数字信号处理_吴镇扬_第二版_第三章习题答案
数字信号处理 Chapter03答案
11
3.2 Properties of the z-Transform
Ex. ( linearity) x(n) = [3(2n) – 4(3n)] u(n) 3 4 – 1 – 2z –1 1 – 3z –1
X(z) =
ROC: |z| > 3
12
3.2 Properties of the z-Transform
z = re
jθ
=
n =−∞
∑ x ( n )r
−n
∞
− n − jθ n
e
X ( z) ≤
n =−∞
∞
∑
−1
x (n) r
+∑
n=0
∞
∞
x ( n) rn
x (n) rn
≤ ∑ x ( −n ) r + ∑
n n =1 n =0
7
3.1 The z-Transform
3.1.1 The Direct z-Transform
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
14
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
15
X(z) = ∑ x(n) z – n
16
3.3 Rational z-Transforms
1 2 −1 1 2 2
X ( z ) = 1+ z + (
X ( z) = 1 1− z
1 2 −1
)
z + .... + (
−2
1 n 2
)
z −n
吴镇扬数字信号处理课后习题答案
jw0 n
u (n)] e jw0n z n
n 0
1 1 (e jw0 z 1 )
(1) 解:令 y (n) RN (n)
由题意可知,所求序列等效为 x (n 1) y (n) y (n) 。
Z [ y (n)] z n
n 0
N 1
1 zN z N 1 , 1 z 1 z N 1 ( z 1)
1
A B 1 2 1 1 1 1 z 1 2z 1 z 1 2 z 1 B 1 | 1 2 1 z 1 z 1 2
1 | 1 1 1 2 z 1 z 1
x(n) u (n) 2 2 n u ( n 1) u (n) 2 n 1u ( n 1)
n0
若n0 0时,收敛域为:0 z ;
(2) 解: Z [0.5 u (n)]
n
若n0 0 时,收敛域为: z 0 z 0.5
0.5
n 0
n
z n
1
1 , 1 0.5 z 1
n
(3) 解: Z [ 0.5 u ( n 1)]
n
n
j j 1 1 (3) X (e 2 ) X ( e 2 ) 2 2 j
(2) e
j n0
X (e j ) (移位特性)
2
数字信号处理习题指导
G ( z ) ZT [ x (2n)] G( z)
n
g ( n )e
jwn
令n' 2n, 则
n ' 取偶数
( z 5) z n |z 0.5 (1 0.5 z)
数字信号处理课后答案+第3章DFT+FFT
ej(02N πk)(N21)sin( 02N πk)N 2 sin(02N πk)/2
k0,1, ,N1
或
1ej0N X7(k)1ej(02 N k)
(8) 解法一 直接计算:
k0,1, ,N1
x 8 (n ) si0 n n )R (N (n ) 2 1 j[ej 0 n e j 0 n ]R N (n )
即 X 8 (k ) jX 7 o (k ) j1 2 [X 7 (k ) X 7 * (N k )]
结果与解法一所得结果相同。 此题验证了共轭对称性。
(9) 解法一 直接计算:
x9(n )co0 n s )R N ((n )1 2[ej 0 n e j 0 n]
N1
X9(k) x9(n)WNkn
x 7 ( n ) e j 0 n R N ( n ) [c 0 n ) o j ss i 0 n ) ( n R N ] ( n ( )
所以
x 8 (n ) si0 n )R N ( (n ) Im x 7 (n )[ ]
所以 D [ jx 8 ( F n ) D ] T [ j IF x m 7 ( n ) T ] X [ 7 o ] ( k )
(7) x(n)=ejω0nRN(n) (8) x(n)=sin(ω0n)RN(n) (9) x(n)=cos(ω0n)RN(N) (10) x(n)=nRN(n) 解: (1)
X(k)N n011WN knN n01ej2N πkn1 1 ee jj2 2N N π πkkN N
N k0 0 k1,2,,N1
(5)
X (k)
N 1 j 2π mn
eN
W Nkn
N 1 j 2π (mk )n
《数字信号处理》课后答案
数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
第3章 完整版习题解答
(数字信号处理(第二版),刘顺兰,版权归作者所有,未经许可,不得在互联网传播)
3.1 如果一台通用计算机的速度为平均每次复乘需 100μs,每次复加需 20μs,今用来计算 N=1024 点的
DFT[x(n)] ,问用直接运算需要多少时间,用 FFT 运算需要多少时间?
