2016年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

合集下载

2016年全国各地高考数学试题及解答分类大全(集合)

2016年全国各地高考数学试题及解答分类大全(集合)

2016年全国各地高考数学试题及解答分类大全(集合)一、选择题:1. (2016北京文)已知集合={|24}A x x <<,{|3B x x =<或5}x >,则AB =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x > 【答案】C考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.(2016北京理)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A. {0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.3. (2016全国Ⅰ文)设集合{}1,3,5,7A =,{}25B x x =,则AB = ( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.4.(2016全国Ⅰ理)设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.5.(2016全国Ⅲ文)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( ) (A ){48}, (B ){026},,(C ){02610},,,(D ){0246810},,,,,【答案】C【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.6.(2016全国Ⅲ理)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0, 2][3,+∞)【答案】D考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.7.(2016全国Ⅱ理)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】 试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.8.(2016全国Ⅱ文)已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,,(C ){123},,(D ){12},【答案】D考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.9.(2016山东文)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()UA B =( )(A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A【解析】 试题分析:由已知,{13,5}{3,4,5}{1,3,4,5}A B ⋃=⋃=,,所以(){1,3,4,5}{2,6}U U C A B C ⋃==,选A.考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.10.(2016山东理)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.(2016四川文) 设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.12.(2016四川理)集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C【解析】试题分析:由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般 是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.13.(2016天津文)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A【解析】试题分析:{1,3,5},{1,3}B AB ==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.14.(2016天津理)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D . 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.15.(2016浙江文)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.16. (2016浙江理)已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.二、填空题:1. (2016江苏)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 【答案】{}1,2- 【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.。

(完整word版)2016全国三卷理科数学高考真题及答案.docx

(完整word版)2016全国三卷理科数学高考真题及答案.docx

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

2016年数学立体几何高考试题及答案

2016年数学立体几何高考试题及答案

2016年数学立体几何高考试题及答案1.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.2如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.4如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.解答:解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S△PCF•EG=.5如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解答:解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.6如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.解答:证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.7如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.8如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O 为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.解答:解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为9三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.解答:(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO=,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BC=PB=,CD=∴cos∠COD=.1111AD上一点,且AP=a3,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.2.如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B 到平面PCD 的距离;4.如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ; 若不存在,说明理由.5.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.6.如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°(1)求证:PC⊥BC(2)求点A到平面PBC的距离.1. 223a∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD=PQ,∴B1D1∥PQ,又B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ,∴PQPM=PDAP=2,即PQ=2PM,又△APM∽△ADP,∴PMBD=APAD=13,∴PM=13BD,又BD =2a ,∴PQ =223a .2.[答案] 22 ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(2)过A 作AF ⊥PD ,垂足为F .在Rt PAD 中,PA =2,AD =BC =4,PD =42+22=25,AF ·PD =PA ·AD ,∴AF =2×425=455,即点B 到平面PCD 的距离为455.4.[解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP ,∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合.取PO 的中点N ,连结EN 并延长交PB 于F ,∵EA =1,PO =2,∴NO =1, 又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB ,∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时即可. 5. (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B , ∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1, 又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1, 即CF ⊥平面EFB 1,且CF =BF =2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF=13×12·EF ·B 1F ·CF =13×12×3×6×2=1.6.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°知,BC ⊥DC ,∵PD ∩DC =D ,∴BC ⊥平面PDC ,∴BC ⊥PC . (2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1,∴V P -ABC =13S △ABC ·PD =13,∵PD⊥平面ABCD,∴PD⊥DC,∵PD=DC=1,∴PC=2,∵PC⊥BC,BC=1,∴S△PBC=12PC·BC=22,∵V A-PBC=V P-ABC,∴13S△PBC·h=13,∴h=2,∴点A到平面PBC的距离为 2.。

