最新高数下册公式总结(修改版)

合集下载

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。

高等数学(下)数学公式

高等数学(下)数学公式

高等数学公式空间解析几何和向量代数:1212122Pr cos ,Pr ()Pr Pr cos ,,cos u u x x y y z z d M M j AB AB AB u ja a ja ja ab a b a b a b a b a b a b a b ϕϕθθ===⋅+=+⋅=⋅=++++=空间点的距离:向量在轴上的投影:是与轴的夹角。

是一个数量两向量之间的夹角:,sin .xy z xyzij kc a b a a a c a b b b b θ=⨯==⋅0000000000001()()()0(,,),(,,)2031,(,,);A x x B y y C z z n A B C M x y z Ax By Cz D x y za b cd x x mtx x y y z z t s m n p y y ntm n p z -+-+-==+++=++===+---=====+=平面的方程:、点法式:,其中、一般方程:、截距世方程:平面外任意一点到该平面的距离:空间直线的方程:其中参数方程:0000'''000:(,)0)0.:;'''0,':''''0;cos z ptyoz C f y z z z x x y y z z x x y y z z l m n p m n p Ax By C D A x B y C z D L l ππϕϕπ⎧⎪⎨⎪+⎩=±=------====+++=+++=面上曲线绕轴旋转一周所得旋转曲面得方程为 f(设直线L:,平面:则||直线与的夹角由平面与'cos sin L πϕϕπϕϕ||的夹角由||直线与平面的夹角由.曲线C :()()⎩⎨⎧==0,,0,,z y x G z y x F 在xy 平面上的投影: 先从曲线C 的方程中消去z 得到()0,=y x H ,它表示曲线C 为准线,母线平行于z 轴的柱面方程,那么 ()⎩⎨⎧==0,z y x H 就是C 在xy 平面上的投影曲线方程。

(完整版)大学高数公式大全

(完整版)大学高数公式大全

a b c cos , 为锐角时,
4 / 12
高等数学公式
平面的方程:
1、点法式: A( x x0 ) B( y y0 ) C ( z z0 ) 0,其中 n { A, B, C}, M 0 (x0, y0 , z0 ) 2、一般方程: Ax By Cz D 0
3、截距世方程: x
y
z 1
abc
平面外任意一点到该平 面的距离: d
x ( x, y)d
D
, y M y
( x, y) d
M
D
y ( x, y)d
D
( x, y)d
D
平面薄片的转动惯量: 对于 x轴 I x
y2 ( x, y)d , 对于 y轴 I y
x 2 ( x, y)d
D
D
平面薄片(位于 xoy平面)对 z轴上质点 M (0,0, a), (a 0)的引力: F { Fx , Fy , Fz},其中:
隐函数 F ( x, y) 0, dy dx
F F
x y
d2 ,
dx
y
2
( x
隐函数 F ( x, y, z) 0, z Fx , z Fy
x Fz
y Fz
Fx )+ (
Fy
y
Fx ) dy Fy dx
5 / 12
高等数学公式
F (x, y,u, v) 0
隐函数方程组:
J
( F ,G)
·半角公式:
sin 2
1 cos cos
2
2
1 cos 2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2

高数下册公式汇总(修改版)

高数下册公式汇总(修改版)

高数下册公式汇总(修改版)作者:日期: 2第八章向量与解析几何第十章重积分第十一章曲线积分与曲面积分①定义:四步法一一分(任意分割)、匀(任意取点)、和(求和)、精(求极限);②性质:对积分的范围具有可加性,具有线性性;第十二章级数①若级数收敛,各项同乘同一非零常数仍收敛①两个收敛级数的和差仍收敛 注:一敛、一散之和必发散.①去掉、加上或改变级数有限项 ①若级数收敛则对这级数的项任意加括号后所成 的级数仍收敛,且其和不变。

