数据结构c++顺序表、单链表的基本操作-查找、排序代码
c语言实现顺序表的基本操作

c语⾔实现顺序表的基本操作数据结构顺序表操作复制代码代码如下:#include <stdio.h>#include <stdlib.h>#include <malloc.h>#define LIST_INIT_SIZE 100#define LISINCREMENT 10#define ElemType int#define Status inttypedef struct Sq{ElemType *elem;int length;int listsize;}SqList;Status InitList(SqList *L){L->elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!L->elem)return 0;L->length=0;L->listsize=LIST_INIT_SIZE;return 1;}Status ListInsert(SqList *L,int i,ElemType e){int *q,*p;if(i<1||i>L->length)return 0;if(L->length>L->listsize){ElemType *newbase=(ElemType*)realloc(L->elem,(LIST_INIT_SIZE+LISINCREMENT)*sizeof(ElemType)); if(!newbase)return 0;L->elem=newbase;L->listsize+=(LISINCREMENT);}q=&(L->elem[i-1]);for(p=&(L->elem[L->length-1]);p>=q;--p)*(p+1)=*p;*q=e;++L->length;return 1;}Status ListDelete(SqList *L,int i,ElemType e){int *p,*q;if(i<1||i>L->length)return 0;p=&(L->elem[i-1]);e=*p;q=L->elem+L->length-1;for(++p;p<=q;++p)*(p-1)=*p;--L->length;return 1;}int main(void){int i,j,e,lo,temp;SqList *L=(SqList*)malloc(sizeof(SqList)); InitList(L);printf("请输顺序表的长度:\n");scanf("%d",&L->length);printf("请输⼊顺序表的各个元素:\n");for(i=0;i<L->length;++i)scanf("%d",&L->elem[i]);printf("输⼊的顺序表是:\n");for (i=0;i<L->length;++i){printf("%d ",L->elem[i]);}printf("\n");printf("请输⼊插⼊的位置以及节点:\n"); scanf("%d%d",&j,&e);ListInsert(L,j,e);printf("插⼊后的顺序表为:\n");for (i=0;i<L->length;++i){printf("%d ",L->elem[i]);}printf("\n");printf("请输⼊要删除的位置:");scanf("%d",&lo);ListDelete(L,lo,temp);for (i=0;i<L->length;++i){printf("%d ",L->elem[i]);}printf("\n");free(L);return 0;}。
c语言数据结构查找算法大全

printf("This number does not exist in this array.\n");
else
printf("a[%d]=%d\n",p,x);
}
9.2.2 折半查找(二分查找)
使用折半查找必须具备两个前提条件:
(1)要求查找表中的记录按关键字有序(设,从小到大有序) (2)只能适用于顺序存储结构
}
※折半查找算法性能分析:
在折半查找的过程中,每经过一次比较,查找范围都要缩小一半,所 以折半查找的最大查找长度为
MSL=[log2 n]+1
当n足够大时,可近似的表示为log2(n)。可见在查找速度上,折半查找 比顺序查找速度要快的多,这是它的主要优点。
结论:折半查找要求查找表按关键字有序,而排序是一 种很费时的运算;另外,折半查找要求表是顺序存储的,为 保持表的有序性,在进行插入和删除操作时,都必须移动大 量记录。因此,折半查找的高查找效率是以牺牲排序为代价 的,它特别适合于一经建立就很少移动、而又经常需要查找 的线性表。
查找技术分为: 1 静态查找表技术 顺序查找、折半查找、索引顺序查找 2 动态查找表技术 二叉查找树 3哈希表技术 哈希表技术
※查找算法的衡量指标
在查找一个记录时所做的主要操作是关键字的比较, 所以通常把查找过程中对关键字的平均比较次数作为衡量 一个查找算法效率优劣的标准,并称平均比较次数为平均 查找长度(Average Search Length)。平均查找长度的 定义为:
high2=N-1;
/*N为查找表的长度,high2为块在表中的末地址*/
else
high2=ID[low1+1].addr-1;
c语言中常用的查找

c语言中常用的查找C语言中常用的查找引言:在编程中,查找是一项非常常见且重要的操作。
无论是在数组、链表、树还是图等数据结构中,都需要进行查找操作来寻找特定的数据或者确定某个元素的存在与否。
C语言提供了多种查找算法和数据结构,本文将介绍C语言中常用的查找方法。
一、线性查找线性查找是最简单的查找方法之一,也称为顺序查找。
其基本思想是从数据集合的起始位置开始逐个比较待查找元素与集合中的元素,直到找到目标元素或者遍历完整个集合。
在C语言中,可以使用for循环或者while循环实现线性查找。
线性查找的时间复杂度为O(n),其中n为数据集合中元素的个数。
二、二分查找二分查找又称为折半查找,是一种高效的查找算法,但要求数据集合必须是有序的。
其基本思想是将数据集合分为两部分,然后通过与目标元素的比较来确定目标元素在哪个部分中,从而缩小查找范围。
重复这个过程直到找到目标元素或者确定目标元素不存在于数据集合中。
二分查找的时间复杂度为O(logn),其中n为数据集合中元素的个数。
三、哈希表查找哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构,它能够以常数时间复杂度O(1)进行查找操作。
在C语言中,可以使用数组和链表的结合来实现哈希表。
哈希表的关键之处在于哈希函数的设计,良好的哈希函数能够将关键字均匀地映射到不同的存储位置,从而提高查找效率。
四、二叉搜索树查找二叉搜索树是一种常用的数据结构,它满足以下性质:对于任意节点,其左子树中的所有节点的值都小于该节点的值,而右子树中的所有节点的值都大于该节点的值。
在C语言中,可以使用指针和递归的方式来实现二叉搜索树。
通过比较目标值与当前节点的值,可以确定目标值位于左子树还是右子树中,从而缩小查找范围。
五、图的遍历在图的数据结构中,查找操作通常是指遍历操作。
图的遍历有两种方式:深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索通过递归的方式依次访问图中的每个节点,直到找到目标节点或者遍历完整个图。
C#常用数据结构与算法

C常用数据结构与算法1.数据结构1.1 数组- 定义- 常用操作:访问元素、添加元素、删除元素、查找元素 - 应用场景1.2 链表- 定义- 常用操作:插入节点、删除节点、查找节点- 单链表、双链表、循环链表的区别- 应用场景1.3 栈- 定义- 常用操作:入栈、出栈、查看栈顶元素、判断栈是否为空 - 可使用数组或链表实现- 应用场景1.4 队列- 定义- 常用操作:入队、出队、查看队首元素、查看队尾元素、判断队列是否为空- 可使用数组或链表实现- 应用场景1.5 哈希表- 定义- 常用操作:插入键值对、删除键值对、根据键查找值、计算哈希值- 冲突解决方法:开放寻址法、链地质法- 应用场景2.常用算法2.1 排序算法- 冒泡排序- 插入排序- 选择排序- 快速排序- 归并排序- 堆排序2.2 查找算法- 线性查找- 二分查找- 插值查找- 哈希查找- 树查找(二叉搜索树、平衡二叉树、红黑树)2.3 图算法- 广度优先搜索- 深度优先搜索- 最短路径算法(Dijkstra算法、Floyd-Warshall算法) - 最小树算法(Prim算法、Kruskal算法)2.4 动态规划- 背包问题- 最长公共子序列- 最大子数组和3.附件:无4.法律名词及注释:- C: C是一种通用的、面向对象的编程语言,由微软公司开发。
- 数据结构:数据结构是计算机中组织和存储数据的方式。
- 算法:算法是解决问题的一系列步骤或过程。
- 数组:数组是一种线性数据结构,由一系列元素组成,每个元素都有唯一的索引值。
- 链表:链表是一种线性数据结构,由一系列节点组成,每个节点都包含数据和指向下一个节点的指针。
