运筹学(一)
运筹学1
16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。
运筹学(1)
一、绪论§1 运筹学的简史运筹学作为科学名称出现于20世纪30年代末。
英、美对付德国空袭,采用雷达,技术上可行,实际运用不好用。
如何合理运用雷达?“运用研究”(Operational Research),我国1956年用“运用学”名词,1957年正式定名为运筹学。
运筹学小组在英、美军队中成立,研究:护航舰队保护商船队的编队问题、当船队遭受德国潜艇攻击时如何使船队损失最小问题、反潜深水炸弹的合理爆炸深度(德国潜艇被摧毁数增到400%)、船只在受敌机攻击时的逃避方法(大船急转向、小船缓转向,中弹数由47%降到29%)。
运筹学组织在英、美军队(RAND)中成立,研究:战略性问题、未来武器系统的设计和合理运用方法、美国空军各种轰炸机系统的评价、未来武器系统和未来战争战略、苏联军事能力及未来预报、苏联政治局计划的行动原则和未来战争的战略、到底发展哪种洲际导弹(50年代)、战略力量的构成和数量(60年代)。
运筹学在工业、农业、经济、社会问题等领域有应用。
运筹数学:数学规划(线性规划(丹捷格(G.B.Dantzig)1947,单纯形法;康托洛维奇1939解乘数法,1960《最佳资源利用的经济计算》,诺贝尔奖;列昂节夫1932投入产出模型;冯.诺意曼)、非线性规划、整数规划、目标规则、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)(丹麦工程师爱尔朗(Erlang)1917提出一些著名公式)、存贮论、对策论(冯.诺意曼和摩根斯坦,1944《对策论与经济行为》)、决策论、维修更新理论、搜索论、可靠性和质量管理等。
运筹学领域的诺贝尔奖得主:阿罗、萨谬尔逊、西蒙(经济学家)、多夫曼、胡尔威茨、勃拉凯特(Blackett,美,物理学家)。
运筹学会的建立:英国(1948年)、美国(1952年)、法国(1956年)、日本(1957年)、印度(1957年)、中国(1980年),38个国家和地区。
国际运筹学联合会(IFORS)的成立:1959年,英、美、法发起成立,中国1982年加入。
运筹学-第一章-单纯形法基本原理
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学第1章:线性规划问题及单纯型解法
原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?
是
求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8
运筹学第一章 1.4 大M法和两阶段法
(2)写出初始基本可行解 )写出初始基本可行解——
根据“ 用非基变量表示基变量的表达式” 根据 “ 用非基变量表示基变量的表达式 ” , 非基变量取0 算出基变量, 非基变量取0,算出基变量,搭配在一起构成 初始基本可行解。 初始基本可行解。 2、建立判别准则: 建立判别准则: (1)两个基本表达式的一般形式 LP限制条件中全部是 LP限制条件中全部是“≤”类型约束,新 限制条件中全部是“ 类型约束, 增的松弛变量作为初始基变量的情况来描述: 增的松弛变量作为初始基变量的情况来描述 :
2、处理人工变量的方法: 处理人工变量的方法:
(1)大M法——在约束条件中人为地加入非负 在约束条件中人为地加入非负 的人工变量, 的人工变量,以便使它们对应的系数列向量构 成单位阵。 成单位阵。 问题:加入的人工变量是否合理?如何处理? 问题:加入的人工变量是否合理?如何处理? 目标函数中, 在目标函数中,给人工变量前面添上一个绝对 值很大的负系数M>>0 迭代过程中, 值很大的负系数 -M ( M>>0 ) , 迭代过程中 , 只要基变量中还存在人工变量, 只要基变量中还存在人工变量,目标函数就不 可能实现极大化——惩罚! 惩罚! 可能实现极大化 惩罚