直接展开:泰勒级数间接展开:六个常用展开式敛定理 -----------------------f (x )为奇函数,正弦级数,奇延拓;f (x )为偶函数,余弦级数、偶延拓常数项级数的基本性质常数项级数的基本性质推论如果加括号后所成的级数发散 则原来级数也发散 注:收敛级数去括号后未必收敛①(必要条件)如果级数收敛 则|i m U n 0------------------------------------------------------------------ n 0 ---------------莱布尼茨判别法比较判别法比较判别法 的极限形式比值判别法 根值判别法若 U n U n 1 且lim U n 0,则 (1)n 1U n 收敛nn 1u n 和 v n 都是正项级数,且 u nv n .若 v n 收敛,则-H-*u n 也收敛;若 u n 发散,则 V n 也发散.v n 都是正项级数,且|imUn nv nU n 与v n 同敛或同散;①若lU n 也收敛;①如果lv n 发散,U n 是正项级数,limU n 1,lim 『u nn U nn)时发散;时收敛;1(U n 则①若也发散。

1时可能收敛也可能na n X ,limn 0n,R 10; R0; R 0 ,缺项级数用比值审敛法求收敛半径s (x )的性质①在收敛域I 上连续;①在收敛域(R , R )内可导,且可逐项求.().用收敛定义,lim s n 存在n不改变其收敛性f (x)x n( 1 x 1)n 1+疋(n 1n!傅 \T 21a na 。

高数下册公式

高数下册公式

⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-ptz z nty y mtx x p n m s t pz z ny y mx x CB A DCz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 00002220000000000};,,{,1302),,(},,,{0)()()(1参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:多元函数微分法及应用zy z x y x y x y x F F y zF F x z z y x F dx dyF F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy yu dx x u du y x v v y x u u x vv z x u u z x z y x v y x u f z t vv z t u u z dt dz t v t u f z dzz u dy y u dx x u du dy yz dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法 全微分:0),,()()(0),(),(),()],(),,([)](),([22微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x -=-=-=-+-+-===-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高等数学下册必背公式

高等数学下册必背公式

高等数学公式空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u KK K KK K K K K K K K K K K K KK KK K K K K K K ⋅×==⋅×=×=⋅==×=++⋅++++=++=⋅=⋅+=+=−+−+−== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+−=−+=+=++⎪⎩⎪⎨⎧+=+=+===−=−=−+++++==++=+++==−+−+−cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A K K多元函数微分法及应用z y z x y x y x y x y x F F yzF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx xudu y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x zdz −=∂∂−=∂∂=⋅−∂∂−∂∂=−==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==Δ+Δ=≈Δ∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅−=∂∂∂∂⋅−=∂∂∂∂⋅−=∂∂∂∂⋅−=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y −=−=−=−+−+−==⎪⎩⎪⎨⎧====−′+−′+−′′−=′−=′−⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线KK ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高数(二)公式总结

高数(二)公式总结

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k kB A P BP A P 1)|()()(∑==nk k ki i k B A P BP B A P B P A B P 1)|()()|()()|(∑≤==≤=xk k XP x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)),...,1,0()1()(n k p p C k X P kn kkn =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x ex f x θ)(1)(b x a ab x f ≤≤-=分布函数 对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ⎰+∞∞-=dyy x f x f X ),()()()('x f x F =离散型随机变量的独立性连续型随机变量的独立性第三章 数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkkp xg X g E )())((常用公式方差 定义式常用计算式∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijjip yx XY E )(dxdyy x xyfXY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dxx f X E x X D )()()(2[]22)()()(X E X E X D -=常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x ex f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔一般正态分布的概率计算公式第五章卡方分布t 分布F 分布)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n XN X ni iχ∑=,则若())(~1),,(~21222n Y N Y ni i χμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ则若),(~),1,0(~2n Y N X χ)(~/n t nY X正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果),(~2nN X σμ)1,0(~/N nX σμ-)1(~)1(222--n Sn χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F S S σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎫ ⎛z x σα2/—正态总体方差的区间估计⎪⎪⎭⎫⎝⎛-±n p p zp )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()22)1()1(--Sn Sn 样本方差—22S两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值 ③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版高等数学是一门重要且广泛应用的学科,其中包含了许多公式和定理。

