.⋯⋯6分 ②当0a =时,()(2)x h x x e =-,此时()h x 只有一个零点. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分③当0a <时,令()0h x '=,得1x =或ln(2)x a =-.(i )当2e a =-时,()(1)(),()0x h x x e e h x ''=--≥恒成立,所以()h x 在R 上单调递增. ⋯⋯⋯⋯8分 (ii )当2e a >-时,即ln(2)1a -<,当ln(2)x a <-或1x >时,()0h x '>; 当ln(2)1a x -<<时,()0h x '<, 所以()h x 在(,ln(2))a -∞-和(1,)+∞上单调递增,在(ln(2),1)a -上单调递减. ⋯⋯⋯⋯⋯⋯⋯9分 (iii )当2e a <-时,即ln(2)1a ->,当1x <或ln(2)x a >-时,()0h x '>; 当1ln(2)x a <<-时,()0h x '<, 所以()h x 在(,l)-∞和(ln(2),)a -+∞上单调递增,在(1,ln(2))a -上单调递减. ⋯⋯⋯⋯⋯⋯⋯10分 当0a <时,因为(1)0h e =-<,22(ln(2))(2)[ln(2)2][ln(2)1][(ln(2)2)1]0h a a a a a a a -=---+--=--+<,所以无论上述(i )(ii )(iii )哪一种情况,()h x 都没有两个零点,不符合题意.综上,a 的取值范围是(0,)+∞.⋯⋯⋯⋯⋯⋯⋯12分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 【答案】(1)221x y +=; (2) 1.【解析】(1)将直线,l l 12的参数方程化一般方程,分别为:()l y k x 1=+1①, :()l y x k21=--1② ················································ 2分 ①⨯②消去k 可得:221x y +=,即P 的轨迹方程为:221x y +=. ·························· 5分(2) 设,M N 的极坐标分别为(,)3M M πρ,(,)3N N πρ曲线C 的极坐标方程为1ρ=,∴1M ρ= ······················································ 7分 将()03πθρ=≥2N ρ= ···························· 9分 ∴由极坐标的几何意义可得1N M MN ρρ=-=. ············································ 10分23.解析:(Ⅰ)当2a =时,26,2,()|4|2,24,26, 4.x x f x x x x x -+≤⎧⎪+-=<<⎨⎪-≥⎩当2x ≤时,由()4|4|f x x ≥--得264x -+≥,解得1x ≤;当24x <<时,()4|4|f x x ≥--无解;当4x ≥时,由()4|4|f x x ≥--得264x -≥,解得5x ≥;所以()4|4|f x x ≥--的解集为{|1x x ≤或5}x ≥.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(Ⅱ)记()(2)2(),h x f x a f x =+-则2,0,()42,0,2,.a x h x x a x a a x a -≤⎧⎪=-<<⎨⎪≥⎩由|()|2h x ≤,解得1122a a x -+≤≤. 又已知|()|2h x ≤的解集为{|12}x x ≤≤,所以11,21 2.2a a -⎧=⎪⎪⎨+⎪=⎪⎩,于是解得3a =. ⋯⋯⋯⋯⋯10分。

2019届四川省成都石室中学高三12月一诊模拟数学(理)试题(解析版)

2019届四川省成都石室中学高三12月一诊模拟数学(理)试题(解析版)

2019届四川省成都石室中学高三12月一诊模拟数学(理)试题一、单选题1.已知全集,集合,集合,那么集合()A.[0,1)B.C.D.【答案】C【解析】可以求出集合A,B,然后进行补集、交集的运算即可.【详解】解得,;;;;;;.故选:C.【点睛】考查对数函数和幂函数的单调性,描述法、区间的定义,以及交集和补集的运算.2.若向量,是非零向量,则“”是“,夹角为”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】根据充分条件和必要条件的定义结合向量的运算进行判断即可.【详解】,向量,是非零向量,,夹角为“”是“,夹角为”的充要条件.故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据向量的运算是解决本题的关键.3.已知等差数列中,前n项和,满足,则()A.54 B.63 C.72 D.81【答案】B【解析】利用等差数列前n项和公式得,求出,再由,能求出结果.【详解】等差数列中,前n项和,满足,,,.故选:B.【点睛】本题考查等差数列的前9项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.对于等差数列的小题,常用到的方法,其一是化为基本量即首项和公差,其二是观察各项间的脚码关系,即利用数列的基本性质.4.已知双曲线C:,其焦点F到C的一条渐近线的距离为2,该双曲线的离心率为()A.B.C.D.【答案】A【解析】求出双曲线的焦点坐标以及双曲线的渐近线方程,然后利用已知条件求解即可.【详解】双曲线C:,其焦点到C的一条渐近线的距离为2,可得,可得,,所以,所以双曲线的离心率为:.故选:A.【点睛】本题考查双曲线的简单性质的应用,渐近线方程以及离心率求法,考查计算能力.双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.5.下列结论正确的是()A.当且时,B.当时,C.当时,无最小值D.当时,【答案】B【解析】讨论,,结合对数的性质,以及基本不等式可判断A;由的导数,判断单调性和最小值,可判断B;由当时,递增,可判断C;由当时,递增,可判断D.【详解】当时,,可得;当时,,,故A错误;由的导数为,当时,函数y递增;当时,函数y递减,可得函数y的最小值为1,即,即,故B正确;当时,递增,可得时,取得最小值,故C错误;当时,递增,可得最小值为,故D错误.故选:B.【点睛】本题考查函数的最值求法,注意运用基本不等式和导数判断单调性,考查分类讨论思想方法,以及运算能力,属于中档题.6.的展开式中,常数项为14,则A.B.14 C.D.2【答案】D【解析】写出二项展开式的通项,由x的指数为0求得r值,再由常数项为14求得a 值.【详解】的展开式的通项为.取,得.则,即.故选:D.【点睛】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.7.已知定义在R上的奇函数满足,且当时,,若,则()A.B.C.D.【答案】A【解析】根据题意,分析可得函数的周期为4,进而可得,,据此可得,则有,结合函数的周期性可得,结合函数的解析式可得答案.【详解】根据题意,函数满足,则有,即函数的周期为4,故,,若,则有,又由函数为奇函数,则有,变形可得,又由当时,,则有,解可得;故选:A.【点睛】本题考查函数的周期性与奇偶性的应用,注意分析函数的周期,属于基础题.8.已知,则的面积为()A.B.C.D.1【答案】A【解析】根据向量数量积和面积公式可求得.【详解】根据题意,,,有,,则可得,则则故选:A.【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).9.如图,已知底面为直角三角形的直三棱柱,其三视图如图所示,则异面直线与所成角的余弦值为()A.B.C.D.【答案】D【解析】由题意,可以将四三棱柱补形为长方体,得到异面直线与所成角,再由余弦定理求解.【详解】如图所示,可以将四三棱柱补形为长方体,可得,则异面直线与所成角为,由三视图可知,,.即异面直线与所成角的余弦值为.故选:D.【点睛】本题考查空间几何体的三视图,考查异面直线所成角的求法,关键是找出异面直线所成角,是中档题.异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.10.已知函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,再向左平移个单位,得到函数的图象,已知分别在,处取得最大值和最小值,则的最小值为()A.B.C.D.【答案】B【解析】利用三角恒等变换化简的解析式,再利用函数的图象变换规律求得的解析式,根据正弦函数的最值条件求得的最小值.【详解】函数,将图象上各点的横坐标伸长为原来的2倍纵坐标不变,可得的图象;再向左平移个单位,得到函数的图象.