【福建省】2016届高考数学(理科)-立体几何-专题练习-答案

【福建省】2016届高考数学(理科)-立体几何-专题练习-答案

福建省2016届高考数学(理科)-专题练习立体几何答 案一、选择题.1~5.CCDDB 6.D二、填空题.(7)1(8)50(1+(9)45o(10)三、解答题.(11)解:(Ⅰ)证明:连1AC ,1CB ,则1ACC △和11B CC △皆为正三角形.取1CC 中点O ,连OA ,1OB ,则1CC OA ⊥,11CC OB ⊥,则11CC OAB ⊥平面,则11CC AB ⊥.……5分(Ⅱ)由(Ⅰ)知,1OA OB ==1AB =1OA OB ⊥.如图所示,分别以1OB ,1OC ,OA 为正方向建立空间直角坐标系,则0(0,)1C -,,1)0,0B ,(A ,……6分 设平面1CAB 的法向量为111(,,)m x y z =u r ,∵1AB =u u u r ,(0,1,AC =-u u u r ,∴11111130300130x y z x y z ⎧⨯+⨯-⨯=⎪⎨⨯-⨯-⨯=⎪⎩,取(1,3,1)m =-u r .……8分设平面11A AB 的法向量为222(,,)n x y z =r ,∵1(3,0,3)AB =-u u u u r ,1(0,2,0)AA =u u u r ,∴22211130300200x y z x y z ⎧⨯+⨯-⨯=⎪⎨⨯+⨯+⨯=⎪⎩,取(1,0,1)n =r . 则10cos ,52||||m n m n m n •<>===⨯u r r u r r u r r , 又∵二面角11C AB A --为钝角,∴二面角11C AB A --的余弦值为105-.……10分 (12)证明:(Ⅰ)连接AC ,交BQ 于N ,连接MN ,∵BC AD ∥且12BC AD =,即BC AQ ∥且BC AQ =, ∴四边形BCAQ 为平行四边形,故N 为AC 的中点. 又∵点M 是棱PC 的中点,∴MN PA ∥.……3分∵MN MQB ⊂平面,PA MQB ⊄平面,∴PA MQB ∥平面.……6分(Ⅱ)因为,PA PD Q =为AD 的中点,则PQ AD ⊥.∵平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =,∴PQ ⊥平面ABCD ,∵BQ ABCD ⊂平面,∴PQ BQ ⊥.∵,AD BC ∥12BC AD =,Q 为AD 的中点, ∴四边形BCDQ 为平行四边形,∴//CD BQ ,又∵90ADC ∠=o , ∴90AQB ∠=o ,即QB AD ⊥……9分以Q 为原点,分别以,,QA QB QP 为,,x y z 轴建立空间直角坐标系(如图),则(0,0,0)Q ,(0,0,3)P ,(0,3,0)B ,(1,3,0)C -,(1,3,3)PC =--u u u r ,(0,0,3)QP =u u u r ,(0,3,0)QB =u u u r .设,(01)PM tPC t =≤≤u u u u r u u u r,则()QM QP tPC t =+=-u u u u r u u u r u u u r .设平面MQB 的法向量为(,,)=m x y z u r ,由0,0m QB m QM ⎧•=⎪⎨•=⎪⎩u r u u u r u r u u u u r得0,)0=⎧⎪⎨-+=⎪⎩y tx z ,令=z t ,得平面MQB的一个法向量为,0,)m t =u r ,又(0,0,1)n =r是平面BQC 的一法向量,二面角M BQ C --的大小为30o ,∴||cos30n m n m ︒•===r u r r u r ,……13分 解得 1233,42t t ==(舍),∴3=4PM PC .……15分 (13)解:(Ⅰ)补充完整的三棱锥P ABC -的直观图如图所示;……2分 由三视图知ABC △和PCA △是直角三角形.……3分(Ⅱ)如图,过P 作PH BC ⊥交BC 于点H .由三视图知2OH HC ==,PH =,,AC BC ⊥4AC =,……4分∴在图中所示的坐标系下,相关点的坐标为:(0,0,0)B ,(4,0,0)C,P ,(4,4,0)A ,则(4,4,0)BA =u u u r,BP =u u u r ,(0,4,0)CA =u u u r,(CP =-u u u r .……5分设平面PAB 、平面PAC 的法向量分别为111(,,)x y z =m ,222(,,)x y z =n .由0BA •=m u u u r ,0BP •=m u u u r,得1111440,20,x y x +=⎧⎪⎨+=⎪⎩ 令11z =,得1x =1y =,即(=m .……7分由0CA •=n u u u r ,0PC •=n u u u r,得2224020y x =⎧⎪⎨-+=⎪⎩, 令21=z ,得2x =,20y =,即=n .……8分∴cos ,7•<>===-m n m n m n ,∴sin ,7<>=m n,则tan ,<>=m n 9分 ∵二面角B PA C --的大小为锐角,∴tan α.……10分 (Ⅲ)记C 到面PAB 的距离为h ,由(0,0,0)B ,(4,0,0)C,P ,(4,4,0)A ,得PA =4AB PB ==,……11分∴PAB S ∆=13C PAB PAB V S h -=•=△.……13分 又三棱锥P ABC -的体积13P ABCABC V S PH -=•=△, 由P ABC C PAB V V --=,可得:7=h .……15分。

2016年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)

2016年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)

2016年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)一、选择题1.(2016全国Ⅰ文)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()(A )13(B )12(C )23(D )34【答案】B【解析】试题分析:如图,由题意得在椭圆中,11OFc,OBb,OD2b b 42在Rt OFB 中,|OF ||OB||BF ||OD |,且222abc ,代入解得22a4c ,所以椭圆得离心率得1e2,故选 B. 考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求 e .2.(2016全国Ⅰ理)已知方程222213x y mnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()(A )1,3(B )1,3(C )0,3(D )0,3【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.yxOB FD3.(2016全国Ⅰ理)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.4.(2016全国Ⅱ文)设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=()(A)12(B)1 (C)32(D)2【答案】D考点:抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y=kx(0)k,当0k时,在(,0),(0,)上是减函数,当0k时,在(,0),(0,)上是增函数.5.(2016全国Ⅱ理)已知12,F F 是双曲线2222:1x y E ab的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin3MF F ,则E 的离心率为()(A )2(B )32(C )3(D )2【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).6.(2016全国Ⅲ文、理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a bab的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PFx 轴..过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .7.(2016四川文)抛物线24yx 的焦点坐标是()(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)【答案】D【解析】试题分析:由题意,24yx 的焦点坐标为(1,0),故选 D.考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.8.(2016四川理)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)ypx 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A )33(B )23(C )22(D )1【答案】C【解析】试题分析:设22,2,,P pt pt M x y (不妨设0t ),则22,2.2p FP ptpt 由已知得13FMFP ,22,2362,3ppp xtpty ,22,332,3p p x tpt y,2211212121222OMtk ttt,max22OMk ,故选 C.考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P 的坐标,利用向量法求出点M 的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k 斜率用参数t 表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.9.(2016天津文)已知双曲线)0,0(12222ba by ax 的焦距为52,且双曲线的一条渐近线与直线02yx 垂直,则双曲线的方程为()(A )1422yx(B )1422yx(C )15320322y x(D )12035322yx 【答案】A【解析】试题分析:由题意得2215,2,11241b xyc a b a,选A.考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.。