下面是一份高等数学公式的总结归纳,涵盖了微积分、线性代数、常微分方程等内容。

微积分公式:1. 导数的定义:对于函数 f(x),在 x 处的导数定义为 f'(x) =lim(h→0) [f(x+h) - f(x)]/h。

2.常见函数的导数公式:-常数函数的导数为0。

- 幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

- 指数函数 f(x) = a^x (a>0)的导数为 f'(x) = (ln a) * a^x。

- 对数函数 f(x) = log_a x (a>0 且a≠1)的导数为 f'(x) =1/(x * ln a)。

- 三角函数 f(x) = sin x, cos x, tan x, cot x 的导数为 f'(x)= cos x, -sin x, sec^2x, -csc^2x。

3.高阶导数:若函数f(x)的导数存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x)。

4.泰勒展开公式:对于函数f(x),在x=a处的泰勒展开公式为f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+...+(1/n!)f^n(a)(x-a)^n。

线性代数公式:1.矩阵运算:-矩阵求逆:若A是一个非奇异矩阵,则存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

-矩阵的转置:将矩阵的行与列对换得到的新矩阵称为原矩阵的转置矩阵。

- 矩阵的乘法:设 A 为m×n 的矩阵,B 为n×p 的矩阵,则它们的乘积 C = AB 是一个m×p 的矩阵,其中 C 的元素c_ij = ∑(k=1到n) a_ik * b_kj。

2.行列式:- 二阶行列式:对于二阶方阵 A = [a b; c d],它的行列式为det(A) = ad - bc。

高数下册公式总结(修改版)

高数下册公式总结(修改版)
2 2 2/2 2 2xmi +ni+pi斗m2+n2+p2
JA2+B2+C2fm2+n2+p2
空 间 曲 线r:
'x=®(t),W=屮(t),z“(t),(a兰t兰P)
切向量
T=(『(to),屮化),『(to))
切“线”方程:x^X。=y—yo=Z—Zo
jto)『(to) E(to)
法平“面”方程:
x —Xoy —yoZ —o
Fx(Xo, yo, Zo)Fy(xo, yo, Zo)Fz(x°, y°,z°)
第十章重积分
重积分
积分类型
计算方法
典型例题
(1)利用直角坐标系
X—型
b0(x)
”f(x,y)dxdy=[dx£x)f(x, y)dy
Y—型
D
dQ(y)
JJf(x, y)dxdy =[dy]f (x, y)dx
Z2(x,y)
Vxydxdy.y)f(x,y,z)dz
截面法:川f (x, y, z)dV =
d
=fdzJJDf (x, y,z)dxdy
Q
cDz
1
X =Pcos9
二重积分
(2)利用柱面坐标』
y = Psi n日
I =
z = z
Mf(x,y,z)dV
相当于在投影法的基础上直角坐标转换成极坐标
适用范围:
线面夹角
m ={Al, B Q}n2={A2, B2,C2}
Si={mi,ni, Pi}S2={m)2,n?, P2}
s= {m,n, p} n={A,B,C}
QIAA+BB2+GC2I
COSn—