已知分别在,处取得最大值和最小值,,.则,故当时,取得最小值为,故选:B.【点睛】本题主要考查三角恒等变换,函数的图象变换规律,正弦函数的最值,属于中档题.三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.11.已知抛物线C:的焦点坐标为,点,过点P作直线l交抛物线C于A,B两点,过A,B分别作抛物线C的切线,两切线交于点Q,则面积的最小值为()A.B.C.D.【答案】C【解析】先求出抛物线的方程,再分别表示出两个切线方程,联立可求得Q的坐标表示出点Q到直线AB的距离,设直线AB的方程,抛物线联立求,根据韦达定理和弦长公式求出AB,利用三角形面积公式表示出三角形面积,即可求出面积的最大值.【详解】抛物线C:的焦点坐标为,,,抛物线C:,设,,,,过点A的切线方程为,过点B的切线方程为,则两切线的交点为,由AB过点,设直线方程为,由,消y可得,,,,,点Q到直线AB的距离当时,此时面积最小,最小值为,故选:C.【点睛】本题主要考查了抛物线与直线的位置关系,点到直线距离公式的应用考查了学生分析推理和运算的能力,属于中档题;本题所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.12.已知函数,,且,则方程的实数根的个数不可能为()A.3 B.4 C.5 D.6【答案】D【解析】利用换元法设,则,结合t的范围,以及,的根的个数,利用数形结合进行判断即可.【详解】设,则,由题意知有两个根,,且,,不妨设,则,,当或时,,当时,,则在时,取得极小值,在处取得极大值,当,,,,则由图象知,当,时,方程,有5个不同的解,当,时,方程,有4个不同的解,当,时,方程,有3个不同的解,即方程的实数根的个数为3或4或5,不可能是6个,故选:D.【点睛】本题主要考查函数与方程的应用,利用换元法转化为两个函数图象交点个数,结合数形结合是解决本题的关键综合性较强.二、填空题13.若x,y满足约束条件,则的最大值______.【答案】12【解析】先画出x,y满足约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数的最小值.【详解】x,y满足约束条件的可行域如图,由图象可知:目标函数过点时z取得最大值,,故答案为:12.【点睛】在解决线性规划的问题时,我们常用“角点法”,其步骤为:由约束条件画出可行域求出可行域各个角点的坐标将坐标逐一代入目标函数验证,求出最优解.14.执行如图所示的程序框图,若输入,则输出y的值为______.【答案】-【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得当时,,此时;当时,,此时;当时,,此时;当时,,此时;故输出的y的值为:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.已知数列中,,,设其前n项和为,若对任意的,恒成立,则k的最小值为____.【答案】【解析】由,变形为:,,利用等比数列的通项公式可得,利用求和公式可得代入,化简,通过作差利用数列的单调性即可得出最小值.【详解】由,变形为:,,数列是公比为2,首项为1的等比数列...对任意的,恒成立,.令,则时,.时,.,数列的前3项单调递增,从第3项开始单调递减.时,数列取得最大值,.【点睛】本题考查了等比数列的通项公式与求和公式、转化法、作差法,考查了推理能力与计算能力,属于中档题.数值最值的求解方法如下:1.邻项比较法,求数列的最大值,可通过解不等式组求得的取值范围;求数列的最小值,可通过解不等式组求得的取值范围;2.数形结合,数列是一特殊的函数,分析通项公式对应函数的特点,借助函数的图像即可求解;3.单调性法,数列作为特殊的函数,可通过函数的单调性研究数列的单调性,必须注意的是数列对应的是孤立的点,这与连续函数的单调性有所不同;也可以通过差值的正负确定数列的单调性.16.如图,四边形ABCD是边长为1的正方形,平面ABCD,平面ABCD,且,G为线段EC上的动点,则下列结论中正确的是______;该几何体外接球的表面积为;若G为EC中点,则平面AEF;的最小值为3.【答案】【解析】以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,分别求得D,A,B,C,F,E的坐标,由,的坐标表示,可判断;确定球心为矩形BDEF的对角线交点,求得半径,可判断;求得G的坐标,求得平面AEF的法向量,计算可判断;设出G的坐标,由两点的距离公式,结合二次函数的最值求法,可判断.【详解】以D为原点,DA所在直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,可得0,,0,,1,,1,,1,,0,,即有1,,1,,由,可得,故正确;由球心在过正方形ABCD的中心的垂面上,即为矩形BDEF的对角线的交点,可得半径为,即有该几何体外接球的表面积为,故正确;若G为EC中点,可得1,,0,,0,,1,,设平面AEF的法向量为y,,可得,且,可设,可得一个法向量为,由,可得则平面AEF,故正确;设t,,,当时,取得最小值,故错误.故答案为:.【点睛】本题考查空间线面的位置关系和空间线线角的求法,以及向量法解决空间问题,考查运算能力,属于中档题.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题17.的内角A,B,C的对边分别为a,b,c,已知,,的面积为,F为边AC上一点.求c;若,求.【答案】(1)c=2(2)【解析】由已知利用三角形的面积公式可求b的值,根据余弦定理可得c的值;由可得,可求,,由已知根据正弦定理,由,可求,根据两角和的正弦函数公式即可计算得解的值.【详解】,,的面积为,解得:,由余弦定理可得:,由可得,,,在中,由正弦定理,可得:,,,,,【点睛】本题主要考查了三角形的面积公式,余弦定理,正弦定理,两角和的正弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18.如图,在四棱锥中,底面为菱形,已知,,求证:平面平面ABCD;求直线AE与平面CED的所成角的正弦值.【答案】(1)见证明;(2)【解析】过D作,连结EO,推导出≌,,,从而面ABE,由此能证明平面平面ABCD;由,,,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AE与平面CED的所成角的正弦值.【详解】如图,过D作,连结EO,,,≌,,,,,由勾股定理逆定理得,,,,面ABE,面ABE,面ABE,面ABCD,平面平面ABCD.由知,,,如图,以O为坐标原点,分别以OE,OB,OD为x轴,y轴,z轴,建立空间直角坐标系,由已知得0,,,0,,2,,,,,设面CED的法向量y,,则,取,得0,,设直线AE与平面CED所成角为,则,直线AE与平面CED的所成角的正弦值为.【点睛】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型报废年限各不相同考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据如果你是该公司的负责人,你会选择采购哪款车型?参考数据:,,.参考公式:相关系数,回归直线方程为其中:,.【答案】(1)见解析;(2),估计2018年2月的市场占有率为.(3)见解析【解析】(1)画出散点图,求出相关系数,判断线性相关性即可;(2)求出回归方程的系数,求出回归方程,代入函数值检验即可;(3)求出分布列,求出数学期望比较即可判断.【详解】散点图如图所示,,,所以两变量之间具有较强的线性相关关系,故可用线性回归模型拟合两变量之间的关系.,又,,回归直线方程为,2018年2月的月份代码,,所以估计2018年2月的市场占有率为.用频率估计概率,A款单车的利润X的分布列为:元.B款单车的利润Y的分布列为:元以每辆单车产生利润的期望值为决策依据,故应选择B款车型.【点睛】本题考查了散点图,考查回归方程以及分布列和数学期望,是一道中档题.在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.20.已知圆:,点,C为圆上任意一点,点P在直线OC上,且满足,,点P的轨迹为曲线E.求曲线E的方程;若直线l:不与坐标轴重合与曲线E交于M,N两点,O为坐标原点,设直线OM、ON的斜率分别为、,对任意的斜率k,若存在实数,使得,求实数的取值范围.【答案】(1)(2)【解析】由题意可得点P的轨迹是以为焦点的椭圆,即可求出曲线E的方程;设,根据韦达定理结合斜率公式,以及,可得,再分类讨论,根据判别式即可求出的取值范围.【详解】由,可得,则点P的轨迹是以为焦点的椭圆,则,,,则曲线E的方程为,设,,则,消y可得,,,当时,,当时,,由于对任意k恒成立,则,,,综上所述.