σj =cj −zj =cj −∑ a c
i= 1
m
' n+i ij
(2)最优性判别定理
若 X = (0,0,L0,b ,b ,Lb ) 是对应于基B的基本 是对应于基B , , 可行解, 的检验数, 可行解,σ j 是非基变量 x (j0) 的检验数,若对 于一切非基变量的角指标j 于一切非基变量的角指标j,均有 σ j ≤0,则 X(0)为最优解。 为最优解。
最优性判别定理; 最优性判别定理;无“有限最优解”判断定理 有限最优解”
运筹学习题答案(1)
第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。
(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。
Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。
(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
运筹学基础(1)
展
英国创刊 ☺ 1952年第一个运筹学学会在美国成立
☺ 1947年丹齐克在研究美国空军资源优化配置 时提出线性规划及其通用解法——单纯形法
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
产
生
商船护航的规模等等。
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
☺ 1948年英国成立“运筹学俱乐部”在煤力、 电力等部门推广应用运筹学
产
☺ 相继一些大学开设运筹学课程
生
1948年美国麻省理工学院
和
1950年英国伯明翰大学
发
☺ 1950年第一本运筹学杂志《运筹学季刊》在
的 定 义
与 特 点
为“运作研究”。
美国运筹学会认为:运筹学所研 究的问题,通常是在要求有限资 源的条件下科学地决定如何最好 地设计和运营人机系统。
中国大百科全书释义:它用数学 方法研究经济、民政和国防等部 门在内外环境的约束条件下合理 分配人力、物力、财力等资源, 使实际系统有效运行的技术科学,
bi ,i 1,2m 为资源系数;
aij ,i 1,2m, j 1,2n 为技术系数,或约束
系数 ;
mn
运筹学基础
第四讲
主讲教师:郑黎黎
学时:48
线 性 数规 学划 模问 型题 及 其
线性规划的标准形式有四个特点 : 目标最大化、约束为等式、右端项 非负、决策变量均非负。 对于各种非标准形式的线性规划问 题,我们总可以通过以下变换,将 其转化为标准形式。
运筹学第一章
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14
总
结
从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。
运筹学第一章 1.3.1 单纯形法的基本思路
L L
L L cn + m
0 0 M 1
b1 b2 M bm 0
-Z,Xn+1,…,Xn+m所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵, 用矩阵的初等行变换将该基变成单位阵 , 变成0 这时 c n +1 , c n + 2 , L , c n + m 变成0,相应的增广 矩阵变成如下形式: 矩阵变成如下形式:
第二步:寻求初始可行基, 第二步:寻求初始可行基,确定基变量
1 2 1 0 0 A = ( P1,P2,P3,P4,P5 ) = 4 0 0 1 0 0 4 0 0 1
对应的基变量是
x3 x4 x5
第三步: 第三步:写出初始基本可行解和相应的 目标函数值
两个关键的基本表达式: 两个关键的基本表达式: ①用非基变量表示基变量的表达式