N 1
解: X (k) x(n)WNnk , N 1024 210 , n0 直接运算所需的总时间为 Td N 2 100s N (N 1) 20s
3.11 以 20kHz 的采样率对最高频率 10kHz 的带限信号 xa (t) 采样,然后计算 x(n) 的 N 1000 个采样点的
DFT,即
X
(k)
N 1
x(n)e
j 2 N
nk
,
N
1000 .
n0
(1)试求频谱采样点之间的频率间隔是多少?
(2)在 X (k) 中, k 200 对应的模拟频率是多少?
信号
x2 (n) 的两个余弦信号的频率间隔为: 2
21 64
4
5 64
2 64
故利用 64 点 DFT 来估计信号谱时,能够分辨 x2 (n) 中两个正弦信号的谱峰。
信号 x3 (n) 的两个余弦信号的频率间隔为: 3
21 64
4
5 64
2 64
,但由于频率为 21 64
(2) f
fs N
4096 4096
1Hz
(3)直接用 DFT 计算,所需要的复乘次数为
M d (300 200 1)N 101 4096 413696
《数字信号处理》第二版课后答案
————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
数字信号处理实验(吴镇扬)答案-3
实验三 IIR 数字滤波器的设计通信四班 朱方方 0806020233(1)kHz f c 3.0=,dB 8.0=δ,kHz f r 2.0=,dB At 20=,ms T 1=;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
解: 程序: clear;fc=300;fr=200;fs=1000;rp=0.8;rs=20; wc=2*fs*tan(2*pi*fc/(2*fs)); wt=2*fs*tan(2*pi*fr/(2*fs)); [N,wn]=cheb1ord(wc,wt,rp,rs,'s'); [B,A]=cheby1(N,rp,wn,'high','s'); [bz,az]=bilinear(B,A,fs); [h,w]=freqz(bz,az);f=w*fs/(2*pi);plot(f,20*log10(abs(h))); axis([0,fs/2,-80,10]); grid;xlabel('频率/Hz'); ylabel('幅度/dB');050100150200250300350400450500-80-70-60-50-40-30-20-10010频率/Hz幅度/d B分析:f=200Hz 时阻带衰减大于30dB ,通过修改axis([0,fs/2,-80,10])为axis([200,fs/2,-1,1])发现通带波动rs 满足<0.8。
bz =[0.0262 -0.1047 0.1570 -0.1047 0.0262] az =[1.0000 1.5289 1.6537 0.9452 0.2796] 系统函数为:432143212796.09452.06537.15289.110262.01047.01570.01047.0-0262.0)(H --------+++++-+=z z z z z z z z z(2)kHz f c 2.0=,dB 1=δ,kHz f r 3.0=,dB At 25=,ms T 1=;分别用脉冲响应不变法及双线性变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
数字信号处理课后第三章习题答案
1 e j 0 N
2 j(0 k ) N 1 e
k 0, 1, , N 1
(8) 解法一
直接计算:
1 j 0 n x8 (n) sin(0 n) RN (n) [e e j 0 n ] R N ( n ) 2j
X 8 (n)
n 0
N 1
kn x8 (n)WN
k 0, 1, , N 1
(4)
X (k ) WNkn
n 0
m1
π j ( m1) k 1 WNkm N e 1 WNk
π sin mk N R (k ) N π sin k N
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
所以
DFT[ X (n)] X (n)W
n 0
N 1
N 1
kn N
N 1 mn kn x(m)WN WN n 0 m 0
N 1
n ( m k ) x(m)WN m 0 n 0
N 1
第3章
由于
离散傅里叶变换(DFT)及其快速算法 (FFT)
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
(10) 解法一
X (k )
n 0
N 1
kn nWN
k 0, 1, , N 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因为x(n)=nRN(n), 所
以
x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n) 等式两边进行DFT, 得到
1 [e j0 n e j0 n ] e 2 j n 0
数字信号处理》课后作业参考答案
第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。
解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。
数字信号处理第二版(吴镇扬)第三,四次实验(山师)
实验三快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB 中的有关函数。