【点睛】本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要灵活运用圆锥曲线性质,注意合理地进行等价转化,是中档题.其中涉及方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.已知函数,其中,,.若是的一条切线,求a的值;在间的前提下,对任意的实数,若存在正实数,,使得,求的最小正整数值.【答案】(1)(2)最小值为4【解析】求得的导数,设出切点,可得切线的斜率,可得a,m的方程,解得m,a;由题意可得可得,即,设,令,求得导数和单调性,可得最小值,再由不等式恒成立和一次函数的单调性,解不等式可得所求最小值.【详解】的导数为,设与相切于,可得,,化为,设,导数为,当时,递增;时,递减,可得处取得最小值0,则,;,可得,即,设,令,,时,递减;时,递增,可得,即有,设,对恒成立,令,,在递减,可得,可得舍去,由n为正整数,可得n的最小值为4,即的最小值为4.【点睛】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查构造函数法,以及化简整理的运算能力,属于中档题.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.22.在平面直角坐标系xOy中,直线的参数方程为:为参数,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为:,直线与曲线交于A,B两点,求曲线的普通方程及的最小值;若点,求的最大值.【答案】(1)曲线的普通方程为.的最小值为.(2)最大值70【解析】由曲线的极坐标方程,能求出曲线的普通方程由最小时,圆心距最大为,能求出的最小值;将直线与方程联立方程,得,从而,,进而,由此能求出的最大值.【详解】曲线的极坐标方程为:,,曲线的普通方程为,即.直线的参数方程为:为参数,直线与曲线交于A,B两点,最小时,圆心距最大为,的最小值为:.设直线上点A,B对应参数方程为参数的参数分别为,,将直线与方程联立方程,得:,,,,,当时,取最大值70.【点睛】本题考查曲线的普通方程的求法,考查弦长的求法,考查两线段平方和的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,当时,解不等式;若存在,使得不等式的解集非空,求b的取值范围.【答案】(1)(2)【解析】时不等式化为,根据绝对值的定义求出解集即可;由不等式得,构造函数,不等式的解集非空等价于,利用绝对值不等式求出在上的最大值即可.【详解】当时,函数,解不等式化为,即,,解得,不等式的解集为;由,得,设,则不等式的解集非空,等价于;由,;由题意知存在,使得上式成立;而函数在上的最大值为,;即b的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数在某一区间上的最值问题,是中档题.。

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题(解析Word版)

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题(解析Word版)

2019届四川省成都市石室中学高三下学期三诊模拟数学(理)试题一、单选题1.已知集合{}211|10,|24,2x M x x N x x Z +⎧⎫=-≤=<<∈⎨⎬⎩⎭,则M N ⋂=( ) A .{}1,0 B .{}1 C .{}1,0,1- D .φ【答案】A【解析】试题分析:{}{}{}{}2|10|11,1,0,1,0M x x x x N M N =-≤=-≤≤=-∴⋂=-,故选A.【考点】集合的运算.2.设1z i =-(i 是虚数单位),则2z z+=( ) A .22i - B .22i +C .3i -D .3i +【答案】B【解析】利用复数的除法运算、共轭复数的定义可计算出2z z+的值. 【详解】1z i =-Q ,1z i =+,则()()()()2122112122111i z i i i i z i i i ++=++=++=+=+--+, 故选:B. 【点睛】本题考查复数的计算,考查复数的除法、共轭复数的相关计算,考查计算能力,属于基础题.3.若多项式()210011x x a a x +=++()()91091011a x a x +++++L ,则9a =( )A .9B .10C .-9D .-10【答案】D【解析】()()9011010019910999991...1[...]n n n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 4.一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A .(4)3π+B (8)3π+C .(8)3π+D .(43π+【答案】B【解析】试题分析:该几何体是圆锥的一半与一四棱锥的组合体.圆锥底半径为1,四棱锥的底面是边长为2的正方形,高均为2×3(8)3π+选B .【考点】本题主要考查三视图,几何体的体积计算.点评:基础题,三视图是高考必考题目,因此,要明确三视图视图规则,准确地还原几何体,明确几何体的特征,以便进一步解题.5.设0x >,0y >,且1142x y+=,422log log z x y =+,则z 的最小值是( ) A .4- B .3-C .2log 6-D .232log 8【答案】B【解析】利用基本不等式可求出xy 的最小值,利用换底公式以及对数的运算律可得出z 的最小值. 【详解】0x Q >,0y >,且1142x y +=,11111422222x y x y xy ∴=+≥⋅=122xy≤,18xy ∴≥,当且仅当2x y =时取等号.42222212log log log log log log 38z x y x y xy =+=+=≥=-,则z 的最小值是3-. 故选:B. 【点睛】本题考查利用基本不等式求最值,同时也考查了换底公式以及对数运算性质的应用,考查计算能力,属于基础题.6.若A 为不等式组0{02x y y x ≤≥-≤所示的平面区域,则当a 从-2连续变化到1时,动直线x+ y =a 扫过A 中的那部分区域面积为( ) A .2 B .1 C .34 D .74【答案】D【解析】试题分析:如图,不等式组0{02x y y x ≤≥-≤表示的平面区域是,动直线在轴上的截距从变化到1,知是斜边为3等腰直角三角形,是直角边为1的等腰直角三角形,所以区域的面积,故选D.【考点】二元一次不等式(组)与平面区域点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.7.函数y=sin(πx+)(>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB=θ,则sin2θ的值是( )A .1665B .6365C .1665-D .1663-【答案】A【解析】由周期公式可知函数周期为2,∴AB =2,过P 作P C ⊥AB 与C ,根据周期的大小看出直角三角形中直角边的长度,解出∠APC 与∠BPC 的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ. 【详解】. ,BAP a PBA β∠=∠=()a θπβ=-+P C ⊥AB 与C115||,||||142AC T AP PC ====||255sin ,cos ||55PC a a AP ===3313||,||422BC T PB '===213313sin ββ==16sin 22sin cos 2sin()cos()2(sin cos cos sin )(cos cos 65=a a a θθθβαβαβββ=-++=-+=, 故选:A. 【点睛】本题主要考查三角函数的图象与性质,考查了两角和的正弦公式以及二倍角的正弦公式,属于综合题.8.下列命题中:①若“x y >”是“22x y >”的充要条件;②若“x R ∃∈,2210x ax ++<”,则实数a 的取值范围是()(),11,-∞-+∞U ;③已知平面α、β、γ,直线m 、l ,若αγ⊥,m γα=I,l γβ=I ,l m ⊥,则l α⊥;④函数()13xf x ⎛⎫= ⎪⎝⎭11,32⎛⎫ ⎪⎝⎭. 其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【解析】利用充分条件与必要条件的关系判断①的正误;根据特称命题成立的等价条件求实数a 的取值范围,可判断②的正误;由面面垂直的性质定理可判断③的正误;利用零点存在定理可判断④的正误. 