max Z = 2 x1 + 3 x2 x1 + 2 x2 ≤ 8 4 x ≤ 16 1 4 x2 ≤ 12 x1 , x2 ≥ 0
第一步:引入非负的松弛变量和剩余变量 第一步: x3,x4,x5, 将该LP化为标准型 将该LP化为标准型
max Z = 2 x1 + 3x2 + 0 x3 + 0 x4 + 0 x5 x1 + 2 x2 + x3 = 8 4 x1 + x4 = 16 4 x2 + x5 = 12 x j ≥ 0, j = 1, 2,L ,5
(2)表格设计依据: 表格设计依据: 将 -Z 看作不参与基变换的基变量 , 把目 看作不参与基变换的基变量, 标函数表达式改写成方程的形式, 标函数表达式改写成方程的形式 , 和原有的 m 个约束方程组成一个具有 n+m+1 个变量 、 个约束方程组成一个具有n+m+1 个变量、 m+1个方程的方程组: m+1个方程的方程组: a11x1 + a12 x2 + L+ a1n xn + xn+1 = b1 a x + a x + L+ a x + x = b 2n n n+2 2 21 1 22 2 L L L a x + a x + L+ a x + x = b mn n n+m m m1 1 m2 2 − Z + c1 x1 + c2 x2 + Lcn xn + cn+1 xn+1 + Lcn+m xn+m = 0
运筹学作业解答(1-2)
题1.1:总结线性规划模型的特征; 判断下列数学模型是否为线性规划模型。 (模型a、b、c为常数;θ 为可取某常数值的参变量;x、y为变量)
(1) max Z = 3 x1 + 5 x 2 + 7 x3 x1 + 2 x 2 − 6 x3 ≥ 8 5 x + x + 8 x ≤ 20 1 2 3 3 x1 + 4 x 2 = 12 x1 , x3 ≥ 0
题1.9:填空题
1.在用图解法求线性规划问题时,目标函数Z= ClX1+C2X2,则直线ClX1+C2X2=10是Z的一条平行线 平行线,而 平行线 当可行域非空有界时最优解必定能在可行域的顶点上 顶点上达 顶点上 到。 2.线性规划数学模型三要素:决策变量 、目标函数 、 决策变量 目标函数 约束条件 3.线性规划中,任何基对应的决策变量称为基变量 基变量。 基变量 4.若某线性规划问题存在唯一最优解,从几何上讲,它 必定在可行解域的某个 顶点 处达到;从代数上讲,它 也一定是某个基变量组的 基可行解
s = 10 y 1 + 20 y y1 + 4 y y1 + y y1, y
2 2
2
st
= 10 ≥ 2
≥ 1
2
2 y1 + y
2
≥ 0
max s = 15 y 1 + 20 y 2 − 5 y 3 − y1 − 5 y 2 + y 3 ≥ − 5 5 y − 6 y − y ≤ − 6 1 2 3 st 3 y 1 + 10 y 2 − y 3 = − 7 y 1 ≥ 0 , y 2 ≤ 0 , y 3 无约束
运筹学复习资料(1)
运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
运筹学(01规划)1
1、将目标函数的系数按递增或递减的顺序重新排列。 2、参照目标函数的排列,列出问题所有可能取到的点,并检查是否可行,若可 行,则算出相应的目标函数值。 3、比较可行解的目标函数值,找出最优解和最优值。 以上题为例, 按系数递增重新排列) 以上题为例,1、max=15X3+20X1+30X2(按系数递增重新排列) 2、参照目标函数系数的排列,依次序列出所有可能取到的点,并检 参照目标函数系数的排列,依次序列出所有可能取到的点, 查可行性,算出相应的目标函数值,如下表: 查可行性,算出相应的目标函数值,如下表:
在可行解中比较,点(1,0,1)的目标函数值最大,所以最优解为: X=(1,0,1),相应的目标函数值为Z=35(万元)
?