2016全国三卷理科数学高考真题及答案

2016全国三卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC=(A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B(C )-(D )- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

2016立体几何高考题及答案【最新资料】

2016立体几何高考题及答案【最新资料】

2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

2016年高考立体几何汇编(含答案)

2016年高考立体几何汇编(含答案)

2016年高考立体几何汇编一、选择题1、(2016年山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B )12+π33 (C )12+π36 (D )21+π6 【答案】c2、(2016年上海高考)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( ) (A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D3、(2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B4、(2016年全国I 卷高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A5、(2016年全国I 卷高考)如平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为 (A )32(B )22(C )33(D )13【答案】A6、(2016年全国II 卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C7、(2016年全国III 卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(C)90 (D)81 +(B)54185【答案】B8、(2016年浙江高考)已知互相垂直的平面αβ,交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n【答案】C二、填空题1、(2016年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.22、(2016年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积。

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

2016年全国各地高考数学试题及解答分类大全(解析几何初步)

2016年全国各地高考数学试题及解答分类大全(解析几何初步)
第 1页 (共 6页)
a 12 12
a2
22 2
2
,解得 a
2 ,圆
的圆心为 1,1
,半径为 r2
1 ,所以
0 12 2 12 2 , r1 r2 3 , r1 r2 1,因为 r1 r2 r1 r2 ,所以圆
与圆 相交,故选 B.
考点:1.直线与圆的位置关系;2.圆与圆的判断方法 (1)几何法:由圆心到直线的距离 d 与半径长 r 的大小关系来判断. 若 d>r,则直线与圆相离; 若 d=r,则直线与圆相切; 若 d<r,则直线与圆相交. (2)代数法:联立直线与圆的方程,消元后得到关于 x(或 y)的一元二次方程,根据一元二次方程的解 的个数(也就是方程组解的个数)来判断. 如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离; 如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切; 如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交. 提醒:直线与圆的位置关系的判断多用几何法.
【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本 题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关 键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.
3.(2016 北京文).圆 (x 1)2 y2 2 的圆心到直线 y x 3 的距离为( )
(2)因为直线 l||OA,所以直线 l 的斜率为 4 0 2 . 20
设直线 l 的方程为 y=2x+m,即 2x-y+m=0,
则圆心 M 到直线 l 的距离 d 2 6 7 m m 5 .

2016年高考真题数学解析分类汇编10:立体几何(带详细答案)

2016年高考真题数学解析分类汇编10:立体几何(带详细答案)

1 / 272012高考试题解析分类汇编:立体几何'、选择题1.【2012高考新课标文7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的【答案】B【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥1 1的高为3,故其体积为6 3 3=9,故选B. 3 22.【2012高考新课标文8]平面a 截球O 的球面所得圆的半径为 1 ,球心O 到平面a 的距离 为2,则此球的体积为(A ) 6n ( B ) 4 3n (C ) 4 6 n(D ) 6 3n【答案】B为CG 的中点,则直线 AC i 与平面BED 的距离为 (A )2 ( B ) 3( C )2 ( D )1【答案】D4.【2012高考陕西文8】将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体, 则该几何体的左视图为【解析】球半径^ .1( 2)23,所以球的体积为3.【2012高考全国文8】已知正四棱柱 ABCD-ABC .D ,中,AB=2,C G=2、2, E三视图,则此几何体的体积为((A)6(B) 9B选S34V -3【答案】D 【解析】通过观察三视图,确定几何体的形状,继而求解通过观察几何体的三视图可知,该几何体是一个底面为六边形( 2条对边长为1,其余4条1=4故选D.【点评】本题考查三视图及空间想象能力, 体现了考纲中能掌握三视图所表示的简单的立体 图形以及对空间想象能力的要求, 来年三视图考查仍然围绕根据三视图求几何体的表面积或 体积,以及根据几何体来求三视图等问题展开,难度适中 6.【2012高考湖南文4】某几何体的正视图和侧视图均如图 1所示,则该几何体的俯视图不可能是【解析】显然从左边看到的是一个正方形,因为割线AD i 可见,所以用实线表示;而割线B i C不可见,所以用虚线表示•故选B .5.【2012高考江西文 7】若一个几何体的三视图如图所示,则此几何体的体积为112 B.5 C.4D.边长为72),高为1的直棱柱•所以该几何体的体积为=sh= i1 2 2 - 、、 2(B)<C)【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,E,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩【点评】本题主要考查空间几何体的三视图,考查空间想象能力•是近年来热点题型7. 【2012高考广东文7】某几何体的三视图如图1所示,它的体积为图1A. 72 二B. 48 二C. 30二D. 24二【答案】C【解析】几何体是半球与圆锥叠加而成1 4 3 12 r"2 2它的体积为V 3 3 .5-3= 30■:2 3 38. 【2102高考福建文4】一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A球B 三棱锥C 正方体D圆柱【答案】D.考点:空间几何体的三视图。