【详解】①由x y >,可知0x >,所以有22x y >,当0x y <<时,满足22x y >,但x y >不成立,所以①错误;②要使“x R ∃∈,2210x ax ++<”成立,则有对应方程的判别式>0∆,即2440a ->,解得1a <-或1a >,所以②正确; ③因为αγ⊥,m γα=I,l γβ=I ,所以l γ⊂,又l m ⊥,所以根据面面垂直的性质定理知l α⊥,所以③正确;④因为111332111103333f ⎛⎫⎛⎫⎛⎫⎛⎫==-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,111222111102332f ⎛⎫⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,且函数()y f x =连续,所以根据零点存在定理可知在区间11,32⎛⎫⎪⎝⎭上,函数()y f x =存在零点,所以④正确.所以正确的是②③④,共有三个. 故选:C. 【点睛】本题考查命题的真假判断.正确推理是解题的关键.要求各相关知识必须熟练,考查推理能力,属于中等题.9.某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有( )A .474种B .77种C .462种D .79种【答案】A【解析】试题分析:根据题意,由于某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),所有的上课方法有99A ,那么连着上3节课的情况有533A 种,则利用间接法可知所求的方法有99A -533A =474,故答案为A. 【考点】排列组合点评:主要是考查了排列组合的运用,属于基础题. 10.已知函数()xf x xe =,方程()()2+1=0fx tf x +()t R ∈有四个实数根,则t 的取值范围为( )A .21,e e ⎛⎫++∞ ⎪⎝⎭B .21,e e ⎛⎫+-∞- ⎪⎝⎭C .21,2e e ⎛⎫+-- ⎪⎝⎭D .212,e e ⎛⎫+ ⎪⎝⎭【答案】B【解析】利用导数,判断函数()f x 的单调性及最值,从而画出该函数的图像;再用换元,将问题转化为一元二次方程根的分布问题,即可求解参数范围. 【详解】令()xg x xe =,故()()1xg x ex '=+,令()0g x '=,解得1x =-,故函数()g x 在区间(),1-∞-单调递减,在()1,-+∞单调递增, 且在1x =-处,取得最小值()11g e-=-. 根据()f x 与()g x 图像之间的关系,即可绘制函数()f x 的图像如下:令()f x m =,结合图像,根据题意若要满足()()2+1=0fx tf x +有四个根,只需方程210m tm ++=的两根1m 与2m 满足:其中一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根21m e >或20m =.①当方程210m tm ++=的一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根20m =, 将0m =代入,可得10=矛盾,故此种情况不可能发生; ②当方程210m tm ++=的一个根110,?m e ⎛⎫∈ ⎪⎝⎭,另一个根21m e>()2 1m m tm ϕ=++,要满足题意,只需()10,00e ϕϕ⎛⎫⎪⎝⎭即可 即2110,?1?0te e++, 解得21,e t e ⎛⎫+∈-∞- ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数研究函数的单调性,以及二次方程根的分布问题,属重点题型.二、填空题11.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=________. 【答案】【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A 的概率,同样利用古典概型概率计算公式求出事件AB 的概率,然后直接利用条件概率公式求解. 解:P (A )=,P (AB )=.由条件概率公式得P (B|A )=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.12.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有________个.【答案】3【解析】试题分析:该程序框图是计算分段函数的函数值,从自变量的取值情况看,由三种情况,故应考虑1x x=,224,x x x x -==所得x 值,有3个. 【考点】本题主要考查程序框图的功能识别,简单方程的求解.点评:简单题,注意到应考虑1x x=,224,x x x x -==所得x 值,一一探讨. 13.已知在平面直角坐标系中,()2,0A -,()1,3B ,O 为原点,且OM OA OB αβ=+u u u u r u u u r u u u r,(其中1αβ+=,α,β均为实数),若()1,0N ,则MN u u u u v的最小值是_____.32【解析】根据OM OA OB αβ=+u u u u ru u u ru u u r可化简为BM BA α=u u u u r u u u r,可得出A 、B 、M 三点共线,求出直线AB 的方程,然后利用点到直线的距离公式可计算出MN u u u u v的最小值.【详解】OM OA OB αβ=+u u u u r u u u r u u u rQ (其中1αβ+=,α、β均为实数), ()1OM OA OB αα=+-u u u u v u u u v u u u v ,即()OM OB OA OB α-=-u u u u v u u u v u u u v u u u v ,即BM BA α=u u u u r u u u r,//BM BA ∴u u u u r u u u r ,A ∴、B 、M 三点共线,MN ∴u u u u v的最小值即为点N 到直线AB 的距离, 直线AB 的方程为23012y x +=-+,即20x y -+=, 因此,MN u u u u v的最小值为()221232211d +==+-.故答案为:2【点睛】本题考查利用向量判断三点共线,同时也考查了点到直线距离公式计算线段长度的最小值,考查化归与转化思想的应用,属于中等题.14.已知双曲线()2222:10x y C a b a b -=>>的右焦点为F ,过F 的直线交C 于A 、B 两点,若4AF FB =u u u r u u u r,则C 的离心率为______.【答案】65【解析】设()()1122,,,A x y B x y ,将直线的方程和双曲线的方程联立消元得出24121222223,33c b y y y y a b a b-+==--,由4AF FB =u u u r u u u r 可得124y y =-,这几个式子再结合222b c a =-化简可得65c a = 【详解】因为直线AB 过点(c,0)F所以直线AB 的方程为:)y x c =-与双曲线22221x y a b-=联立消去x ,得222241033b a y cy b ⎛⎫-++= ⎪⎝⎭设()()1122,,,A x y B x y所以24121222223,33c b y y y y a b a b-+==-- 因为4AF FB =u u u r u u u r,可得124y y =-代入上式得24222222233,433c b y y a b a b--=-=-- 消去2y 并化简整理得:22243(3)34c a b =- 将222b c a =-代入化简得:223625c a =解之得65c a =因此,该双曲线的离心率65c e a == 故答案为:65【点睛】1.直线与双曲线相交的问题,常将两个的方程联立消元,用韦达定理表示出横(纵)坐标之和、积,然后再结合条件求解2.求离心率即是求a 与c 的关系.15.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则()f x 为M 上的l 高调函数,如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4高调函数,那么实数a 的取值范围是__________. 【答案】[1,1]-【解析】定义在R 上的函数()f x 是奇函数,当0x ≥时,222222,()||,0x a x a f x x a a x x a⎧-≥=--=⎨-≤<⎩,作出()y f x =的图像如图所示, ∵()f x 为R 上的4高调函数,当0x <时,函数的最大值为2a ,要满足(4)()f x f x +≥,4大于等于区间长度223()a a --,∴2243()a a ≥--,即244a ≤,解得11a -≤≤. 故实数a 的取值范围是[1,1]-.三、解答题16.