最优解
二、指派问题
在生产管理上,管理者总希望能够将人员分配的最佳,以发挥其最大 的工作效率,这就是所谓的“指派问题”。
特点: 特点:把n项工作指派给n个人去做时,每个人仅能接受一项任务,而 项工作指派给n个人去做时,每个人仅能接受一项任务, 项任务也只能由一个人去做。(指派问题也是整数规划的一个分支) 。(指派问题也是整数规划的一个分支 且一项任务也只能由一个人去做。(指派问题也是整数规划的一个分支)
完全枚举法(显枚举法) 完全枚举法(显枚举法) Xj的取值有0和1两种情况,三种方案就有8种组合,把每种组合列出,带入约束 方程检验是否可行,再比较目标函数的大小,从而求得最优解
因此,人们设计出了一种只需要检查一部分可能的变量组合,就可以达 到最优解的方法-------------------
隐枚举法(部分枚举法) 隐枚举法(部分枚举法)
虽
可
Z=C12+C24+C31+C43+C55=7+6+7+6+6=32 Min Z=C12+C24+C31+C43+C55=7+6+7+6+6=32
运筹学基础1
四、运筹学的主要内容 :
• 规划论 (线性规划、非线性规划、整数规划、动 态规划、多目标规划、随机规划 )
min (max) st f (x, y, ) hi (x, y, ) 0 i 1 2 me g j (x, y, ) 0 j me 1 m x X R n为决策变量, y Y R m为参数,
原料I的费用 : 65( x11 x21 x31 ) 原料II的费用: 25( x12 x22 x32 )
原料III的费用: 35( x13 x23 x33 )
则目标函数为总产值减去总成本,表示为
z 50( x11 x12 x13 ) 35( x21 x22 x23 ) 25( x31 x32 x33 ) 65( x11 x21 x31 ) 25( x12 x22 x32 ) 35( x13 x23 x33 ) 15x11 25x12 15x13 30 x21 10 x22 40 x31 10 x33
x1 x x
3
3
3
x1 x2 x4 6 x1 x x x5 5
2 x1 x2 x3 x3 2 x j 0, j 1, 2, 4, 5; x3 0, x3 0 3
另一种更好的方法是直接消去自由变量x3,由 最后的方程知: x3=2-2x1+x2 , 代入到目标和 其它两个方程得:
运筹学第1章线性规划及单纯形法复习题
max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0
数学建模 运筹学模型(一)汇总
运筹学模型(一)本章重点:线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题复习要求:1. 进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.2. 进一步理解数学模型的作用与特点.本章复习重点是线性规划基础模型、运输问题模型和目标规划模型. 具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单. 运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单. 你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求. 目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型. 另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型. 这之前恐怕要善于将一个实际问题转化为图论模型. 还有一个最小数的问题,该如何把一个网络中的最小数找到. 另外在个别场合可能会涉及一笔划问题.1. 营养配餐问题的数学模型m i Z n =C 1x 1+C 2x + C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≥b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≥b 2, ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≥b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简洁地表为m i Z n =∑C x jj =1n j⎧n ⎪∑a ij x j ≥b i ⎪j =1s ⋅t ⋅⎨⎪x ≥0(i =1, 2, , m j ⎪j =1, 2, , n ⎩其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.2. 合理配料问题的数学模型有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品. 单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位. 问如何安排生产,使总利润达到最大?设生产第j 种产品x j 个单位(j =1,2,…,n ),则有m a Z x =C 1x 1+C 2x 2+ +C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≤b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≤b l , ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≤b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简单地写为m a z x =∑Cj =1n j x j⎧n ⎪∑a ij x j ≤b i ⎪j =1 s ⋅t ⋅⎨i =1, 2, , m ⎛⎫⎪x ≥0 j =1, 2, , n ⎪⎪⎪j ⎝⎭⎩3. 