2016年全国各地高考数学试题及解答分类汇编大全( 平面向量.立体几何.解析几何初步)含解析

2016年全国各地高考数学试题及解答分类汇编大全( 平面向量.立体几何.解析几何初步)含解析

2016年全国各地高考数学试题及解答分类汇编大全(10平面向量)一、选择题1. (2016北京理)设,是向量,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】D考点:1.充分必要条件;2.平面向量数量积.【名师点睛】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.2.(2016全国Ⅱ理)已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D【解析】试题分析:向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):3.(2016全国Ⅲ文、理)已知向量1(,22BA = ,31(,),22BC = 则ABC ∠=( )(A)300(B) 450(C) 600(D)1200【答案】Aa b ||||a b =||||a b a b +=-θcos ||||⋅⋅=⋅b a b a θa b考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·,·cos a b a bθ=,·0a b a b ⇔⊥=,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.4.(2016山东理)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( )(A )4 (B )–4 (C )94 (D )–94【答案】B【解析】试题分析:由43m n =,可设3,4(0)m k n k k ==>,又()n tm n ⊥+,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+=所以4t =-,故选B.考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.5.(2016四川文、理)在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是(A )434 (B )494(C )374+ (D )374+【答案】B 【解析】考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DA DBDC ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()(22214x y BM +++=,因此可用圆的性质得出最值.6.(2016天津文、理)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B【解析】试题分析:设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-, 1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AFBC a b b ⋅=-⋅+=-+=,故选B.考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.二、填空1.(2016北京文)已知向量 ,则a 与b 夹角的大小为_________. 【答案】考点:平面向量数量积【名师点睛】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.2.(2016全国Ⅰ文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = _______ . 【答案】23-【解析】试题分析:由题意, 20,2(1)0,.3x x x ⋅=++=∴=-a b 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .3. (2016江苏) 如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【解析】因为2222436444AO BC FO BC BA CA --⋅===,22414FO BCBF CF -⋅==-, 因此22513,BC 82FO ==,22224167448EO BC FO BC BE CE --⋅=== =a b 30θcos ||||⋅⋅=⋅b a b a θa b。

2016年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2016年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2016年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题1.(2016全国Ⅰ文)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性.2.(2016山东文、理)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x = (B )ln y x = (C )e x y =(D )3y x =【答案】A 【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有co s0c o s 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A.考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.3. (2016四川文)已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D【解析】试题分析:()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 极小值为()2f ,由已知得2a =,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,4.(2016四川文、理)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围. 【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.二、填空1.(2016全国Ⅱ理)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln 2-考点: 导数的几何意义.【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.2.(2016全国Ⅲ文)已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x =在点(1,2)处的切线方程式_____________________________. 【答案】2y x =考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.3.(2016全国Ⅲ理)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【答案】21y x =--【解析】试题分析:当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x '=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.(2016天津文)已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为__________. 【答案】3 【解析】试题分析:()(2+3),(0) 3.x f x x e f ''=∴=考点:导数【名师点睛】求函数的导数的方法(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导; (4)复合函数:确定复合关系,由外向内逐层求导;(5)不能直接求导的:适当恒等变形,转化为能求导的形式再求导.5. (2016浙江理)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是.【答案】12由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅, 所以30BPD ∠=.EDCBA P过P 作直线BD 的垂线,垂足为O .设PO d = 则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠,12sin 302d x =⋅,解得d =.而BCD ∆的面积111sin )2sin 30)222S CD BC BCD x x =⋅∠=⋅=.故x =此时,16V t=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 考点:1、空间几何体的体积;2、用导数研究函数的最值.【思路点睛】先根据已知条件求出四面体的体积,再对x 的取值范围讨论,用导数研究函数的单调性,进而可得四面体的体积的最大值.三、解答题1. (2016北京文)设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围;(III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.【答案】(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(III )见解析.(II )当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x 与()f x '在区间(),-∞+∞上的情况如下:所以,当0c >且027c -<时,存在()14,2x ∈--,22,3x ⎛⎫∈-- ⎪⎝⎭, 32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.考点:利用导数研究曲线的切线;函数的零点 【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明. 2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值.3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论. 4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式2. (2016北京理)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值; (2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞. 考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.3.(2016全国Ⅰ文)已知函数()()()22e 1xf x x a x =-+-.(I)讨论()f x 的单调性;(II)若()f x 有两个零点,求a 的取值范围. 【答案】见解析(II) ()0,+∞【解析】试题分析:(I)先求得()()()'12.xf x x e a =-+再根据1,0,2a 的大小进行分类确定()f x 的单调性;(II)借助第一问的结论,通过分类讨论函数单调性,确定零点个数,从而可得a 的取值范围为()0,+∞.试题解析: (I)()()()()()'12112.x xf x x e a x x e a =-+-=-+(i)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ii)设0a <,由()'0f x =得x =1或x =ln(-2a). ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2ea >-,则ln(-2a)<1,故当()()(),ln 21,x a ∈-∞-+∞时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③若2ea <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.考点:函数单调性,导数应用【名师点睛】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.4. (2016江苏)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