- 栈:栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作。
- 队列:队列是一种先进先出(FIFO)的数据结构,只能在队首和队尾进行操作。
- 哈希表:哈希表是一种使用哈希函数将键映射到值的数据结构。
- 排序算法:排序算法是将一组数据按照特定顺序排列的算法。
数据结构-单链表基本操作实现(含全部代码)

数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
C语言顺序表的实现代码

C语⾔顺序表的实现代码本⽂实例为⼤家分享了C语⾔实现顺序表的具体代码,供⼤家参考,具体内容如下seqlist.h#ifndef __SEQLIST_H__#define __SEQLIST_H__#include<cstdio>#include<malloc.h>#include<assert.h>#define SEQLIST_INIT_SIZE 8#define INC_SIZE 3 //空间增量的⼤⼩typedef int ElemType;typedef struct Seqlist {ElemType *base;int capacity; //顺序表容量int size; //表的⼤⼩}Seqlist;bool Inc(Seqlist *list);//增加顺序表的容量void InitSeqlist(Seqlist *list); //初始化顺序表void push_back(Seqlist *list, ElemType x); //在顺序表的末尾插⼊元素void push_front(Seqlist *list, ElemType x); //在顺序表的头部插⼊元素void show_list(Seqlist *list); //显⽰顺序表中的元素void pop_back(Seqlist *list); //删除顺序表最后⼀个元素void pop_front(Seqlist *list); //删除顺序表第⼀个元素void insert_pos(Seqlist *list, int pos, ElemType x);//在顺序表的选定位置上插⼊数据int find(Seqlist *list, ElemType key); //在顺序表中查找元素key的下标int length(Seqlist *list);//求顺序表的长度void delete_pos(Seqlist *list, int pos); //删除顺序表中特定位置的数据元素void delete_val(Seqlist *list, int key);//删除顺序表中值为key的数据元素void sort(Seqlist *list);//冒泡排序void reverse(Seqlist *list);//逆置顺序列表void clear(Seqlist *list);//清除顺序表中的所有元素void destroy(Seqlist *list);//摧毁顺序表void merge(Seqlist *lt, Seqlist *la, Seqlist *lb);//合并两个顺序列表#endif //__SEQLIST_H__seqlist.cpp#include"seqlist.h"bool Inc(Seqlist *list) {ElemType *newbase = (ElemType*)realloc(list, sizeof(ElemType)*(list->capacity + INC_SIZE)); //重新分配内存空间if (newbase == NULL) {printf("内存空间已满,⽆法再分配内存空间!\n");return false;}list->base = newbase;list->capacity += INC_SIZE;return true;}void InitSeqlist(Seqlist *list) {list->base = (ElemType*)malloc(sizeof(ElemType)*SEQLIST_INIT_SIZE);assert(list->base != NULL);list->capacity = SEQLIST_INIT_SIZE;list->size = 0;}void push_back(Seqlist *list, ElemType x) {if (list->size >= list->capacity && !Inc(list)) { //Inc(list)⽤来判断增加顺序表容量是否成功,只有在失败的情况下才会进⼊if语句中 printf("顺序表容量已满,⽆法再在表尾继续插⼊新元素!\n");return;}list->base[list->size] = x;list->size++;}void push_front(Seqlist *list, ElemType x) {if (list->size >= list->capacity && !Inc(list)) {printf("顺序表容量已满,⽆法再在表头插⼊新元素!\n"); return;}for (int i = list->size;i > 0;i--) {list->base[i] = list->base[i - 1];}list->base[0] = x;list->size++;}void show_list(Seqlist *list) {for (int i = 0;i < list->size;i++) {printf("%d ", list->base[i]);}printf("\n");}void pop_back(Seqlist *list) {if (list->size == 0) {printf("顺序表已空,⽆法再在表尾删除元素!\n");return;}list->size--;}void pop_front(Seqlist *list) {if (list->size == 0) {printf("顺序表已空,⽆法再在表头删除元素!\n");return;}for (int i = 0;i < list->size - 1;i++) {list->base[i] = list->base[i + 1];}list->size--;}void insert_pos(Seqlist *list, int pos, ElemType x) {if (pos<0 || pos>list->size) {printf("插⼊位置不合法,⽆法插⼊元素!\n");return;}if (list->size >= list->capacity && !Inc(list)) {printf("顺序表容量已满,⽆法在插⼊新的元素!\n");return;}for (int i = list->size;i > pos;i--) {list->base[i] = list->base[i - 1];}list->base[pos] = x;list->size++;}int find(Seqlist *list, ElemType key) {for (int i = 0;i < list->size;i++) {if (list->base[i] == key)return i;}return -1;}int length(Seqlist *list) {return list->size;}void delete_pos(Seqlist *list, int pos) {if (pos < 0 || pos >= list->size) {printf("删除位置不合法,⽆法删除元素!\n");return;}for (int i = pos;i < list->size - 1;i++) {list->base[i] = list->base[i + 1];}list->size--;}void delete_val(Seqlist *list, int key) {int pos = find(list, key);if (pos == -1) {printf("顺序表中没有这个元素!