运输问题模型运输问题也是一种线性规划问题,只是决策变量设置为双下标变量. 假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij ,而写成为∑a i =1m i =∑b j =1n j 表示产销平衡. 那么产销平衡运输问题的一般模型可以min Z =∑∑c ij x iji =1j =1m n⎧n ⎪∑x ij =a i ⎪j =1⎪⎪m s ⋅t ⋅⎨∑x ij =b j ⎪i =1⎪⎛i =1, 2, , m ⎫⎪x ij ≥0 j =1, 2, , n ⎪⎪⎪⎝⎭⎩4. 目标规划模型某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理. 已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表表4-1工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标.问题分析与模型假设经与工厂总经理交谈,确定下列几条:p 1:检验和销售费每月不超过4600元;p 2:每月售出产品I 不少于50件;p 3:两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定);p 4:甲车间加班不超过20小时;p 5:每月售出产品Ⅱ不少于80件;p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级).模型建立设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设50x 1+30x 2≤4600x 1≥50 售出量x 2≥80 2x 1+x 2≤120 两车间总工时x 1+3x 2≤150+ 设d 1表检验销售费偏差,则希望d 1达最小,有p 1d 1+, 相应的目标约束为 5x 1+30x 2+d 1--d 1+ = 4600; --达最小,有p 2d 2, 相应的目标约束 d 2表产品I 售量偏差,则希望d 2-+x 1+d 2-d 2=50,以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望d 320=4:1,有--p 3(4d 3+d 4 . 相应的目标约束应为 --达最小,考虑到费用比例为80:, d 4-+-+=150, -d 42x 1+x 2+d 3-d 3=120和x 1+3x 2+d 4以d 5表甲车间加班偏差,则有+-+d 3+d 5-d 5=20, p 4d 5+, 相应目标约束为以d 6表产品Ⅱ售量偏差,则希望d 6达最小,有相应约束为-+x 2+d 6-d 6=80.++++表示,考虑到权系数,有p6(4d 3+d 4, 其目标约束由于利用超生+d 4- 最后优先级p 6可利用d 3产工时,已在工时限制中体现,于是得到该问题的目标规划模型为---+-++m i z n =p 1d 1++p 2d 2+p 3(4d 3+d 4 +p 4d 5+p 5d 6+p 6(4d 3+d 4 ⎧50x 1+30x 2+d 1--d 1+⎪-+x 1+d 2-d 2⎪⎪-+2x +x +d -d 1233⎪⎪-+s ⋅t ⋅⎨x 1+3x 2+d 4-d 4⎪+-+d +d -d 355⎪⎪x 2+d 6--d 6+⎪-+⎪⎩x 1, x 2≥0, d l , d l≥0=4600=50=120=150=20=80(l =1, 2, , 65. 最小树问题一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边. 一个图被称为是树意味着该图是连通的无圈的简单图. .在具有相同顶点的树中,总赋权数最小的树称为最小树.最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.6. 最短路问题的数学模型最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).狄克斯屈(E.D.Dijkstra )双标号法该法亦称双标号法,适用于所有权数均为非负(即一切w ij ≥0 w ij 表示顶点v i 与v j 的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下:P (v j )——从始点v s 到v j 的最短路长;T (v j )——从始点v s 到v j 的最短路长上界.一个点v j 的标号只能是上述两种标号之一. 若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了.开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s ,vj )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号. 以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号. 这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号. 这意味着已求得了v s 到v t 的最短路.狄克斯屈标号法的计算步骤如下:1°令S ={v s }为固定标号点集,=V \{v s }为临时标号点集,再令P (v i =0,v t ∈S ; 2°检查点v i ,对其一切关联边(v i , vj )的终点v j∈,计算并令 min{T (v j , P (v i +w ij }⇒T (v j3°从一切v j∈中选取并令 min{T (v j }=T (v r ⇒T (v r 选取相应的弧(v i , vr ). 再令 S {v r }⇒S , \{v r }⇒=∅,则停止,P (v j 即v s 到v j 的最短路长,特别P (v t 即v s 到v t 的最短路长,而已选出 4°若的弧即给出v s 到各点的最短路;否则令v r ⇒v i ,返2°. 注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为 4°若r = t 则结束,P (v r 即为所求最短路长;否则令v r ⇒v i ,返2°.。