2016高考理科立体几何复习答案

2016高考理科立体几何复习答案

答案例1-5 DA CC C 例6C训练1(1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥BD ,又DB ∩DC =D , ∴AD ⊥平面BDC ,∵AD ⊂平面ABD , ∴平面ABD ⊥平面BDC .(2)解 由(1)知,DA ⊥DB ,DC ⊥DA ,∵DB =DA =DC =1,DB ⊥DC ,∴AB =BC =CA =2, 从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin 60°=32,∴三棱锥DABC 的表面积S =12×3+32=3+32.例7D例8 (1)证明如图,取PD 中点E ,连接EM 、AE , ∴EM 綉12CD ,而AB 綉12CD , ∴EM 綉AB .∴四边形ABME 是平行四边形. ∴BM ∥AE .∵AE ⊂平面ADP ,BM ⊄平面ADP , ∴BM ∥平面P AD .(2)解 ∵P A ⊥平面ABCD ,∴P A ⊥AB .而AB ⊥AD ,P A ∩AD =A , ∴AB ⊥平面P AD ,∴AB ⊥PD .∵P A =AD ,E 是PD 的中点,∴PD ⊥AE .AB ∩AD =A . ∴PD ⊥平面ABME .作MN⊥BE,交AE于点N.∴MN⊥平面PBD.易知△BME∽△MEN.而BM=AE=2,EM=12CD=1,由ENEM=EMBM,得EN=(EM)2BM=12=22,∴AN=22.即点N为AE的中点.例9A例10. (1)证明如图,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)解由(1)知,AC⊥平面POD,又AC⊂平面P AC,所以平面POD⊥平面P AC.在平面POD中,如图,过O作OH⊥PD于H,则OH⊥平面P AC.连接CH,则CH是OC在平面P AC上的射影,所以∠OCH是直线OC和平面P AC所成的角.在Rt△ODA中,OD=OA·sin 30°=1 2.在Rt△POD中,OH=PO·ODPO2+OD2=2×122+14=23.在Rt△OHC中,sin∠OCH=OHOC=23.故直线OC和平面P AC所成角的正弦值为2 3.例11A【训练】(1)证明因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE ⊄平面BCP,所以DE∥平面BCP.(2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.(3)解存在点Q满足条件,理由如下:如图,连接DF,EG,设Q为EG的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG . 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,所以Q 为满足条件的点.例12. 解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1), 于是CA 1→=(0,-4,4),EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0), 于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4, sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.故0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.例13【答案】1.1答案1-5BCADA 6-10DBCBC 11-15DCCCA16-20 CBDDB 21-26BACBCA27.22 28.20π3 29.3π 30.24 31.1616π- 32.12 33.83π34.解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩ 平面ABC=EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. 2.2答案1-5CCCAB 6-9 CBCC 10.16π 11.1:24 12.12π 14.415.解:(1)证明:由已知得△ABC ≌△DBC , 因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC·h =13×12·BD ·BC ·sin 120°·32=12. 16.解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos 6= 3.设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝⎛⎭⎫122-2×2×12×cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,解得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32 =5 38.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO ·PO =13×5 38×32=516.17.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π.在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==,从而2ABC S BC ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==18.解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos π6= 3.设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝⎛⎭⎫122-2×2×12×cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,解得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32 =5 38.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO ·PO =13×5 38×32=516. 19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点, ∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD ,∴三棱锥C - ABM 的高h =CD =1,因此三棱锥A - MBC 的体积 V A - MBC =V C ­ ABM =13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD . 且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A - MBC 的体积V A ­ MBC =V A ­ BCD -V M ­ BCD =13AB ·S △BCD -13MN ·S △BCD =112. 20.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)方法一:设AA 1=x .在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理,A 1C =A 1C 21-CC 21=3-x 2. 在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C =-x 2(4-x 2)(3-x 2),sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2),所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22.从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.(2)方法二:过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,得BC ⊥平面AA 1D ,故BC ⊥AD .又∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,得AD =2217.设AA 1=x .在Rt △A 1D =AD 2-AA 21S △A 1BC =12A 1D ·从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.21【答案】(1)详见解析;(2)24. 【解析】试题分析:(1)建立空间直角坐标系,求得相关点的坐标可知问题等价于证明1=0AB PQ ⋅;(2)根据条件 二面角P-QD-A 的余弦值为37,利用空间向量可将四面体ADPQ 视为以ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,从而求解试题解析:解法一 由题设知,1AA ,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图b 所示的空间直角坐标系,则相关各点的坐标为)0,0,0(A ,1(3,0,6)B ,)0,6,0(D ,1(0,3,6)D , )0,,6(m Q ,其中BQ m =,06m ≤≤,(1)若P 是1DD 的中点,则9(0,,3)2P ,1(3,0,6)AB = ,于是118180AB PQ ⋅=-= ,∴1AB ⊥PQ ,即1AB PQ ⊥;(2)由题设知,(6,6,0)DQ m =-,1(0,3,6)DD =- 是平面PQD 内的两个不共线向量.