\n");return;}delete_pos(list, pos);}void sort(Seqlist *list) {for (int i = 0;i < list->size - 1;i++) {//排序的趟数(例如5个数据需要⽐较4趟)for (int j = 0;j < list->size - 1 - i;j++) {//每⼀趟⽐较中的⽐较次数(例如5个数据在第0趟需要⽐较4次) if (list->base[j] > list->base[j + 1]) {ElemType temp = list->base[j];list->base[j] = list->base[j + 1];list->base[j + 1] = temp;}}}}void reverse(Seqlist *list) {if (list->size == 0 || list->size == 1) return;int low = 0, high = list->size - 1;while (low < high) {ElemType temp = list->base[low];list->base[low] = list->base[high];list->base[high] = temp;low++;high--;}}void clear(Seqlist *list) {list->size = 0;}void destroy(Seqlist *list) {free(list->base);list->base = NULL;list->capacity = 0;list->size = 0;}void merge(Seqlist *lt, Seqlist *la, Seqlist *lb) {lt->capacity = la->size + lb->size;lt->base = (ElemType*)malloc(sizeof(ElemType)*lt->capacity);assert(lt->base != NULL);int ia = 0, ib = 0, ic = 0;while (ia < la->size&&ib < lb->size) {if (la->base[ia] < lb->base[ib]) {lt->base[ic++] = la->base[ia++];}else {lt->base[ic++] = lb->base[ib++];}}while (ia < la->size) {lt->base[ic++] = la->base[ia++];}while (ib < lb->size) {lt->base[ic++] = lb->base[ib++];}lt->size = la->size + lb->size;show_list(lt);}main.cpp#include"seqlist.h"void main() {Seqlist list;InitSeqlist(&list);ElemType item;int select = 1;while (select) {printf("*******************************************\n");printf("*[1] push_back [2] push_front *\n");printf("*[3] show_list [4] pop_back *\n");printf("*[5] pop_front [6] insert_pos *\n");printf("*[7] find [8] length *\n");printf("*[9] delete_pos [10] delete_value *\n");printf("*[11] sort [12] reverse *\n");printf("*[13] clear [14] merge *\n");printf("*[0] quit_system *\n");printf("*******************************************\n");printf("请选择:>>");scanf("%d", &select);if (select == 0) break;switch (select) {case 1:printf("请输⼊要插⼊的数据(-1结束):>");while (scanf("%d", &item), item != -1) {//先输⼊item的值,只要item不等于-1就接着循环 push_back(&list, item);}break;case 2:printf("请输⼊要插⼊的数据(-1结束):>");while (scanf("%d", &item), item != -1) {push_front(&list, item);}break;case 3:show_list(&list);break;case 4:pop_back(&list);break;case 5:pop_front(&list);break;case 6:printf("请输⼊要插⼊的数据:>");scanf("%d", &item);printf("请输⼊要插⼊的位置:>");scanf("%d", &pos);insert_pos(&list, pos, item);break;case 7:printf("请输⼊要查找的数据:>");scanf("%d", &item);pos = find(&list, item);if (pos == -1)printf("查找的数据元素不在顺序表中!\n");elseprintf("查找的数据元素在顺序表中的下标位置为%d\n", pos);break;case 8:printf("顺序表的长度为%d\n", length(&list));break;case 9:printf("请输⼊要删除数据在顺序表中的下标位置:>");scanf("%d", &pos);delete_pos(&list, pos);break;case 10:printf("请输⼊要删除数据的值:>");scanf("%d", &item);delete_val(&list, item);break;case 11:sort(&list);break;case 12:reverse(&list);break;case 13:clear(&list);break;Seqlist mylist, yourlist;ElemType item1, item2;InitSeqlist(&mylist);InitSeqlist(&yourlist);printf("请输⼊顺序表1中的元素值(-1结束):>");while (scanf("%d", &item1), item1 != -1) {push_back(&mylist, item1);}printf("请输⼊顺序表2中的元素值(-1结束):>");while (scanf("%d", &item2), item2 != -1) {push_back(&yourlist, item2);}merge(&list, &mylist, &yourlist);destroy(&mylist);destroy(&yourlist);break;default:printf("输⼊的选择错误!请重新输⼊!\n");break;}}destroy(&list);}以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。
C语言数据结构线性表的基本操作实验报告

实验一线性表的基本操作一、实验目的与基本要求1.掌握数据结构中的一些基本概念。
数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。
2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。
3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。
4.掌握运用C语言上机调试线性表的基本方法。
二、实验条件1.硬件:一台微机2.软件:操作系统和C语言系统三、实验方法确定存储结构后,上机调试实现线性表的基本运算。
四、实验内容1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。
2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。
3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。
编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。
(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。
编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。