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
a m 1 x1
a
m
2
x2
amnxn (,)bm
x1, x2 , , xn 0
n : 变 量 个 数 ; m:约 束 行 数 ;
n:变量个数 m:约束个数 cj:价值系数 bi:资源拥有量 aij :工艺系数
n m :线性规划问题的规模
c j : 价 值 系 数 ; b j : 右 端 项 ; aij : 技 术 系 数
2x1 x2 x3 x3 x4 9
st.34xx11
x2 2x3 2x3 x5 2x2 3x3 3x3 6
4
x1, x2, x3, x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
x2 2x2
2x3 3x3
4 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入x4松 和弛 剩变 余 x5,标 量 变准 量形式
m z x a 1 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
1940年,英国军事部门成立了第一个由一些数学家、物理学家 和工程专家等组成的OR小组,负责研究一些武器有效使用的问题。
1942年,美国也成立了由17人组成的OR小组,研究反潜艇策 略等问题。
(3)二战后:推广与发展
战时从事运筹学研究的许多专家转到了经济部门、民用企业、大 学或研究所,继续从事决策的数量方法的研究,运筹学作为一门学 科逐步形成并得以迅速发展。运筹学发展到今天,已成为分支学科 众多的一个繁荣昌盛的大家族。随着电子计算机的发展和使用,运 筹学处理复杂性问题的能力大大加强,成为解决实际问题的有力工 具,广泛地应用于企业管理、交通运输、公共服务等领域。
主要授课内容:
绪论 线性规划及单纯形法 线性规划的对偶理论与灵敏度分析 运输问题 目标规划 整数规划 动态规划 图与网络分析
绪论
一、运筹学的起源与发展 二、运筹学研究的基本特点与基本方法 三、运筹学研究的主要分支 四、运筹学在企业管理中的应用
一、运筹学的起源与发展
1.什么是运筹学 英文:Operational Research(英国)
运筹学(一)
课程说明
教材 胡运权主编,运筹学教程(第四版),清华 大学出版社,2012。
课程说明
参考书 (1)胡运权主编,运筹学习题集(第四 版),清华大学出版社,2010 (2)钱颂迪等,运筹学(第三版),清华 大学出版社,2005
课程说明
先修课程 微积分、线性代数、概率论
学习方式 课堂听课、课下习题、软件学习
(3)模型方法的应用
运筹学研究建立在科学的研究方法之上,它研究的第一步就是根据实际问 题和管理要求建立必要的数学或模拟模型。然后对模型进行求解、分析和 检验。因此学习运筹学要掌握的重要技巧就是对运筹学模型的表达、运算 和分析的能力。
2.运筹学研究的基本方法
(1)分析和表述问题; (2)建立模型; (3)求解模型; (4)测试模型; (5)对模型进行必要的修正; (6)建立对解的有效控制; (7)方案的实施。
该模型的简化表示:
n
max或 (minz) cjxj j1
s.tjn1aijxj (或, )bi (i1,,m)
xj 0 (j1,,n)
该模型的向量表示:
max(或min)z CX
s.t.
n
j1
Pj
xj
(或,)b
X0
x1
a1j
b1
其中, C (c1,c2,,cn);
X
x2
例2(仓库租借问题) :某公司在下一年度的 1—4月的4个月内拟租用仓库堆放物资。已知各 月份所需仓库面积列于表1-2.仓库租借费用随合 同期而定,期限越长,折扣越大,具体数字见表 1-3.租借仓库的合同每月月初都可办理,每份合 同具体规定租用面积和期限。因此该厂可根据需 要,在任何一个月初办理租借合同。每次办理时 可签订一份合同,也可签若干份租用面积和租用 期限不同的合同,试确定该公司签订租借合同的 最优策略,目的使所付租借费最小。
目标函数为max z=3x1+x2,约束条件为
x 1 x 2 2 ; x 1 2 x 2 6
2.若线性规划问题的可行域存在,则可行域一 定是个凸集。
3.线性规划问题的最优解若存在,则最优解或 最优解之一一定是可行域的凸集的某个顶点。
4 .解题思路是,先找凸集的任一顶点,计算其 目标函数值。比较其相邻顶点函数值,若更 优,则逐点转移,直到找到最优解。
数为0;
(4)第i 个约束为 型,在不等式左边减去一 个非负的变量,称为剩余变量;同时令该变量在目
标函数中的系数为0;
(5)若 ,x令0 xx
(6)若 无x约束,令 x,x其中x,
x,x0
例3:将下述线性规划模型化为标准形式:
mzi n x12x23x3
2x1 x2 x3 9
st.4x31x1
三、运筹学研究的主要分支
线性规划(linear programming) 非线性规划 动态规划 图论与网络分析 存贮论 排队论 对策论 决策论
四、运筹学在企业管理中的应用
生产计划。使用运筹学方法从总体上确定适应需求的生产、储存和劳 动力安排等计划, 以谋求最大的利润或最小的成本。
m z i2 n8 (x 1 1 0 x 2 1 0 x 3 1 x 4)1 45 (x 1 2 0 x 2 0 2 x 3)2 60 (x 1 3 0 x 2)0 3 73 x 14 00
x11 x12 x13 x14 15
x1
2
x13
x1
4
x2
1
x2
பைடு நூலகம்
2
x2
3
10
st.x13 x14 x22 x23 x31 x32 20
;Pj
xn
a2
j
;b
am j
b2
bm
该模型的矩阵表示:
max( 或 min) z CX
AX (或 , ) b
s .t .