已知向量()sin ,1a x =-r ,13,2b x ⎫=-⎪⎭r ,函数()()2f x a b a =+⋅-r r r .(1)求函数()f x 的最小正周期T 及单调减区间;(2)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边,其中A为锐角,a =4c =,且()1f A =.求A 、b 的长和ABC ∆的面积.【答案】(1)T π=,递减区间是()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)3A π=,2b =,ABC S ∆=【解析】(1)利用平面向量数量积的坐标运算得出()()2f x a b a =+⋅-v v v,并利用三角恒等变换思想化简函数()y f x =的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭,利用正弦函数周期公式及其单调性即可得到函数()y f x =的最小正周期T 及单调减区间;(2)利用(1)即可得到A ,再利用正弦定理即可得到C ,利用三角形内角和定理即可得到B ,利用直角三角形含6π角的性质即可得出边b ,进而得到三角形的面积. 【详解】(1)()sin ,1a x =-vQ,1,2b x ⎫=-⎪⎭v ,()()233sin ,sin ,1sin cos 22a b a x x x x x x ⎛⎫∴+⋅=+-⋅-=+⎪⎝⎭v vv 1cos 2231sin 2cos 22sin 22222226x x x x x π-⎛⎫=++=-+=-+ ⎪⎝⎭, ()()2sin 26f x a b a x π⎛⎫∴=+⋅-=- ⎪⎝⎭v v v ,所以,22T ππ==,由()3222262k x k k Z πππππ+≤-≤+∈,解得536k x k ππππ+≤≤+()k Z ∈,所以,函数()y f x =的单调递减区间是()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)()1f A =Q ,sin 216A π⎛⎫∴-= ⎪⎝⎭, A Q 为锐角,即02A π<<,52666A πππ∴-<-<,262A ππ∴-=,解得3A π=.由正弦定理得sin sin a cA C=,4sin sin 3sin 123c A C a π⨯∴===, ()0,C π∈Q ,2C π∴=,6B AC ππ∴=--=,122b c ∴==, 因此,ABC ∆的面积为1223232ABC S ∆=⨯⨯=. 【点睛】本题综合考查了向量数量积的坐标运算、正弦函数的单调性及其性质、正弦定理、直角三角形的边角关系及其面积等基础知识与基本技能,考查了推理能力和计算能力. 17.如图,AB 为圆O 的直径,点E 、F 在圆O 上,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)求三棱锥C OEF -的体积. 【答案】(Ⅰ)见解析;(Ⅱ3【解析】【详解】试题分析:(Ⅰ)平面ABCD ⊥平面ABEF ,CB AB ⊥, 平面ABCD I 平面ABEF AB =,CB ∴⊥平面ABEF ,∵AF 在平面ABEF 内,∴AF CB ⊥, 又AB 为圆O 的直径,∴AF BF ⊥, ∴AF ⊥平面CBF .(Ⅱ)由(1)知CB ABEF ⊥面即CB OEF ⊥面, ∴三棱锥C OEF -的高是CB , ∴1CB AD ==,连结OE 、OF ,可知1OE OF EF ===∴OEF ∆为正三角形,∴正OEF ∆∴11111332C OEF OEF V CB S -∆=⨯=⨯⨯=18.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功,每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得获品的价值,写出X 的概率分布列,并求X 的数学期望. 【答案】(1)725;(2)分布列见详解,2160EX = 【解析】(1)小王过第一关但未过第二关,包括小王第一关两道题都答对,第二关第一道题答错,或者小王第一关两道题都答对,第二关第一道题答对,第二道题答错,据此计算概率;(2)根据题意,分别写出X 可取的值,再计算每个可取值对应的概率,求得分布列即可. 【详解】(1)设小王过第一关但未过第二关的概率为1P ,则容易知2141317544425P ⎛⎫⎛⎫=+⨯=⎪ ⎪⎝⎭⎝⎭. (2)X 的取值为0,1000,3000,6000, 则()1419055525P X ==+⨯=, ()2413171000544425P X ⎛⎫⎛⎫==+⨯=⎪ ⎪⎝⎭⎝⎭,()222212432217300015433375P X C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==--⨯=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()22221243221460005433315P X C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==+⨯=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,∴X 的概率分布列为∴X 的数学期望97740100030006000216025257515EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的计算,离散型随机变量的分布列和数学期望,以及计算能力,属中档题.19.各项均为正数的数列{}n a 前n 项和为n S ,且2421n n n S a a =++,n ∈+N .(1)求数列{}n a 的通项公式;(2)已知公比为()q q N +∈的等比数列{}n b 满足11b a =,且存在m N +∈满足m m b a =,13m m b a ++=,求数列{}n b 的通项公式.【答案】(1)21n a n =-;(2)17n n b -=或13n n b -=.【解析】(1)令1n =,利用数列递推式求出1a 的值,由2421n n n S a a =++得出2111421n n n S a a +++=++,两式相减,结合数列{}n a 各项均为正数,可得数列{}n a 是首项为1,公差为2的等差数列,从而可求数列{}n a 的通项公式;(2)利用m m b a =,13m m b a ++=,求出公比q ,即可求得数列{}n b 的通项公式. 【详解】(1)当1n =时,211114421S a a a ==++,整理得()2110a -=,11a ∴=. 2421n n n S a a =++Q ,2111421n n n S a a +++∴=++,两式相减得22111422n n n n n a a a a a +++=-+-,即2211220n n n n a a a a ++---=,即()()1120n n n n a a a a +++--=,Q 数列{}n a 各项均为正数,10n n a a ++>∴,12n n a a +∴-=,∴数列{}n a 是首项为1,公差为2的等差数列,故()12121n a n n =+-=-;(2)111b a ==Q ,111n n n b b q q --=∴=,依题意得12125m m q m q m -⎧=-⎨=+⎩,相除得25612121m q N m m ++==+∈--211m ∴-=或213m -=,所以17m q =⎧⎨=⎩或23m q =⎧⎨=⎩, 当1m =时,17n n b -=;当2m =时,13n n b -=. 综上所述,17n n b -=或13n n b -=.【点睛】本题考查数列递推式,考查数列的通项,考查学生分析解决问题的能力,属于中档题.20.已知椭圆2222:1(0)x y C a b a b +=>>(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【答案】(1)2214x y +=;(2) (0,1).【解析】【详解】(1)由已知得222222{a bc a c a b =⨯==-⇒2{1a b ==∴C 方程:2214x y += (2)由题意可设直线l 的方程为:y kx m =+(0,0)k m ≠≠联立2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得:222(14)84(1)0k x kmx m +++-= 则△22226416(14)(1)k m k m =-+-2216(41)0k m =-+>,此时设11(,)M x y 、22(,)N x y ∴212122284(1),1414km m x x x x k k-+=-=++ 于是2212121212()()()y y kx m kx m k x x km x x m =++=+++又直线OM 、MN 、ON 的斜率依次成等比数列,∴2221211121212()y y k x x km x x m k x x x x +++⋅==⇒22228014k m m k-+=+ 由0m ≠得:214k =⇒12k =±.