五、附源程序及算法程序流程图1.源程序(1)源程序(实验要求1和3)#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct arr{int * elem;int length;int listsize;}Sqlist;void menu(); //菜单void InitList(Sqlist *p); // 创建线性表void ShowList(Sqlist *p); // 输出顺序线性表void ListDelete(Sqlist *p,int i,int &e); // 在顺序线性表中删除第i个元素,并用e返回其值void ListInsert(Sqlist *p); // 在顺序线性表中第i个元素前插入新元素evoid ListEmpty(Sqlist *p); // 判断L是否为空表void GetList(Sqlist *p,int i,int &e); // 用e返回L中第i个数据元素的值void ListInsert(Sqlist *p,int i,int e);bool compare(int a,int b);void LocateElem(Sqlist *L,int e); // 在顺序线性表L中查找第1个值与e满足compare()d元素的位序void MergeList_L(Sqlist *La,Sqlist *Lb); // 归并void main(){Sqlist La;Sqlist Lb;int n,m,x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:InitList(&La);break;case 2:ListEmpty(&La);break;case 3:printf("请输入插入的位序:\n");scanf("%d",&m);printf("请出入要插入的数:\n");scanf("%d",&x);ListInsert(&La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(&La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(&La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(&La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(&La);break;case 8:InitList(&Lb);break;case 9:MergeList_L(&La,&Lb);printf("归并成功!");break;}menu();scanf("%d",&n);}}/*菜单*/void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断La是否为空表\n\n");printf(" 3.插入元素(La)\n\n");printf(" 4.删除元素(La)\n\n");printf(" 5.定位元素(La)\n\n");printf(" 6.取元素(La)\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并为一个线性表La\n\n");printf("********************\n\n");}/*创建顺序线性表L*/void InitList(Sqlist *L){int n;int i=0;L->elem=(int *)malloc(LIST_INIT_SIZE*sizeof(int));if(NULL==L->elem)printf("储存分配失败!\n");else{L->length=0;L->listsize=LIST_INIT_SIZE;printf("输入顺序表a:\n");scanf("%d",&n);while(n){L->elem[i]=n;i++;L->length++;L->listsize=L->listsize-4;scanf("%d",&n);}}}/*输出顺序线性表*/void ShowList(Sqlist *p){int i;if(0==p->length)printf("数组为空!\n");elsefor(i=0;i<p->length;i++)printf("%d ",p->elem[i]);printf("\n");}/*判断L是否为空表*/void ListEmpty(Sqlist *p)if(0==p->length)printf("L是空表!\n");elseprintf("L不是空表!\n");}/*在顺序线性表中第i个元素前插入新元素e */void ListInsert(Sqlist *p,int i,int e){int *newbase;int *q1;int *q2;while(i<1||i>p->length+1){printf("您输入的i超出范围!\n请重新输入要插入的位置\n:");scanf("%d",&i);}if(p->length>=p->listsize){newbase=(int *)realloc(p->elem,(p->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);else{p->elem=newbase;p->listsize+=LISTINCREMENT;}}q1=&(p->elem[i-1]);for(q2=&(p->elem[p->length-1]);q2>=q1;--q2)*(q2+1)=*q2;*q1=e;++p->length;}/*/在顺序线性表中删除第i个元素,并用e返回其值*/void ListDelete(Sqlist *p,int i,int &e){int *q1,*q2;while(i<1||i>p->length){printf("您输入的i超出范围!请重新输入:");scanf("%d",&i);}q1=&(p->elem[i-1]);e=*q1;q2=p->elem+p->length-1;for(++q1;q1<=q2;++q1)*(q1-1)=*q1;--p->length;}/*对比a与b相等*/bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}/*在顺序线性表L中查找第1个值与e满足compare()d元素的位序*/ void LocateElem(Sqlist *L,int e){int i=1;int *p;p=L->elem;while(i<=L->length && !compare(*p++,e))++i;if(i<=L->length)printf("第1个与e相等的元素的位序为%d\n",i);elseprintf("没有该元素!\n");}/*用e返回L中第i个数据元素的值*/void GetList(Sqlist *p,int i,int &e){Sqlist *p1;p1=p;e=p1->elem[i-1];}/* 已知顺序线性表La和Lb是元素按值非递减排列*//* 把La和Lb归并到La上,La的元素也是按值非递减*/void MergeList_L(Sqlist *La,Sqlist *Lb){int i=0,j=0,k,t;int *newbase;Sqlist *pa,*pb;pa=La;pb=Lb;while(i<pa->length && j<pb->length){if(pa->elem[i] >= pb->elem[j]){if(pa->listsize==0){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(k=pa->length-1; k>=i; k--)pa->elem[k+1]=pa->elem[k];pa->length++;pa->elem[i]=pb->elem[j];i++;j++;}elsei++;}while(j<pb->length){if( pa->listsize < pb->length-j ){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(j;j<pb->length;j++,i++){pa->elem[i]=pb->elem[j];pa->length++;}}for(i=0;i<pa->length/2;i++){t=pa->elem[i];pa->elem[i]=pa->elem[pa->length-i-1];pa->elem[pa->length-i-1]=t;}}(2)源程序(实验要求2和4)#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct LNode{int data;struct LNode *next;}LNode, *LinkList;void menu();LinkList InitList();void ShowList(LinkList L);void ListDelete(LinkList L,int i,int &e);void ListEmpty(LinkList L);void GetList(LinkList L,int i,int &e);void ListInsert(LinkList L,int i,int e);bool compare(int a,int b);void LocateElem(LinkList L,int e);LinkList MergeList_L(LinkList La,LinkList Lb);int total=0;void main(){LinkList La;LinkList Lb;La=(LinkList)malloc(sizeof(struct LNode));La->next=NULL;Lb=(LinkList)malloc(sizeof(struct LNode));Lb->next=NULL;int n;int m;int x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:La->next=InitList();break;case 2:ListEmpty(La);break;case 3:printf("请输入要插入到第几个节点前:\n");scanf("%d",&m);printf("请输入插入的数据:\n");scanf("%d",&x);ListInsert(La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(La);break;case 8:Lb->next=InitList();break;case 9:La=MergeList_L(La,Lb);printf("归并成功\n");break;}menu();scanf("%d",&n);}}void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断是否为空表\n\n");printf(" 3.