X 0
a11 a12 a1n
其中,
A
a
21
a 22
a
2
n
a
m
1
am2
a
mn
三、线性规划问题的标准形式
为了使线性规划问题的解法标准,就要把一
n
(1)目标函数为min型,即minz cjxj j1 等价于求 m,ax令(z) ,z即化z为:
n
m ;axz cjxj j1
(2)约束条件的右端项bi 为负值,则该行左右两端 同
时乘以(-1),同时不等号也要反向;
(3)第i 个约束为 型,在不等式左边增加一个非负的 变量,称为松弛变量;同时该变量在目标函数中的系
第一节
线性规划问题及其数学模型
一、线性规划问题举例
例1(生产计划问题) :美佳公司计划制 造Ⅰ,Ⅱ两种家电产品。已知各制造一件 时分别占用的设备A,B的台时、调试时间、 调试工序及每天可用于这两种家电的能力、 各售出一件的获利情况,如表1-1所示。 问该公司应制造两种家电各多少件,使获 取的利润为最大。
表1-1
项目
Ⅰ
设备A(h)
0
设备B (h)
6
调试工序(h) 1
利润(元)
2
Ⅱ
每天可用能力
5
15
2
24
1
5
1
设x1, x2 分别代表Ⅰ,Ⅱ两种家电的生产量, 此问题的数学模型为:
目标函数 约束条件
ma zx2x1x2
5 x 2 15
st
.
6
x
1
x
1
2
x2 x2
24 5
x1 , x 2 0
般形式化为标准形式。标准形式如下:
n
maxz cjxj
n
st.j1
aijxj
j1
bi
(i 1,,m)
标准形式特点: xj 0
(j 1,,n)
1. 目标函数为求极大值;
2. 约束条件全为等式;
3. 约束条件右端常数项bi全为非负值; 4. 决策变量取值非负。
把非标准形式转化为标准形式的方法:
1.求解线性规划问题时,解的情况有四种类型。 (1)惟一最优解(如上例);
(2)无穷多最优解(若上例中目标函数变为max z=3x1+x2);
x2
x2
x2
6x12x224
Q4
Q3
x2 3
x2 3
Q 2 x1x2 5
o
Q1
x1 o
x1 o
x1
( 3 )无界解(若去掉例子中第2、3个约束);
( 4 )无可行解。
运筹学是应用分析、试验、量化的方法,对 经济管理系统中人、财、物等资源进行统筹安排, 为决策者提供有依据的最优方案,以实现最有效 的管理(《中国企业管理百科全书》) 。
2.运筹学的发展历史
(1)二战以前:萌芽
齐王-田忌赛马、丁渭修皇宫等。
(2)二战期间:产生
1938年,英国某雷达站负责人罗伊提出整个防空作战系统运行 的研究,并用到了operational research 来描述此研究。
二、运筹学研究的基本特征与基本方法
1.运筹学研究的基本特征
(1)系统性特征
运筹学用系统的观点来分析一个组织(或系统),它着眼于整个系统而不 是一个局部,通过协调各组成部分之间的关系和利害冲突,使整个系统达 到最优状态。