2.应用FFT对典型信号进行频谱分析。
3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4.应用FFT实现两个序列的线性卷积和方法。
二、实验原理与方法上机实验内容:(1)、观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
程序:function [x, F]=gauss(p,q);n=0:15;x(n+1)=exp(-(n+1-p).^2/q);F=fft(x);endclear all;figure(1)[x1,F1]=gauss(8,2);n=0:15;subplot(3,2,1);plot(n,x1);text(6,0.2,'p=8,q=2');grid on;xlabel('n');ylabel('时域');subplot(3,2,2);plot(abs(F1));text(7.5,2,'p=8,q=2');grid on;xlabel('k');ylabel('频域');[x2,F2]=gauss(8,4);n=0:15;subplot(3,2,3);plot(n,x2);text(6,0.2,'p=8,q=4');grid on;xlabel('n');ylabel('时域');subplot(3,2,4);plot(abs(F2));text(7.5,2,'p=8,q=4'); grid on;xlabel('k');ylabel('频域');[x3,F3]=gauss(8,8);n=0:15;subplot(3,2,5);plot(n,x3);text(6,0.2,'p=8,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,6);plot(abs(F3));text(7.5,2,'p=8,q=8'); grid on;xlabel('k');ylabel('频域');figure(2)[x4,F4]=gauss(8,8);n=0:15;subplot(3,2,1);plot(n,x4);text(6,0.2,'p=8,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,2);plot(abs(F4));text(7.5,2,'p=8,q=8'); grid on;xlabel('k');ylabel('频域');[x5,F5]=gauss(13,8);n=0:15;subplot(3,2,3);plot(n,x5);text(6,0.2,'p=13,q=8'); grid on;xlabel('n');ylabel('时域');subplot(3,2,4);plot(abs(F5));text(7.5,2,'p=13,q=8'); grid on ;xlabel('k');ylabel('频域');[x6,F6]=gauss(14,8); n=0:15;subplot(3,2,5);plot(n,x6);text(6,0.2,'p=14,q=8'); grid on ;xlabel('n');ylabel('时域'); subplot(3,2,6);plot(abs(F6));text(7.5,2,'p=14,q=8'); grid on ;xlabel('k'); ylabel('频域');5101500.51p=8,q=2n时域0510152024p=8,q=2k频域5101500.51p=8,q=4n时域0510152024p=8,q=4k频域5101500.51p=8,q=8n时域51015200510p=8,q=8k频域5101500.51p=8,q=8n时域51015200510p=8,q=8k频域5101500.51p=13,q=8n时域510152005p=13,q=8k频域5101500.51p=14,q=8n时域510152005p=14,q=8k频域(2)、观察衰减正弦序列xb(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄漏现象?说明产生现象的原因。
南邮 数字信号处理 吴镇扬 课后习题详细答案 DSP 期末复习
•pp 35: 1.11 (3)
判断系统
yn
n
xm
是否为线性系统?时不变系统
m
解:线性性判断 令x(n)=ax1(n)+bx2(n)
n
n
yn xm ax1 m bx2 m
m
m
n
n
n
n
ax1m bx2 m a x1m b x2 m
y(n) 4 (n 1) 4 (n 1) (n 3) 2 (n 5) (n 7)
•pp 35: 1.12 (3)
利用卷积性质
y(n) x1(n) x2 (n)
(n) 2 (n 2) (n 4)2 (n 1) (n 3)
(n) 2 (n 2) (n 4) 2 (n 1) 2(n()n21) (n42()n1)(n24)(n 5(n) 3)
• 解:
a nu n
1
1 aZ
1
,
Z a
n
a nu n
Z
d 1
1 aZ
1
,
dZ
Z
1 1 aZ 1
2
d
1 aZ dZ
1
,
Z
1 1 aZ 1
2
a
d
Z 1 dZ
,
Z
1 1 aZ 1
2
a
Z
2
,
第3章 完整版习题解答
(2) f
fs N
4096 4096
1Hz
(3)直接用 DFT 计算,所需要的复乘次数为
M d (300 200 1)N 101 4096 413696
若用按时间抽取 FFT 则需要的复乘次数为
MF
N 2
log10
N
2048 12
24576
3.13 下面是三个不同的信号 xi (n) ,每个信号均为两个正弦信号的和:
DFT 在加窗后会有两个可区分的谱峰?