插入元素\n\n");printf(" 4.删除元素\n\n");printf(" 5.定位元素\n\n");printf(" 6.取元素\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并两线性表\n\n");printf("********************\n\n");}// 创建链式线性表LLinkList InitList(){int count=0;LinkList pHead=NULL;LinkList pEnd,pNew;pEnd=pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);while(pNew->data){count++;if(count==1){pNew->next=pHead;pEnd=pNew;pHead=pNew;}else{pNew->next=NULL;pEnd->next=pNew;pEnd=pNew;}pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);}free(pNew);total=total+count;return pHead;}// 判断L是否为空表void ListEmpty(LinkList L){if(NULL==L->next)printf("此表为空表!\n");elseprintf("此表不为空表!\n");}// 在链式线性表中第i个元素前插入新元素e void ListInsert(LinkList L,int i,int e){LinkList p;LinkList s;p=L;int j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)printf("不存在您要找的节点!\n");else{s=(LinkList)malloc(sizeof(int));s->data=e;s->next=p->next;p->next=s;printf("插入节点成功!\n");}}// 输出链式线性表void ShowList(LinkList L){LinkList p;p=L->next;if(p==NULL)printf("此表为空表!\n");elsewhile(p){printf("%d ",p->data);p=p->next;}printf("\n");}// 在链式线性表中删除第i个元素,并用e返回其值void ListDelete(LinkList L,int i,int &e){LinkList p;LinkList q;p=L;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)printf("没有找到要删除的位置!");else{q=p->next;p->next=q->next;e=q->data;free(q);}}// 用e返回L中第i个数据元素的值void GetList(LinkList L,int i,int &e){LinkList p;p=L->next;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p)||j>i-1)printf("没有找到要查找的位置!");elsee=p->data;}// 对比a与b相等bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}// 在链式线性表L中查找第1个值与e满足compare()d元素的位序void LocateElem(LinkList L,int e){int i=0;LinkList p;p=L;while(p->next && !compare(p->data,e)){p=p->next;i++;}if(NULL==p->next){if(0==compare(p->data,e))printf("没有该元素!\n");elseprintf("第1个与e相等的元素的位序为%d\n",i);}elseif(compare(p->data,e))printf("没有该元素!\n");}LinkList MergeList_L(LinkList La,LinkList Lb){int i,j,k;LinkList pa_1,pb_1,pa_2,pb_2,pc,pd;pa_1=La->next;pc=pa_2=La;pb_1=pb_2=Lb->next;if(pa_1->data > pb_1->data){pc=pa_2=Lb;pa_1=Lb->next;pb_1=pb_2=La->next;}while(pa_1 && pb_1){if(pa_1->data >= pb_1->data){pa_2->next=pb_1;pb_2=pb_1->next;pb_1->next=pa_1;pb_1=pb_2;pa_2=pa_2->next;}else{pa_1=pa_1->next;pa_2=pa_2->next;}}if(pb_1)pa_2->next=pb_1;pd=(LinkList)malloc(sizeof(struct LNode));pd->next=NULL;pa_2=pd;k=total;for(i=0;i<total;i++){pa_1=pc->next;for(j=1;j<k;j++)pa_1=pa_1->next;pb_1=(LinkList)malloc(sizeof(struct LNode));pa_2->next=pb_1;pa_2=pa_2->next;pa_2->data=pa_1->data;k--;}pa_2->next=NULL;return pd;}2.流程图(实验要求1和3)图1 主函数流程图图2创建线性表La流程图图3判断La是否为空表流程图图4 插入元素(La)流程图图5删除元素(La)流程图图6定位元素(La)流程图图7取元素(La)流程图图8输出线性表流程图图9输出线性表流程图流程图(实验要求2和4)图10主函数流程图图11创建线性表La流程图图12判断是否为空表流程图图13插入元素流程图图14删除元素流程图图15定位元素流程图图图16取元素流程图图17创建Lb流程图图18归并两表流程图六、运行结果1. (实验要求1和3)点击运行,首先出现的是菜单界面,选择菜单选项进行操作,如图所示。
数据结构课程教学大纲

《数据结构》教学大纲课程编号:课程名称:数据结构适用专业:软件工程学时/学分:64/4先修课程:C语言程序设计后续课程:算法分析与设计,操作系统一、课程说明《数据结构》是软件工程专业的专业基础课,也是计算机类专业的必修核心课程。
通过本课程的学习,学生能够理解数据结构的基本概念、理论,掌握常用数据结构及其操作,能够通过分析研究数据对象的特征,在软件开发过程中选择适当的逻辑结构、存储结构及相应算法,并分析算法的时间与空间复杂度,提高解决复杂工程问题的能力。
二、课程目标1.本课程可以使学生具备以下能力:(1)理解数据结构与算法的基本概念,掌握常用基本数据结构的逻辑结构、存储结构及其操作的实现,能进行算法的时间、空间复杂性分析;(2)掌握常用查找和排序算法,并能够理解不同算法的适用场景;(3)能够针对问题进行数据对象的抽象、分析、建模,并选择、构建合适的数据结构;(4)能够在软件开发过程中,针对特定需求综合应用数据结构、算法复杂性分析等知识设计算法。
2.课程目标与毕业要求关系三、教学内容与要求1.理论部分2.实验部分四、课程目标考核评价方式及标准1.成绩评定方法及课程目标达成考核评价方式(1)成绩评定方法成绩评定依据期末考试成绩、平时成绩(实验、作业、测试、课堂互动、自主学习等)进行核定。
期末考试成绩占总评成绩的60%,平时成绩占总评成绩的40%。