又由△0>得:202m <<显然21m ≠(否则:120x x =,则12,x x 中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,矛盾!) 设原点O 到直线l 的距离为d ,则212211·1221OMNmS MN d k x x k ==+-+V 2212121()4(1)12m x x x x m =+-=--+ 故由m 得取值范围可得△OMN 面积的取值范围为(0,1) 21.已知f (x )=x-ax(a>0),g (x )=2lnx+bx 且直线y=2x -2与曲线y=g (x )相切.(1)若对[1,+∞)内的一切实数x ,小等式f (x )≥g (x )恒成立,求实数a 的取值范围;(2)当a=l 时,求最大的正整数k ,使得对[e ,3](e=2.71828是自然对数的底数)内的任意k 个实数x 1,x 2,,x k 都有121()()()16()k k f x f x f x g x -+++≤L 成立; (3)求证:*2141(21)()41ni i n n n N i =>+∈-∑. 【答案】(1);(2)的最大值为.(3)见解析. 【解析】【详解】试题分析:(1)设点为直线与曲线的切点,则有. (),. ()由()、()两式,解得,.由整理,得,,要使不等式恒成立,必须恒成立. 设,,,当时,,则是增函数, ,是增函数,,因此,实数的取值范围是. (2)当时,,,在上是增函数,在上的最大值为.要对内的任意个实数都有成立,必须使得不等式左边的最大值小于或等于右边的最小值,当时不等式左边取得最大值,时不等式右边取得最小值.,解得.因此,的最大值为.(3)证明(法一):当时,根据(1)的推导有,时,,即.令,得,化简得,.(法二)数学归纳法:当时,左边=,右边=,根据(1)的推导有,时,,即.令,得,即.因此,时不等式成立.(另解:,,,即.)假设当时不等式成立,即,则当时,,要证时命题成立,即证,即证.在不等式中,令,得.时命题也成立.根据数学归纳法,可得不等式对一切成立.【考点】函数的性质;导数的几何意义;利用导数研究函数的单调性;数学归纳法.点评:(1)本题主要考查导数的几何意义及其应用和数学归纳法等综合知识,考查学生的计算推理能力及分析问题、解决问题的能力及创新意识.对学生的能力要求较高,尤其是分析问题解决问题的能力.(2)解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题,思路1:在上恒成立;思路2:在上恒成立.。

成都石室中学高2019级 “一诊”模拟考试(数学理)

成都石室中学高2019级 “一诊”模拟考试(数学理)

成都石室中学高2019届一诊模拟一.选择题(本题共有12小题, 每题5分,共60分,每题恰有一个答案) 1. 已知1z i =+,则21z1z ++等于 ( )A . 4355i + B . 4355i - C .i D .i -2. 下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )A.sin()2y x π=+ B.cos(2)2y x π=+ C.sin(2)2y x π=+ D.cos()2y x π=+3.(81展开式中不含4x 项的系数的和为 ( )A.-1B.0C.1D.24.若函数()log a f x x =(其中0,1)a a >≠满足(5)2f =,则15(2l o g 2)f -的值为 ( )A .5log 2 B. 2log 5 C.4 D.25.将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有 ( )A. 18种B. 24种C. 54种D. 60种6.设{}n a 、{}n b 分别为等差数列与等比数列,且114a b ==,441a b ==,则以下结论一定成立的是()A .22a b >B .33a b <C .55a b >D .66a b >7.已知函数()cos(),f x x R θθ=+∈.若0()()lim1x f x f xππ→+-=,则函数f(x)的解析式为( )A.()sin f x x =-B. ()cos f x x =-C. ()sin f x x =D. ()cos f x x =8. 设随机变量ξ服从标准正态分布()0 1N ,,在某项测量中,已知()196P .ξ<=0.950,则ξ在()1.-∞-,96内取值的概率为 ( )A .0.025B .0.050C .0.950D .0.9759.设,,a b c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a c ⊥,||||a c =,则||b c ⋅的值一定等于 ( )A .以,a b 为邻边的平行四边形的面积 B. 以,b c 为两边的三角形面积C .,a b 为两边的三角形面积 D. 以,b c 为邻边的平行四边形的面积 10.已知p 是r 的充分条件而非必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题: ①s 是q 的充要条件; ②p 是q 的充分非必要条件;③r 是q 的必要非充分条件; ④p s ⌝⌝是的必要非充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是 ( )A.①④⑤B.①②④C.②③⑤D. ②④⑤11.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6 .时再增选一名代表. 那么各班可推选代表人数y 与该班人数 x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为 ( )A.y =[10x ]B.y =[310x +]C.y =[410x +]D.y =[510x +]12. 如图,在长方形ABCD 中,,E 为线段DC 上一动点,现将∆AED 沿AE 折起,使点D在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为 ( ) AC .2πD . 3πBA二.填空题(每题4分,共16分)13.设()y f x =存在反函数1()y f x -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 .14.已知函数()f x 的导函数为()f x ',且满足2()32(2)f x x xf '=+,则(5)f '=15.将边长为1的正方形ABCD 沿对角线AC 对折成120的二面角,则B,D 在四面体A-BCD 的外接球球面上的距离为16.已知定义域为 0+∞(,) 的函数f(x)满足: 对任意x 0∈+∞(,),恒有 f(2x)=2f(x)成立;当x ]∈(1,2时,f(x)=2-x 。

四川省成都石室中学2019届高三上学期入学考试数学(理)试卷附答案

四川省成都石室中学2019届高三上学期入学考试数学(理)试卷附答案

成都石室中学2019届高三上学期入学考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i iiz 211++-=,则=||z A .0 B .12C .1D 2 2.设集合{})2(log |2x y x A -==,若全集A U =,{}21|<<=x x B ,则U C B = A . (),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞3.命题“0x ∀>,1ln 1x x≥-”的否定是 A .0x ∀>,1ln 1x x<-B .00x ∃>,001ln 1x x <-C .00x ∃≤,001ln 1x x <-D . 0x ∀>,1ln 1x x≤- 4.在如图的程序框图中,若输入77,33m n ==,则输出的n 的值是 A .3 B .7 C .11 D .335.在区间[0,2]上随机取一个数x ,使232sin≥x π的概率为 A .13 B .12C .23D .346. 《九章算术》中,将底面是等腰直角三角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的体积为A. 2B.32C. 1D. 462+ 7.已知等比数列{a n }的前n 项和为S n ,2531=+a a 且4542=+a a ,则=nn a S A .14n - B .41n - C .12n - D .21n -8.