设1(,,)n x y z = 是平面PQD 的一个法向量,则1110n DQ n DD ⎧⋅=⎪⎨⋅=⎪⎩,即6(6)0360x m y y z +-=⎧⎨-+=⎩,取6=y ,得1(6,6,3)n m =- ,又平面AQD 的一个法向量是2(0,0,1)n =,∴>=<21,cos n n 1212||||n n n n ⋅=⋅=,而二面角A QD P --的余弦值为37,=37,解得4=m ,或者8=m (舍去),此时)0,4,6(Q ,设1(01)DP DD λλ=<≤ ,而1(0,3,6)DD =-,由此得点)6,36,0(λλ-P ,(6,32,6)PQ λλ=--,∵//PQ 平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1,0)n =,∴PQ 30n ⋅= ,即023=-λ,亦即λ=23,从而)4,4,0(P ,于是,将四面体ADPQ 视为以A D Q ∆为底面的三棱锥ADQ P -,则其高4=h ,故四面体ADPQ 的体积11166424332A D Q V S h =⋅=⨯⨯⨯⨯= .解法二 (1)如图c ,取1A A 的中点R ,连结PR ,BR ,∵1A A ,1D D 是梯形11A AD D 的两腰,P 是1D D 的中点,∴AD PR //,于是由BC AD //知,BC PR //,∴P ,R ,B ,C 四点共面,由题设知,AB BC ⊥,1BC A A ⊥,∴BC ⊥平面11ABB A ,因此1BC AB ⊥①, ∵tan ABR ∠=AR AB =36=11tan AB A A=11A AB ∠,∴tan tan ABR ∠=11A AB ∠,因此1ABR BAB ∠+∠=111A AB BAB ∠+∠=90 ,于是1AB BR ⊥,再由①即知1AB ⊥平面PRBC ,又PQ ⊂平面PRBC ,故1AB PQ ⊥;(2)如图d ,过点P 作1//PM A A 交AD 于点M ,则//PM 平面11ABB A ,∵1A A ⊥平面ABCD ,∴OM ⊥平面ABCD ,过点M 作MN QD ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠为二面角A QD P --的平面角,∴3cos 7PNM ∠=,即MN PN =37,从而PM MN =连结MQ ,由//PQ 平面11ABB A ,∴AB MQ //,又ABCD 是正方形,所以ABQM 为矩形,故6==AB MQ ,设t MD =,则MN ==④,过点1D 作11//D E A A 交AD 于点E ,则11AA D E 为矩形,∴1D E =16A A =,113AE A D ==,因此3=-=AE AD ED ,于是1623D E PM MD ED ===,∴t MD PM 22==,再由③④得3=,解得2=t ,因此4=PM ,故四面体ADPQ 的体积11166424332ADQ V S h =⋅=⨯⨯⨯⨯= .3.1答案 1-5DADBB 6-7BC 8【答案】9.【解析】(1)点F 、G 、H 的位置如图所示.(2)连结BD ,设O 为BD 的中点.C因为M 、N 分别是BC 、GH 的中点, 所以//OM CD ,且12OM CD =, //NH CD ,且12NH CD =, 所以//,OM NH OM NH =, 所以MNHO 是平行四边形, 从而//MN OH ,又MN ⊄平面BDH ,OH ⊂平面BDH , 所以//MN 平面BDH .(3)连结AC ,过M 作MP AC ⊥于P .在正方形ABCD EFGH -中,//AC EG , 所以MP EG ⊥.过P 作PK EG ⊥于K ,连结KM , 所以EG ⊥平面PKM , 从而KM EG ⊥.所以PKM ∠是二面角A EG M --的平面角.CC设2AD =,则1,2CM PK ==,在Rt CMP 中,sin 452PM CM ==.在Rt KMP 中,2KM ==.所以cos PK PKM KM ∠==即二面角A EG M --10【解析】(解法1)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥, 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D = , 所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥.而PC BC C = ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E = ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB D FB ∠∠,. (Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线. 由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥.又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P = ,所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD D C ==,BC λ=,有BD = 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 πtan tan 3BD DPF PD=∠==解得λ=.所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =11【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC(2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA12.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.13.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH=GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.14.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO =DOAD=322=34. 故异面直线BC 与OD 所成角的余弦值为34.15.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.16.解:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F ,G 分别是A 1C 1,BC ,AB 的中点, 所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.17.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN . 18.证明: (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,所以DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .19.解:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)V =13×12×P A ×AB ×AD =36AB ,由V =34,可得AB =32. 作AH ⊥PB 交PB 于点H .由题设知BC ⊥平面P AB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC . 又AH =P A ·AB PB =31313,所以点A 到平面PBC 的距离为31313.20.证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)由题意知,ED ∥BC ,ED =BC , 所以四边形BCDE 为平行四边形, 所以BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE . 因为四边形ABCE 为菱形, 所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .21.解:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形, 所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线, 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线, 所以BC ⊥平面ACC 1A 1.(2)取线段AB 的中点M ,连接A 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC ,因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC . 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .22.解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE=1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.23.解:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F ,G 分别是A 1C 1,BC 所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.24.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12. ∵M 是AD 的中点,∴S △ABM =12S △ABD =14. 由(1)知,CD ⊥平面ABD ,∴三棱锥C - ABM 的高h =CD =1,因此三棱锥A - MBC 的体积V A - MBC =V C ­ ABM =13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD .且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N ,则MN ⊥平面BCD ,且MN =12AB =12. 又CD ⊥BD ,BD =CD =1,∴S △BCD =12. ∴三棱锥A - MBC 的体积V A ­ MBC =V A ­ BCD -V M ­ BCD=13AB ·S △BCD -13MN ·S △BCD =112. 