(2)课程目标达成考核评价方式2.课程目标与考核内容3.考核标准(1)课程考试考核与评价标准(2)实验考核标准(3)作业考核标准五、参考书目[1]李春葆. 数据结构C语言版(第2版)[M]. 北京: 清华大学出版社. 2017.[2]严蔚敏, 吴伟民. 数据结构C语言版[M]. 北京: 清华大学出版社. 2012.[3]Weiss M.Allen. 数据结构与算法分析:C语言描述(原书第2版). 北京: 机械工业出版社. 2017.[4]陈越. 数据结构(第2版)[M]. 北京: 高等教育出版社. 2016.[5](美)Bruno R.Preiss著; 胡广斌等译. 数据结构与算法: 面向对象的C++设计模式[M].北京: 电子工业出版社. 2003.[6](美)Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, et al.著; 王刚, 邹恒明, 殷建平等译. 算法导论(原书第3版)[M]. 北京: 机械工业出版社. 2013.[7]殷人昆. 数据结构: 用面向对象方法与C++语言描述(第2版)[M]. 北京: 清华大学出版社. 2016.课程负责人:专业负责人:教学院长:。
C语言实现顺序表的基本操作(从键盘输入生成线性表,读txt文件生成线性表和数组生成线性表-。。。

C语⾔实现顺序表的基本操作(从键盘输⼊⽣成线性表,读txt⽂件⽣成线性表和数组⽣成线性表-。
经过三天的时间终于把顺序表的操作实现搞定了。
(主要是在测试部分停留了太长时间)1. 线性表顺序存储的概念:指的是在内存中⽤⼀段地址连续的存储单元依次存储线性表中的元素。
2. 采⽤的实现⽅式:⼀段地址连续的存储单元可以⽤固定数组或者动态存储结构来实现,这⾥采⽤动态分配存储结构。
3. 顺序表结构体⽰意图三种写法完整代码:第⼀种写法. 从键盘输⼊⽣成线性表--完整代码如下,取值操作实际上就是删除操作的部分实现,这⾥就不写了#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define LIST_INIT_SIZE 100#define LISTINCREMENT 10#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define TRUE 1#define FALSE 0typedef int Status;typedef int ElemType;typedef struct SqList{ElemType *elem;int length;int listsize;}SqList;Status InitList(SqList &L){L.elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));if (!L.elem){printf("ERROR\n");return ERROR;}L.length = 0;L.listsize = LIST_INIT_SIZE;return OK;}Status ListEmpty(SqList L) //判空{if (L.length = 0) return TRUE;else return FALSE;}Status ListInsert(SqList &L, int i, ElemType e) //插⼊{ElemType *p, *q;ElemType *newbase;int j;if (i < 1 || i > L.length + 1) return ERROR;if (L.length >= L.listsize){newbase = (ElemType *)realloc(L.elem, (L.listsize + LISTINCREMENT) * sizeof(ElemType));if (newbase == NULL){printf("realloc failed!\n");return ERROR;//exit(-1);}L.elem = newbase;L.listsize += LISTINCREMENT;}p = L.elem+i-1;for( q = L.elem + L.length - 1; q>= p; --q ){*(q+1) = *q;}*p = e;++L.length;return OK;}Status CrtList(SqList &L) // 从键盘输⼊数据⽣成线性表{printf("输⼊整数,以0结束:\n");ElemType e;int i = 1;scanf("%d", &e);while (e != 0){if (!ListInsert(L, i, e)) return ERROR;i++;scanf("%d", &e);}return OK;}Status CrtList2(SqList &L, ElemType d[], int n) // 从数组⽣成线性表{int i;for (i = 0; i < n; ++i){if (!ListInsert(L, i + 1, d[i])) return ERROR;}return OK;}Status ListDelet(SqList &L, int i, ElemType &e) //删除{if ((i<1) || (i>L.length)) return ERROR;ElemType *p, *q;p = &(L.elem[i - 1]);e = *p;q = L.elem + L.length - 1;for (++p; p <= q; ++p) *(p - 1) = *(p);--L.length;return OK;}Status GetElem(SqList &L, int i, ElemType &e) //取值{if ((i <= 0) || (i>L.length)) return ERROR;else{e = L.elem[i - 1];return OK;}}Status compare(ElemType a, ElemType b) //⽐较{if (a == b) return TRUE;else return FALSE;}int LocateElem(SqList L, ElemType e) //定位{Status compare(ElemType a, ElemType b);int i;for (i = 0; i<L.length; i++){if (compare(L.elem[i], e))return ++i;}if (i == L.length) return0;}Status PriorElem(SqList L, ElemType cur_e, ElemType &pre_e) //求直接前驱{int LocateElem(SqList L, ElemType e);int i = LocateElem(L, cur_e);if ((i == 0) || (i == 1)) return ERROR;pre_e = L.elem[i - 2];return OK;}int ListLength(SqList L) //求长度{int length = L.length;return length;}void MergeList(SqList La, SqList Lb, SqList &Lc) //归并{Lc.length = La.length + Lb.length;Lc.listsize = Lc.length;Lc.elem = (ElemType*)malloc(Lc.length*sizeof(ElemType));if (Lc.elem == NULL) exit(OVERFLOW);int i, j, k;for (i = 0, j = 0, k = 0; (i<La.length) && (j<Lb.length); k++){if (La.elem[i]<Lb.elem[j]){Lc.elem[k] = La.elem[i];i++;}else{Lc.elem[k] = La.elem[j];j++;}}while (i<La.length){Lc.elem[k] = La.elem[i];i++;k++;}while (j<Lb.length){Lc.elem[k] = Lb.elem[j];j++;k++;}}void vist(ElemType e){printf("%d ", e);}Status ListTraverse(SqList L) //遍历{int i;if (L.length == 0) printf("⽆元素");for (i = 0; i<L.length; i++){vist(L.elem[i]);}if (i == L.length){printf("\n");return OK;}else return ERROR;}Status ListClear(SqList L) //清空{if (L.elem == NULL) return ERROR;int i;for (i = 0; i<L.length; i++) L.elem[i] = 0;L.length = 0;return OK;}Status DestroyList(SqList &L) //销毁{if (L.elem == NULL) return ERROR;free(L.elem);L.length = 0;L.listsize = 