解:利用
64
点
DFT
来估计信号谱时,其频率分辨率为
Hale Waihona Puke 2 64信号 x1 (n) cos( n / 4) cos(17 n / 64) 的两个余弦信号的频率间隔为:
1
17 64
4
64
2 64
故利用 64 点 DFT 来估计信号谱时,不能分辨 x1(n) 中两个正弦信号的谱峰。
2M
时,DIF-FFT
共需
M
级分解,每级运算要计算的碟形运算有
N 2
个。
3.4 考虑图 T3-1 中的蝶形。这个蝶形是从实现某种 FFT 算法的信号流图中取出的。从下述论述中选择出最 准确的一个:
(1)这个蝶形是从一个按时间抽取的 FFT 算法中取出的。 (2)这个蝶形是从一个按频率抽取的 FFT 算法中取出的。 (3)由图无法判断该蝶形取自何种 FFT 算法。
N 2
1
[x(n)
n0
x(n
N 2
)]WNnr/
数字信号处理答案2和3章(DOC)
数字信号处理答案2和3章(DOC)合工大《数字信号处理》习题答案第2章 习 题2.1)1()()1()2(2)4()(-+++-+++=n n n n n n x δδδδδ)6(2)4(5.0)3(4)2(2-+-+-+-+n n n n δδδδ 2.3 (1)31420=ωπ,所以周期为14。
(2)πωπ1620=,是无理数,所以)(n x 是非周期的。
2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1))()(0n n x n y -=(2))()(2n xn y =(3))sin()()(n n x n y ω= (4))()(n x e n y =2.4 (1)由于)()]([0n n x n x T -=)()()]([0m n y n m n x m n x T -=--=-所以是时不变系统。
)()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。
(2))()()]([2m n y m n x m n x T -=-=-,所以是时不变系统。
)()()]()([)]()([2122121n by n ay n bx n ax n bx n ax T +≠+=+,所以是非线性系统。
(3))()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。
)()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。
(4))()()]()([21)()()]()([212121n by n ay e e en bx n ax T n bx n ax n bx n ax +≠==++,所以是非线性系统。
数字信号处理课后习题答案(吴镇扬)(精编文档).doc
【最新整理,下载后即可编辑】习题一 (离散信号与系统)1.1周期序列,最小周期长度为5。
1.2 (1) 周期序列,最小周期长度为14。
(2) 周期序列,最小周期长度为56。
1.5()()()()()()()11s a s s s a n s s a s n X j x t p t X j ΩP j Ω2n τn τj sin j Ωjn e X 2n π2n n τj Sa X j jn e 2T 2πττ∞=-∞∞=-∞Ω==*⎡⎤⎣⎦ΩΩ⎛⎫-=-Ω ⎪⎝⎭ΩΩ⎛⎫-=Ω-Ω ⎪⎝⎭∑∑ 1.6 (1) )(ωj e kX (2) )(0ωωj n j e X e (3) )(21)(2122ωωj j e X e X -+ (4) )(2ωj e X1.7 (1) 0n z -(2) 5.0||,5.0111>--z z (3) 5.0||,5.0111<--z z (4)0||,5.01)5.0(11101>----z z z1.8 (1) 0,)11()(211>--=---z zz z z X N(2) a z az az z X >-=--,)1()(211 (3) a z az z a az z X >-+=---,)1()(311211.91.10 (1))1(2)(1----+n u n u n (2))1(24)()5.0(6--⋅--n u n u n n (3))()sin sin cos 1(cos 000n u n n ωωωω++(4) )()()(1n u a a a n a n ---+-δ 1.11(1))(1z c X - (2) )(2z X (3))()1(21z X z -+ (4)-+<<x x R z R z X /1/1),/1(1.12 (1) 1,11<-ab ab(2) 1 (3)00n a n1.13 (1) 该系统不是线性系统;该系统是时不变系统。
数字信号处理 答案 第三章
解: x1 ( n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x( n) 。 (1)绘出 x( n) 与 x( n) 的线性卷积结果的图形。 (2)绘出 x( n) 与 x( n) 的 4 点循环卷积结果的图形。 (3)绘出 x( n) 与 x( n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷 积之间的关系。
j [(2π k /10) + (π /10)]
={
3.7
N ,k=m或 k=−m 2 0,其 他
图 P3.7 表示的是一个有限长序列 x( n) ,画出 x1 ( n) 和 x2 (n) 的图形。 (1) x1 ( n) = x ⎡ ⎣( n − 2 ) ⎤ ⎦ 4 R4 (n)
(2) x2 ( n) = x ⎡ ⎣( 2 − n ) ⎤ ⎦ 4 R4 (n)
解: (1) X ( k )
= ∑ δ (n)WNnk = δ (0) = 1, 0 ≤ k ≤ N − 1
n=0
N −1
(2) X ( k ) =
∑ δ [(n − n )]
n =0 0
N −1
N
RN (n)WNnk = WNn0 k , 0 ≤ k ≤ N − 1
(3) (4)
X (k ) = ∑ a W
− jω N
−j
N ω 2
j
N ω 2
−j
N ω 2
⎛N ⎞ sin ⎜ ω ⎟ N −1 ) ⎝ 2 ⎠ e− j 2 ω = sin
ω
2
⎛N ⎞ sin ⎜ ω ⎟ ⎝ 2 ⎠ , ϕ (ω ) = − N − 1 ω | X (e jω ) |= ω 2 sin 2
03数字信号处理_吴镇扬_习题解答
解答:
1
(1) 不能用令 x(n)=δ(n)来求 h(n),然后确定稳定性,因为该系统并非线性时不变系统。
实际上,因 g(n)有界,所以,当 x(n)有界时,y(n)= x(n) g(n)<= |x(n)| |g(n)|<∞, 所以系统稳定,y(n) 只与 x(n)的当前值有关,显然是因果的。 (2)
=
N −1
kn
x(n)WN2
+
(−1)k
N −1
kn
x(n)WN2
n=0
n=0
∑N −1
当k为偶数时,上式=2
n=0
kn
x(n)WN2
=
2X
( k ); 2
当k为奇数时,上式=0.