25.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1.从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1.而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1.同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .26.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以ADO 是BC与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32. 连接AO ,在Rt △AOD 中,cos ∠ADO =DO AD= 322=34. 故异面直线BC 与OD 所成角的余弦值为34. 27.证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF .又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)由题意知,ED ∥BC ,ED =BC ,所以四边形BCDE 为平行四边形,所以BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE .因为四边形ABCE 为菱形,所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC ,所以BE ⊥平面P AC .28.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1.(2)方法一:设AA 1=x .在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理,A 1C =A 1C 21-CC 21=3-x 2.在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C= -x 2(4-x 2)(3-x 2), sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2), 所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22. 从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22. 因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367, 所以当x =67=427,即AA 1=427时,体积V 取到最大值377. 29.解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC ·h =13×12·BD ·BC ·sin 120°·32=12. 30.解:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线,所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线,所以BC ⊥平面ACC 1A 1.(2)取线段AB 的中点M ,连接A 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC , 因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC .所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .31.解:(1)证明:如图所示,取,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE =1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111. 32.解:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC .所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =22; 在Rt △ACF 中,由AC =2,CF =322, 得AF =262. 在Rt △AEF 中,由EF =22,AF =262, 得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313. 4-1答案1B 2.25 3.87. 4.3π 5试题解析:(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =,∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且 1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥ 平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F = ,连结1B F ,由AE EB ==1190A EA A EB ∠=∠= ,得114AB A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1AF BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠= ,得BD = 1143A F B F ==,由余弦定理得,111cos 8A FB ∠=-.6(I)证法一:连接,DG CD ,设CD GF O = ,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC =所以四边形DFCG 为平行四边形则O 为CD 的中点又H 为BC 的中点所以//OH BD又OH ⊂平面,FGH BD ⊂/平面,FGH所以//BD 平面FGH .7解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T.在三棱台DEF ABC -中,2,AB DE =则2,AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG//FC.又在BDC ∆,H 是BC 的中点,则TH//DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH ;(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而AB 则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点,,,GA GB GC 所在的直线分别为,,x y z 轴建立空间直角坐标系,设2AB =,则1,DE CF AC AG ===(((22B C F H -则平面ACFD 的一个法向量为1(0,1,0)n = ,设平面FGH 的法向量为2222(,,)n x y z = ,则220n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩ ,即220z ⎨⎪+=⎩取21x =,则221,y z ==2(1,1n = ,121cos ,2n n <>== ,故平面FGH 与平面ACFD 所成角(锐角)的大小为60 . 8.9.(Ⅰ)连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB =1,由∠ABC =120°,可得AG =GC =3.由BE ⊥平面ABCD ,AB =BC 可知,AE =EC ,又∵AE ⊥EC ,∴EG EG ⊥AC ,在Rt △EBG 中,可得BE DF .在Rt △FDG 中,可得FG在直角梯形BDFE 中,由BD =2,BE DF =2可得EF =2, ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (00),E(1,0, ,F (-1,0,2),C (00),∴AE =(1,CF =(-1,2).…10分故cos ,||||AE CF AE CF AE CF ∙<>== . 所以直线AE 与CF. ……12分 10.【解析】(1)证明:∵ 且点为的中点,∴ ,又平面平面,且平面平面,平面,∴ 平面,又平面,∴ ;(2)∵ 是矩形, ∴ ,又平面平面,且平面平面,平面,∴ 平面,又、平面,∴ ,,∴ 即为二面角的平面角,在中,,, ∴ 即二面角; PD PC =E CD PE DC ⊥PDC ⊥ABCD PDC ABCD CD =PE ⊂PDC PE ⊥ABCD FG ⊂ABCD PE FG ⊥ABCD AD DC ⊥PDC ⊥ABCD PDC ABCD CD =AD ⊂ABCD AD ⊥PCD CD PD ⊂PDC AD DC ⊥AD PD ⊥PDC ∠P AD C --Rt PDE ∆4PD =132DE AB ==PE tan PE PDC DE ∠==P AD C --P C D E F G(3)如下图所示,连接, ∵ ,即, ∴ ,∴ 为直线与直线所成角或其补角, 在中,,,由余弦定理可得∴ 直线与直线.11【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P O Q H P Q OH ∴,且OH BCD ⊂,所以//PQ 面BDC ; (Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===AC 2AF FB =2CG GB =2AF CGFB GB==//AC FG PAC ∠PA FG PAC ∆5PA ==AC =222cos 2PA AC PCPAC PA AC+-∠==⋅PA FG,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中2133HG α=∴=,所以在RT CHG ∆中222cos sin tan tan 60322sin CG CHG HG ααα∠==== tan (0,90)6060BDC ααα∴=∈∴=∴∠=12【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG . (3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(,22A B C D ,(4)3(0,0,)2P ,故1333(0),(),(2222BC CP CD ==-=-设平面BCP 的法向量111(1,,)n y z = ,则11110233022y y z ⎧+=⎪⎪⎨⎪-+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,)3n = . 