0;return OK;}void PrnList(SqList L) //打印{int i;for (i = 0; i < L.length; ++i){printf("%5d", L.elem[i]);}printf("\n");}int main(){int j, l;ElemType e, e1;SqList La;if (InitList(La)) printf("OK\n");else exit(INFEASIBLE);CrtList(La);PrnList(La);int k;printf("1:判空\n2:插⼊\n3:删除\n4:定位\n5:求长度\n6:直接前驱\n");printf("7:归并\n8:遍历\n9:清空\n10:销毁\n\n0:退出\n");scanf("%d", &k);while (k != 0){switch (k){case1:if (ListEmpty(La)) printf("empty\n");else printf("non-empty\n");break;case2:printf("在第⼏个位置插⼊何数:");scanf("%d%d", &j, &e);if (ListInsert(La, j, e)) printf("OK\n");else printf("ERROR\n");break;case3:printf("删除第⼏个数:");scanf("%d", &j);if (ListDelet(La, j, e))PrnList(La);printf("删除数为:%d\n", e);break;case4:printf("定位数字:");scanf("%d", &e);if (LocateElem(La, e) != 0) printf("OK,位序为:%d\n", LocateElem(La, e));else printf("ERROR\n");break;case5:l = ListLength(La);printf("ListLength=%d\n", l);break;case6:printf("寻找何数直接前驱:");scanf("%d", &e);if (PriorElem(La, e, e1)) printf("前驱为:%d\n", e1);else printf("ERROR\n");break;case7:SqList Lb, Lc;if (InitList(Lb)) printf("OK\n");else printf("ERROR\n");CrtList(Lb);MergeList(La, Lb, Lc);printf("有序归并后:\n");PrnList(Lc);break;case8:if (ListTraverse(La)) printf("遍历成功\n");else printf("遍历失败\n");break;case9:if (ListClear(La)) printf("清空成功\n");else printf("清空失败\n");break;case10:if (DestroyList(La)) printf("销毁完成\n");else printf("销毁失败\n");return0;default:printf("ERROR\n");}scanf("%d", &k);}return0;}View Code第⼆种写法. 从txt⽂件读⼊⽣成线性表--完整代码如下:#include<stdio.h>#include<stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -1#define TRUE 1#define FALSE 0#define INIT_LIST_SIZE 100#define LISTINCREMENT 10typedef int Status;typedef int ElemType;typedef struct{ElemType *elem;int length;int listsize;}SqList;Status InitList(SqList *L){L->elem = (ElemType*)malloc(INIT_LIST_SIZE*sizeof(ElemType));if (!L->elem) exit(OVERFLOW);L->length = 0;L->listsize = INIT_LIST_SIZE;return OK;}Status ListEmpty(SqList L) //判空{if (L.length = 0) return TRUE;else return FALSE;}Status ListInsert(SqList *L, int i, ElemType e) //插⼊{ElemType *newbase, *q, *p;if (i<1 || i>L->length + 1) return ERROR;if (L->length>L->listsize){newbase = (ElemType*)realloc(L->elem, (L->listsize + LISTINCREMENT)*sizeof(ElemType));if (!newbase) exit(OVERFLOW);L->elem = newbase;L->listsize += LISTINCREMENT;}q = L->elem + i - 1; //q为插⼊位置for (p = L->elem + L->length - 1; p >= q; p--){*(p + 1) = *p;}*q = e;++L->length;return OK;}Status ListDelete(SqList *L, int i, ElemType * e) //删除{ElemType * p, *q;if (i<1 || i>L->length) return ERROR;p = L->elem + i - 1; //p为被删除元素位置*e = *p; //被删除元素的值赋值给eq = L->elem + L->length - 1; //表尾元素位置for (++p; p <= q; ++p){*(p - 1) = *p;}L->length--;return OK;}Status GetElem(SqList *L, int i, ElemType * e) //取值{if (i<1 || i>L->length) return ERROR;*e = *(L->elem + i - 1); //获取第i个元素的地址return OK;}int LocateElem(SqList L, ElemType e) //定位{int i;for (i = 0; i<L.length; i++){if (L.elem[i]==e)return ++i;}if (i == L.length) return0;}Status PriorElem(SqList L, ElemType e, ElemType &pre_e) //求直接前驱{int LocateElem(SqList L, ElemType e);int i = LocateElem(L, e);if ((i == 0) || (i == 1)) return ERROR;pre_e = L.elem[i - 2];return OK;}Status GetLength(SqList *L) //求长度{return L->length;}void PrnList(SqList *L) //遍历{int i;for (i = 0; i<(*L).length; i++){if (i == 0)printf("(");printf(" %d ", L->elem[i]);if (i == (*L).length - 1)printf(")\n");}}Status ClearList(SqList *L) //清空{L->length = 0;return OK;}Status Destroy(SqList *L) //销毁{free(L->elem);L->elem = NULL;L->length = 0;L->listsize = 0;return OK;}int main(){int n = 0, rc;int a, i;int e, e1;SqList L;if (InitList(&L)) printf("OK\n");FILE *fp = fopen("D:/1.txt", "r");if (fp == NULL){printf("打开⽂件失败");}printf("从1.txt⽂件读⼊⼏个数:");scanf("%d", &n);for (i = 0; i< n; i++){fscanf(fp, "%d", &a);ListInsert(&L, i+1, a);}fclose(fp);PrnList(&L);char k;printf("\n1.插⼊\n2.删除\n3.取值\n4.定位\n5.直接前驱\n6.求长度\n7.遍历\n8.清空\n9.