高数下册公式总结

高数下册公式总结

第八章 向量与解析几何向量代数定义 定义与运算的几何表达在直角坐标系下的表示向量有大小、有方向. 记作a 或ABa (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+ c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则a ae a=a e 222(,,)=++x y z x y za a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos点乘(数量积) θcos b a b a =⋅, θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=⋅b a 叉乘(向量积)b ac ⨯=θsin b a c =θ为向量a 与b 的夹角向量c 与a ,b 都垂直zy xz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行//0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔==交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y z a b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影222x x y y z zb x y za b a b a b prj a b b b ++=++0((x n f x =第十章 重积分质量=面密度⨯面积21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤ 0θπ≤≤ 2πθπ≤≤(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdyf x y x f x y f x y D D ⎧⎪⎪-=-⎪⎪=⎨⎪⎪-=⎪⎪⎩⎰⎰对于是奇函数,即对于是偶函数,即是的右半部分计算步骤及注意事项1. 画出积分区域2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙 4. 确定积分限 方法:图示法 先积一条线,后扫积分域 5. 计算要简便 注意:充分利用对称性,奇偶性三重积分(1) 利用直角坐标⎩⎨⎧截面法投影法投影⎰⎰⎰⎰⎰⎰=Ωb ay x z y x z x y x y z z y x f y x V z y x f ),(),()()(2121d ),,(d d d ),,((2) 利用柱面坐标 cos sin x r y r z z θθ=⎧⎪=⎨⎪=⎩第十一章曲线积分与曲面积分所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。

高等数学-下(公式大整理)

高等数学-下(公式大整理)

高等数学(下)八、空间解析几何与向量代数8.1 向量及其线性运算1.向量概念2.向量的线性运算3.空间直角坐标系4.利用坐标作向量的线性运算5.向量的模、方向角、投影8.2 数量积、向量积1.两向量的数量积2.两向量的向量积8.3 曲面及其方程1.曲面方程的概念2.旋转曲面3.柱面4.二次曲面8.4 空间曲线及其方程1.空间曲线的一般方程2.空间曲线的参数方程3.空间曲线在坐标面上的投影8.5平面及其方程1.平面的点法式方程2.平面的一般式方程3.两平面的夹角8.6空间直线及其方程1.空间直线的一般式方程2.空间直线的对称式方程3.空间直线的参数方程4.两直线的夹角5.直线与平面的夹角九、多元函数微分法及其应用9.1 多元函数的基本概念1.平面点集2.多元函数概念3.多元函数的极限4.多元函数的连续性9.2 偏导数与全微分1.偏导数2.全微分9.3 多元复合函数的求导法则1.一元函数与多元函数复合2.多元函数与多元函数复合9.4 隐函数的求导公式1.一个方程的情形2.方程组的情形9.5 多元函数微分学的几何应用1.一元向量值函数及其导数2.空间曲线的切线与法平面3.曲面的切平面与法线9.6 方向导数与梯度1.方向导数2.梯度9.7 多元函数的极值与求法1.极值与最大值、最小值2.条件极值与拉格朗日乘数法十、重积分10.1 二重积分的概念与性质1.二重积分的概念2.二重积分的性质10.2 二重积分的计算法1.利用直角坐标来计算2.利用极坐标来计算10.3三重积分1.三重积分的定义2.三重积分的计算10.4 重积分的应用十一、曲线积分与曲面积分11.1 对弧长的曲线积分1.定义2.性质3.计算11.2 对坐标的曲线积分1.定义2.性质3.计算4.两类曲线积分之间的关系11.3 格林公式及其应用1.格林公式2.曲线积分与路径无关的条件3.二元函数的全微分求积11.4 对面积的曲面积分1.定义2.计算11.5 对坐标的曲面积分1.定义2.性质3.计算4.两类曲面积分之间的关系11.6 高斯公式与斯托克斯公式1.高斯公式2.斯托克斯公式十二、无穷级数12.1 常数项级数的概念和性质1.定义2.性质12.2 常数项级数的审敛法1.正项级数及其审敛法2.交错级数及其审敛法3.绝对收敛与条件收敛12.3 幂级数1.函数项级数的概念2.幂级数及其收敛性3.幂级数的运算12.4 函数展开成幂级数1.泰勒级数2.展开步骤3.间接展开法12.5傅里叶级数1.定义2.收敛定理3.傅里叶展开4.正弦级数和余弦级数八、空间解析几何与向量代数8.1 向量及其线性运算1.向量概念向量(矢量),向量相等,向量的模,单位向量,零向量,向量的夹角,向量平行(共线),向量共面 2.向量的线性运算1)加减法(加)三角形法则,平行四边形法则,交换律,结合律,n 个向量相加的法则,负向量;(减)向量的差2)向量与数的乘法结合律,分配律,向量平行的充要条件 3.空间直角坐标系右手规则,坐标面,卦限,向量的坐标分解式,向径 4.利用坐标作向量的线性运算),,(z y x a a a a =,),,(z y x b b b b =,则),,(z z y y x x b a b a b a b a ±±±=±,),,(z y x a a a a λλλλ=。