已知函数()f x 是定义域为R 的奇函数,()()11f x f x +=-+,且当01x ≤≤时,()11cos f x x=-,则下列结论正确的是 ()32129f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭ ()19322f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭C. ()22913f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭ ()19223f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭9.已知约束条件为32402020x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,若目标函数y kx z +=取最大值时的最优解有无数多个,则k 的值为A. 1B. 1-C. 32- D. 1-或110.已知抛物线x y 42=的一条弦AB 经过焦点,F O 为坐标原点,点M 在线段OB 上,且3OB OM =,点N 在射线OA 上,且3ON OA =,过,M N 向抛物线的准线作垂线,垂足分别为,C D ,则CD 的最小值为A .4B .6C .8D .1011.向量c b,a,满足:||4=a ,||42=b ,b 在a 上的投影为4,()()0-⋅-=a c b c ,则⋅b c 的最大值是A. 24B. 2824-C. 2824+D. 2812.已知函数()(1)(2)e e x f x m x x =----,若关于x 的不等式0)(>x f 有且只有一个正整数解,则实数m 的最大值为A .3e e 2+B .2e e 2+C .3e e 2-D .2e e 2-二、填空题:本大题共4小题,每小题5分,共20分.13.若nxx )1(-的展开式中第3项和第5项的二项式系数相等,则展开式中的常数项为 .14. 直线:2(5)l y x =过双曲线)0,0(1:2222>>=-b a by a x C 的右焦点F 且与双曲线C 只有一个公共点,则C 的离心率为 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若134,12AB AC AB AC AA ==⊥=,,,则球O 的直径为 .16.函数2()32cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成如下频率分布直方图,已知实体店与网店销售量相互独立.实体店销售量(单位:件)频率组距0.0400.0340.0320.0240.0200.0140.012706560555045403530250频率组距网店销售量(单位:件)70656055504540350.0680.0460.0440.0100.0080.004(Ⅰ)若将上述频率视为概率,已知实体店每天销售量不低于50件可盈利,网店每天销量不低于45件可盈利,求任取一天,实体店和网店都盈利的概率;(Ⅱ)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01). (Ⅲ)若将上述频率视为概率,记该服装店未来三天实体店销售量不低于40件的天数为X ,求随机变量X 的分布列和数学期望.18.(本小题满分12分)如图,在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知4,2,2cos ,c b c C b === ,D E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(I)求线段AD 的长; (II)求ADE ∆的面积.19.(本小题满分12分)直播答题是最近很热门一款游戏,其答题规则如下:每次都有12道题,每题三个选项中恰有一个正确选项,若中途答错,则退出游戏,若正确回答完12题就可以平分当期奖金. 随着直播答题的发展,平台“烧钱大战”模式的可持续性受到了质疑,某网站随机选取1000名网民进行了调查,得到的数据如下表:男 女 认为直播答题模式可持续 360 280 认为直播答题模式不可持续240120(I)根据表格中的数据,能否在犯错误不超过0.5%的前提下,认为对直播答题模式的态度与性别有关系?(II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答题游戏中,前8个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该网友本场答题个数X 的分布列,并求该网友当期可平分奖金的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82820.(本小题满分12分)如图O 为坐标原点,圆 22:4,O x y +=点 ),(),,(030321F F -,以线段M F 1为直径的圆N 内切于圆O ,切点为P ,记点M 的轨迹为曲线C .(I )证明:12||||F M F M +为定值,并求曲线C 的方程;(II )设Q 为曲线C 上的一个动点,且Q 在x 轴的上方,过2F 作直线Q F l 1//,记l 与曲线C 的上半部分交于R 点,求四边形21F RQF 面积的取值范围.21.(本小题满分12分)已知函数()ln m xf x x=,()()1g x n x =-+,其中0mn ≠. (I )若m n =,讨论()()()h x f x g x =+的单调区间; (II )若()()0f x g x +=的两根为12,x x ,且12x x >,证明:()121220g x x mx x ++<+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线041=-+y x C :,曲线为参数)θθθ(sin 1cos :2⎩⎨⎧+==y x C ,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(I )求曲线21C C ,的极坐标方程; (II )射线),(:200παραθ<<≥=l 分别交21C C , 于N M ,两点,求||||OM ON 的最大值.23.选修4-5:不等式选讲已知函数()13f x x x =-+-.(I )解不等式()1f x x ≤+;(II )设函数()f x 的最小值为c ,实数a ,b 满足0,0,a b a b c >>+=,求证:11122≥+++b b a a .石室中学高2019届2018~2019学年上期入学考试数学参考答案(理科)1-5:CBBCA 6-10:ADDBA 11-12:CA 13、-20 14、5 15、13 16、7(3,]217解:(Ⅰ)由题意,任取一天,实体店盈利的概率1(0.0320.0200.0122)50.38P =++⨯⨯= 网店盈利的概率21(0.0040.020)50.88P =-+⨯= 由实体店和网店销售量相互独立, 故任取一天,实体店和网店都盈利的概率0.380.880.3344.P =⨯= .…………3分 (Ⅱ)因为网店销售量频率分布直方图中,销售量低于50的直方图面积为()0.0040.0200.04450.340.5++⨯=<,销售量低于55的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故网店销售量的中位数的估计值为0.5-0.3450+552.350.34⨯≈(件)…………6分(Ⅲ)由题意,实体店销售量不低于40件的概率31(0.0120.0140.024)54P =-++⨯=……7分故3~(3,)4X B ,X 的可能取值为0,1,2,3.相应的概率为()3033101464P X C ⎛⎫==⋅-= ⎪⎝⎭, ()2133********P X C ⎛⎫==⋅-=⎪⎝⎭, ()22333272()14464()P X C ==⋅-=, ()3333273()464P X C ==⋅=,分布列为X 0 1 2 3 P16496427642764…………11分因为3~(3,)4X B ,所以期望为39(X)344E =⨯=.…………12分18.解:(1)根据题意,2=b ,4=c ,b C c =cos 2,则412cos ==c b C ;又由4141642cos 2222=-+=-+=a a ab c b a C ,解可得4=a即4=BC ,则2=CD , 在ACD ∆中,由余弦定理得:6cos 2222=⋅-+=C CD AC CD AC AD , 则6=AD ;…………………(6分)(2)根据题意,AE 平分BAC ∠,则21==AB AC BE CE , 变形可得:3431==BC CE ,41cos =C ,则415sin =C , 615=-=∆∆∆ACE ACD ADE S S S …………………(12分) 19、解析:(I )依题意,2K 的观测值()210003601202402801257.87960040064036012k ⨯⨯-⨯==>⨯⨯⨯, 故可以在犯错误的概率不超过0.5%的前提下,认为对直播大题模式的态度与性别有关系;…………5分 (Ⅱ)由题意X 的取值为10,11,12,且后四个题每个题答对的概率为13.