设平面DCP 的法向量222(1,,)n y z = ,则22230233022y y z ⎧-=⎪⎪⎨⎪-+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即2(1n =.从而平面BCP 与平面D C P 的夹角的余弦值为12124cos 4n n n n θ⋅===13【答案】(1)3(2)514【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1ABC 外,BC 在平面1ABC 内,由直线与平面平行的判定定理可知, l //平面1ABC . 由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADDA 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF AM ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1AM AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A AM N --的平面角(设为θ). 设11AA =,则由12A B A CA A ==,120BAC ∠= ,有60BAD ∠= ,2,1AB AD ==.又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AAP 中, 1AP =;在1Rt A AM 中, 1AM =从而,11AA AP AE A P ∙==11AA AM AF A M ∙==所以sin AE AF θ==.所以cos θ===.故二面角1A AM N --的余弦值为515解:(1)以{}1,,AA 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=A ,)4,1,1(1--=A∴10103182018,cos 11==>=<C A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(= 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x =,∵)0,1,1(=,)4,2,0(1=AC 由1,AC m AD m ⊥⊥ ∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-==><=θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为3516【答案】118【答案】解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩7【答案】1515arcsin19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,故A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1­ AB ­ C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,所以DF =55,tan ∠A 1FD =A 1DDF=15, 所以cos ∠A 1FD =14.所以二面角A 1­ AB ­ C 的大小为arccos 14.20.5.1答案1. 2.【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1ADC ∆中,11AC DC AD ===故132AD C S ∆=所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23. 3.解:(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 因为AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABC - A 1B 1C 1的高为217.4.解:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)V =13×12×P A ×AB ×AD =36AB ,由V =34,可得AB =32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC-,其体积111111326V=⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C考点: 三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 【名师点睛】由三视图还原几何体的方法:6. (2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.(2016全国Ⅲ文、理)在封闭的直三棱柱111ABCA B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是()(A)4π (B)92π(C)6π (D)323π【答案】B【解析】试题分析:要使球的体积V最大,必须球的半径R最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322Rπππ==,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1(D)直线B1C1【答案】D【解析】只有11B C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理)已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】试题分析:由题意知,l lαββ=∴⊂,,n n lβ⊥∴⊥.故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1.(2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF-E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【答案】(I)见解析(II )219-试题解析:(I)由已知可得F DFA⊥,F FA⊥E,所以FA⊥平面FDCE.又FA⊂平面FABE,故平面FABE⊥平面FDCE.(II)过D作DG F⊥E,垂足为G,由(I)知DG⊥平面FABE.以G为坐标原点,GF的方向为x轴正方向,GF为单位长度,建立如图所示的空间直角坐标系G xyz-.由(I)知DF∠E为二面角D F-A-E的平面角,故DF60∠E=,则DF2=,DG3=,可得()1,4,0A,()3,4,0B-,()3,0,0E-,(D3.由已知,//FAB E,所以//AB平面FDCE.又平面CDAB平面FDC DCE=,故//CDAB,CD//FE .由//FBE A,可得BE⊥平面FDCE,所以C F∠E为二面角C F-BE-的平面角,C F60∠E=.从而可得(C3-.所以(C3E=,()0,4,0EB=,(C 3,3A=--,()4,0,0AB=-.设(),,n x y z=是平面CB E的法向量,则C0nn⎧⋅E=⎪⎨⋅EB=⎪⎩,即3040x zy⎧+=⎪⎨=⎪⎩,所以可取(3,0,3n=-.设m是平面CDAB的法向量,则C0mm⎧⋅A=⎪⎨⋅AB=⎪⎩,同理可取()0,3,4m=.则219cos,n mn mn m⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C'--的正弦值是29525.考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC-中,PA⊥平面ABCD,AD BC,3AB AD AC===,4PA BC==,M为线段AD上一点,2AM MD=,N为PC的中点.(I)证明MN平面PAB;(II)求四面体N BCM-的体积.【答案】(Ⅰ)见解析;(Ⅱ)453.试题解析:(Ⅰ)由已知得232==ADAM,取BP的中点T,连接TNAT,,由N为PC中点知BCTN//,221==BCTN. ......3分又BCAD//,故TN AM,四边形AMNT为平行四边形,于是ATMN//.因为⊂AT平面PAB,⊄MN平面PAB,所以//MN平面PAB. ........6分(Ⅱ)因为⊥PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA21. ....9分取BC的中点E,连结AE.由3==ACAB得BCAE⊥,522=-=BEABAE.由BCAM∥得M到BC的距离为5,故525421=⨯⨯=∆BCMS,所以四面体BCMN-的体积354231=⨯⨯=∆-PASVBCMBCMN. .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos,|25||||n ANn ANn AN⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ))根据BDEF//,知EF与BD确定一个平面,连接DE,得到ACDE⊥,ACBD⊥,从而⊥AC平面BDEF,证得FBAC⊥.(Ⅱ)设FC的中点为I,连HIGI,,在CEF∆,CFB∆中,由三角形中位线定理可得线线平行,证得平面//GHI平面ABC,进一步得到//GH平面ABC.试题解析:(Ⅰ))证明:因BDEF//,所以EF与BD确定一个平面,连接DE,因为EECAE,=为AC的中点,所以ACDE⊥;同理可得ACBD⊥,又因为DDEBD=,所以⊥AC平面BDEF,因为⊂FB平面BDEF,FBAC⊥。

相关文档
最新文档