最新高一数学下学期重点知识和公式总结

最新高一数学下学期重点知识和公式总结

cot (π- α)=- cot α
公式五:
利用公式一和公式三可以得到 2π-α与 α的三角函数值之间的关系:
sin ( 2πபைடு நூலகம் α)=- sin α
cos ( 2π- α)= cos α
tan ( 2π- α)=- tan α
cot (2π- α)=- cot α
公式六:
π /2 ±α及 3π /2 ±α与 α的三角函数值之间的关系:
读书之法 , 在循序而渐进 ,熟读而精思
sin(2 α )=2sin α· cos α =2/(tan α +cot α ) cos(2 α )=cos2( α-si)n2( α )=2cos2( -1α=)1- 2sin2( α ) tan(2 α )=2tan α-/t[a1n2( α )] ·半角公式 : sin( α /2)= ±√- c(o(s1α )/2) cos( α /2)= ±√ ((1+cos α )/2) tan( α /2)= ±√-c(o(s1α )/(1+cos α ))=sin α /(1+cos α-co)=s(α1 )/sin α ·降幂公式 sin2( α )=(-1cos(2 α ))/2=versin(2 α )/2 cos2( α )=(1+cos(2 α ))/2=covers(2 α )/2 tan2( α )=(-1cos(2 α ))/(1+cos(2 α )) ·万能公式 : sin α =2tan( α /2)/[1+tan2( α /2)] cos α =[1-tan2( α /2)]/[1+tan2( α /2)] tan α =2tan( α /2)/-[1tan2( α /2)] ·推导公式 tan α +cot α =2/sin2 α tan α-cot α=-2cot2 α 1+cos2 α =2cos2 α 1- cos2 α =2sin2 α 1+sin α =(sin α /2+cos α /2)2 诱导公式 公式一: 设 α为 任意角 ,终边相同的角的同一 三角函数 的值相等: sin ( 2kπ+ α)= sin α cos ( 2kπ+ α)= cos α tan ( 2kπ+ α)= tan α cot (2kπ+ α)= cot α 公式二: 设 α为 任意角 , π+α的 三角函数值 与 α的 三角函数值 之间的关系: sin ( π+ α)=- sin α cos ( π+α)=- cos α tan ( π+ α)= tan α cot (π+ α)= cot α 公式三: 任意角 α与 -α的 三角函数值 之间的关系: sin (- α)=- sin α cos (- α)= cos α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 向量与解析几何向量代数定义 定义与运算的几何表达在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+ c a b =-=±c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则与a 同向的单位向量为a ae a= a e 222(,,)=++x y z x y z a a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积)θcos b a b a =⋅, θ为向量a 与b 的夹角z z y y x x b a b a b a ++=⋅b a叉乘(向量积)b ac ⨯=θsin b a c = θ为向量a 与b 的夹角 向量c 与a ,b 都垂直且右手系zy xz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行//0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔==交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y z a b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影cos()b a bprj a a a b b∧⋅== 222x x y y z zb x y za b a b a b prj a b b b ++=++平面直线法向量{,,}n A B C = 点),,(0000z y x M方向向量{,,}T m n p = 点),,(0000z y x M方程名称 方程形式及特征方程名称 方程形式及特征一般式0=+++D Cz By Ax一般式⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A=F第十章 重积分重积分 积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型 ⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕ(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 );(2) 被积函数用极坐标变量表示较简单( 含22()x y α+, α为实数 )21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰计算步骤及注意事项1. 画出积分区域2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙 4. 确定积分限 方法:图示法 先积一条线,后扫积分域三重积分(,,)I f x y z dVΩ=⎰⎰⎰(1) 利用直角坐标⎩⎨⎧截面法投影法投影法:21(,)(,)(,,)d (,,)xy z x y D z x y f x y z V dxdy f x y z dz Ω=⎰⎰⎰⎰⎰⎰截面法:(,,)d (,,)zd cD f x y z V dz f x y z dxdy Ω=⎰⎰⎰⎰⎰⎰(2) 利用柱面坐标 cos sin x y z z ρθρθ=⎧⎪=⎨⎪=⎩相当于在投影法的基础上直角坐标转换成极坐标 适用范围:○1积分区域表面用柱面坐标表示时方程简单;如 旋转体第十一章曲线积分与曲面积分⎩⎨不是封闭曲面,添加辅所有类型的积分:○1定义:四步法——分(任意分割)、匀(任意取点)、和(求和)、精(求极限);○2性质:对积分的范围具有可加性,具有线性性;第十二章级数无穷级数常数项级数傅立叶级数幂级数一般项级数正项级数用收敛定义,nns∞→lim存在常数项级数的基本性质常数项级数的基本性质○1若级数收敛,各项同乘同一非零常数仍收敛.○2两个收敛级数的和差仍收敛.注:一敛、一散之和必发散.○3去掉、加上或改变级数有限项,不改变其收敛性.○4若级数收敛,则对这级数的项任意加括号后所成的级数仍收敛,且其和不变。