………………6分 224(X 10);339P ==⨯=2121228(X 11)33333327P ==⨯⨯+⨯⨯=;2233331217(X 12)()()33327P C C ==⨯+=.故X 的分布列为…………………………………………9分记该网友当期可平分奖金为事件A ,则3344441211()()()3339P A C C =⨯+=.X10 11 12 P49827727故该网友当期可平分奖金的概率为19. ………………………12分 20、解:(1)由题知:O ,P ,N 三点共线,连2MF则4222221=+=+=+||||||||||||ON NP ON MN MF MF , 所以点M 的轨迹是以21F F ,为焦点,长轴长为4的椭圆,其中,,,,则动点M 的轨迹方程是.……………………………………4分(2)如图:PR F QPR PQMR F PQF S S S S 12121===………………………………6分 因为l 不与y 轴垂直,设PR :3+=ty x , ),(),,(2211y x Q y x P所以⎪⎩⎪⎨⎧=++=14322y x ty x 消去x 有:0132422=-++ty y t )(由弦长公式可得:41441616122222++=++⋅+=t t t t t PR )(||又因为点1F 到直线l 的距离2132td +=所以S =131344134212222+++=++⋅=⋅t t t t d PR ||……………10分因为R t ∈,所以3213122≥+++t t (当2=t 等号成立)所以],(20∈S ……………………12分21、解:(Ⅰ)由已知得()()()ln (1)xh x =f x +g x =m x x--,所以()2221ln 1(1ln )x h'x =m =x x x xm-⎛⎫---⎪⎝⎭,……………2分 当01x <<时,2210,ln 0,1ln 0x x x x ->->∴-->Q ;当1x >时,2210,ln 0,1ln 0x x x x -<-<∴--<Q .……………3分 故若0m >,)(h x 的单调递增区间为()0,1,单调递减区间为()1,+∞;若0m <,)(h x 的单调递减区间为()0,1,单调递增区间为()1,+∞.……………5分 (Ⅱ)依题意()111ln 1x m n x x =+, ()2111ln ...+m x n x x ∴=①, 同理,()2222+ln ...m x n x x =②由①-②得,()()()221112212122l 1+nx m n x x x x n x x x x x =--=-++,……………7分 ()()121212ln1x m x n x x x x ∴++=-,()11212221ln g (1)xx x n x x x m m x x +-++==-,……………8分要证()121220g x x mx x ++<+,即证:122112ln 20xx x x x x +<-+,即证:11212221ln+01x x x x x x ->+(),……………9分 令121x t x =>,即证()1ln +20,11t p t t t t -=>∀>+. ()()()()222114'011t p t t t t t -=-=>++Q ,……………10分()p t ∴在区间[)1,∞+上单调递增,()()10,1p t p t ∴>=∀>成立.故原命题得证.……………12分22. 解:(1) 因为,,,所以的极坐标方程为04=-+θρθρsin cos , 因为的普通方程为 , 即 ,对应极坐标方程为 .……………………5分 (2)因为射线),(:200παραθ<<≥=l ,则),(),,(αραρ21N M ,则αρααρsin ,cos sin 2421=+=,所以)cos (sin sin ||||αααρρ+==2112ON OM =414242+-)sin(πα 又 ,),(43442πππα-∈-, 所以当 242ππα=-,即83πα= 时,||||ON OM 取得最大值 412+……10分 23、解:①当1<x 时,不等式可化为124+≤-x x ,1≥x .又∵1<x ,∴∈x ∅;②当31≤≤x 时,不等式可化为12+≤x ,1≥x .又∵31≤≤x ,∴31≤≤x .③当3>x 时,不等式可化为142+≤-x x ,5≤x .又∵3>x ,∴53≤<x .综上所得,51≤≤x .∴原不等式的解集为]5,1[.…………………(5分)(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+-≥-+-=, ∴2=c ,即2=+b a .令m a =+1,n b =+1,则1>m ,1>n ,1,1-=-=n b m a ,4=+n m ,n n m m b b a a 2222)1()1(11-+-=+++n m n m 114++-+=mn 4=1)2(42=+≥n m , 原不等式得证.…………………(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届四川省成都石室中学高三适应性考试(一)
数学理科试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知集合,则()
A.B.C.D.
2. 设为虚数单位,则复数在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3. 计算等于( )
A.B.C.D.
4. 党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()
A.B.
C.D.
5. 在长方体中,,则直线与平面所成角的余弦值为()
A.B.C.D.
6. 执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()
A.B.C.D.
7. 已知平面向量满足与的夹角为,且,则实数的值为()
A.B.C.D.
8. 已知直三棱柱
( )
A.B.
C.
D.
9. 若函数的图象经过点,则函数
图象的一条对称轴的方程可以为( ) A.B.C.D.
10. 已知为抛物线的焦点,点在上,若直线与的
另一个交点为,则( )
A.B.C.D.
11. 过点的直线与曲线交于两点,若
,则直线的斜率为( )
A.B.
C.或D.或
12. 若函数为自然对数的底数)在区间
上不是单调函数,则实数的取值范围是( )
A.B.C.D.
二、填空题
13. 在的展开式中,的系数为________.
14. 已知长方形,,,则以,为焦点,且过,的椭圆的离心率为_____.
15. 已知函数,则关于的不等式的解集为_______.
16. 已知数列满足对任意,若
,则数列的通项公式________.
三、解答题
17. 在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,
试销价格
(元)
产品销量
(件)
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回
归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.
18. 已知在平面四边形中,的面积为
.
(1)求的长;
(2)已知,为锐角,求.
19. 如图,在四面体中,.
(1)求证:平面平面;
(2)若,二面角为,求异面直线与所成角的余弦值.
20. 已知,分别是椭圆:的左,右焦点,点
在椭圆上,且抛物线的焦点是椭圆的一个焦点.
(1)求,的值:
(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.
21. 已知函数是自然对数的底数. (1)若,讨论的单调性;
(2)若有两个极值点,求的取值范围,并证明:.
22. 在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点
O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线
A.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
23. 已知函数.
(1)求不等式的解集;
(2)若对任意恒成立,求的取值范围.。

相关文档
最新文档