2-9 有限长为 N = 10 的两序列
x(n)
=
⎧1, 0 ≤ ⎨⎩0,5 ≤
n n
≤ ≤
4 9
y(n)
=
⎧1, 0 ⎨⎩−1,
DFS,试利用 X1(k ) 确定 X 2 (k) . 解答:
N −1
∑ X1(k) = x(n)WNkn n=0
2 N −1
N −1
N −1
∑ ∑ ∑ X 2 (k) = x(n)W2kNn = x(n)W2kNn + x(n + N )W2kN(n+N )
N =0
n=0
n=0
注:W2kNn
− j 2π kn
,式中 a 为实数
(1) 对于什么样的 a 值范围系统是稳定的? (2) 如果 0<a<1,画出零点-极点图,并标出收敛区域; (3) 在 z 平面上用图解证明该系统是一个全通系统,即频率响应的幅度为一常数. 解答:
数字信号处理 吴镇扬 第二版 第三章习题答案
3.15(2)()1()()()()()X k x n n Y k N y n N n δδ=∴==∴=3.18()[()]019()[()]019;()()()019,()[()]019;()()()20()*()27()*()207()719()*()X k DFT x n k Y k DFT y n k R k X k Y k k r n IDFT R k k r n x n y n x n y n x n y n r n x n y n =≤≤=≤≤=≤≤=≤≤=⊗解:根据循环卷积定理可知(点循环卷积);但不为零长度为,所以若以为周期进行延拓必然会产生点的重叠;因此,中至点与相同。
773.19(1)()(){6,3,6,10,14,12,9};(2)(){6,3,6,10,14,12,9};3(){1,3,6,10,14,12,9,5,0,0,0,0}f n R n f n f n ===%周期卷积的主值序列为:循环卷积()线性卷积为440246014(16=2)1;2;4,,;8,N N N N N N N N N W W W W W W W W W 3.21按时间抽取算法:输出顺序,输入倒序(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15);共有节第一节:数据点间距、蝶形类型均是,所乘因子:第二节:数据点间距、蝶形类型均是,所乘因子:,第三节:数据点间距、蝶形类型均是,所乘因子:,第四节:数据点间距、蝶形类型均是,所乘因子:,234567,,,,,;N N N N N N N W W W W W W3.27()50100 128 50-110028492849128-49-2851 49~99h n N M ===解:的长度为,每段数据的长度为,循环卷积的长度为;所以根据重叠保留法可知相邻两段数据必有()点重叠,在点之后须加个零值点,所以卷积之后必须去掉前点和后点;所以,,,取数的序号为。
南邮数字信号处理吴镇扬-课后习题详细答案-DSP期末复习PPT课件
• 解:
DTxF n T n0 xnn0ejwn
n
令 n ' n n 0 xn ' e jw n ' n 0xn ' e jw ' jn w 0
n '
n '
e jw 0 nxn 'e jw ' n e jw 0 D n T xn ' F e jT w 0X n e jw
•pp 34: 1.5 (3)
1
X Z x n Z n 0 . 5 n u n 1 Z n 0 . 5 n Z n
n
n
n
变 量 n ' n 替 换 0 .5 n 'Z n ' 0 .5 1 Z n '
n ' 1
n ' 1
0
Re[z]
• pp 34: 1.5 (2n Z n0 .5 n u n Z n0 .5 n Z n
n
n
n 0
n 00 .5 Z 1 n 1 0 1 .5 Z 1 ,0 .5 Z 1 1 1 0 1 .5 Z 1 ,0 .5 Z
n ' 1
n ' 1
•变量替换易出问题
1 0 . 0 5 . 5 1 Z 1 Z 1 0 1 . 5 Z 1 ,0 . 5 1 Z 1 1 0 1 . 5 Z 1 ,Z 0 . 5
零点:z
2z 1 2z
0
z
z
1 2
j Im[z]
极点: z 1
收敛域:
2 z
1
2
1/2
DSP考试题型
• 填空题20分(每空1分) • 判断题10分(每题2分) • 简答题10分 • 画图题15分 • 计算题45分