推论:如果加括号后所成的级数发散,则原来级数也发散.注:收敛级数去括号后未必收敛.○5(必要条件)如果级数收敛,则0lim=→nnu莱布尼茨判别法若1+≥nnuu且0lim=∞→nnu,则∑∞=--11)1(nnn u收敛nu∑和nv∑都是正项级数,且nnvu≤. 若nv∑收敛,则nu∑也收敛;若nu∑发散,则nv∑也发散.比较判别法比较判别法的极限形式nu∑和nv∑都是正项级数,且lvunnn=∞→lim,则○1若+∞<<l0,nu∑与nv∑同敛或同散;○2若0=l,nv∑收敛,nu∑也收敛;○3如果+∞=l,nv∑发散,nu∑也发散。

比值判别法根值判别法nu∑是正项级数,ρ=+∞→nnn uu1lim,ρ=∞→nnnulim,则1<ρ时收敛;1>ρ(ρ=+∞)时发散;1=ρ时可能收敛也可能发散.收敛性和函数展成幂级数nnnxa∑∞=0,ρ=+∞→nnn aa1lim,1,0;,0;0,.R R Rρρρρ=≠=+∞===+∞缺项级数用比值审敛法求收敛半径)(xs的性质○1在收敛域I上连续;○2在收敛域),(RR-内可导,且可逐项求导;○3和函数)(xs在收敛域I上可积分,且可逐项积分.(R不变,收敛域可能变化).直接展开:泰勒级数间接展开:六个常用展开式11(11)1nnx xx∞==-<<-∑11()!x nne x xn∞==-∞<<+∞∑22TT lπ==∑∞=++=10)sincos(2)(nnnnxbnxaaxf⎰-=πππdxxfa)(1⎰-=πππnxdxxfancos)(1⎰-=πππnxdxxfbnsin)(1收敛定理x是连续点,收敛于)(xf;x是间断点,收敛于)]()([21+-+xfxf周期延拓)(xf为奇函数,正弦级数,奇延拓;)(xf为偶函数,余弦级数、偶延拓.交错级数Gra。

相关文档
最新文档