销毁\n"); while (1){k = getchar();switch (k){case'1':printf("在第⼏个位置插⼊何数:");scanf("%d%d", &i, &e);if (ListInsert(&L, i, e))printf("i=%d,e=%d 已经插⼊\n", i, e);else printf("插⼊失败\n");break;case'2':printf("删除第⼏个数:\n");scanf("%d", &i);if (ListDelete(&L, i, &e))printf("i=%d,e=%d 已经删除\n", i, e);else printf("删除失败\n");break;case'3':printf("取第⼏个数:\n");scanf("%d", &i);if (GetElem(&L, i, &e))printf("第i=%d号,e=%d 被取出!\n", i, e);else printf("取值失败\n");break;case'4':printf("定位数字:");scanf("%d", &e);if (LocateElem(L, e) != 0) printf("OK,位序为:%d\n", LocateElem(L, e));else printf("ERROR\n");break;case'5':printf("寻找何数直接前驱:");scanf("%d", &e);if (PriorElem(L, e, e1)) printf("前驱为:%d\n", e1);else printf("ERROR\n");break;case'6':printf("表长为%d\n", GetLength(&L));break;case'7':printf("遍历:\n");PrnList(&L);break;case'8':if (ClearList(&L)) printf("清空成功\n");else printf("清空失败\n");break;case'9':printf("销毁\n");Destroy(&L);printf("销毁成功\n");exit(0);return0;}}return0;}View Code第三种写法:读数组⽣成线性表--完整代码如下:#include<stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -1#define TRUE 1#define FALSE 0#define INIT_LIST_SIZE 100#define LISTINCREMENT 10typedef int Status;typedef int ElemType;typedef struct{ElemType *elem;int length;int listsize;}Sqlist;Status InitList(Sqlist *L){L->elem = (ElemType *)malloc(INIT_LIST_SIZE *sizeof(ElemType));if (!L->elem)exit(OVERFLOW);L->length = 0;L->listsize = INIT_LIST_SIZE;return OK;}Status ListEmpty(Sqlist L){if (L.length = 0)return ERROR;else return FALSE;}Status ListInsert(Sqlist *L, int i, ElemType e){ElemType *newbase, *p, *q;if (i<1 || i>L->length + 1)return ERROR;if (L->length > L->listsize){newbase = (ElemType *)realloc(L, (L->listsize + LISTINCREMENT)*sizeof(ElemType));if (!newbase)exit(OVERFLOW);L->elem = newbase;L->listsize += LISTINCREMENT;}p = L->elem + i - 1;for (q = L->elem + L->length - 1; q >= p; q--){*(q + 1) = *q;}*p = e;L->length++;return OK;}Status CreateList(Sqlist *L, ElemType element[], int n) // 从数组⽣成线性表{int i;for (i = 0; i < n; ++i){if (!ListInsert(L, i + 1, element[i])) return ERROR;}return OK;}Status ListDelete(Sqlist *L, int i, ElemType *e){ElemType *p, *q;if (i<1 || i>L->length)return ERROR;p = L->elem + i - 1;q = L->elem + L->length - 1;*e = *p;for (p++; q >= p; p++){*(p - 1) = *p;}L->length--;return OK;}Status GetElem(Sqlist *L, int i, ElemType *e){if (i<1 || i>L->length)return ERROR;return OK;}int LocateElem(Sqlist L, ElemType e){int i;for (i = 0; i < L.length; i++)if (L.elem[i] == e)return i + 1;}Status PriorElem(Sqlist L, ElemType e, ElemType &pr_e){int LocateElem(Sqlist L, ElemType e);int i = LocateElem(L, e);if (i<1 || i>L.length)return ERROR;pr_e = L.elem[i - 2];return OK;}Status GetLength(Sqlist *L){return L->length;}void PrnList(Sqlist *L){int i;for (i = 0; i < L->length; i++)printf("%d ", L->elem[i]);printf("\n");}Status ClearList(Sqlist *L){L->length = 0;return OK;}Status Destroy(Sqlist *L){free(L->elem);L->elem = NULL;L->length = 0;L->listsize = 0;return OK;}int main(){int i;int a, n = 0;int e, e1;Sqlist L;ElemType element[] = { 15, 3, 59, 27, 8, 11, 32 };if (InitList(&L))printf("OK\n");CreateList(&L, element, 7);PrnList(&L);char k;printf("\n1.插⼊\n2.删除\n3.取值\n4.定位\n5.直接前驱\n6.求长度\n7.遍历\n8.清空\n9.销毁\n"); while (1){k = getchar();switch (k){case'1':printf("在第⼏个位置插⼊何数:");scanf("%d%d", &i, &e);if (ListInsert(&L, i, e))printf("i=%d e=%d已经插⼊\n", i, e);break;case'2':printf("删除第⼏个数:");scanf("%d", &i);if (ListDelete(&L, i, &e))printf("i=%d e=%d已经删除\n", i, e);break;case'3':printf("取第⼏个数:");scanf("%d", &i);if (GetElem(&L, i, &e))printf("第i=%d e=%d已经取出\n", i, e);break;case'4':printf("定位何数:");scanf("%d", &e);if (LocateElem(L, e))printf("位序为:%d\n", LocateElem(L, e));break;case'5':printf("寻找何数的直接前驱:");scanf("%d", &e);if (PriorElem(L, e, e1))printf("前驱为:%d\n", e1);break;case'6':printf("表长为:%d\n", GetLength(&L));break;case'7':printf("遍历:\n");PrnList(&L);break;case'8':if (ClearList(&L))printf("清空成功!\n");break;case'9':if (Destroy(&L))printf("销毁成功!\n");exit(0);return0;}}return0;}View Code看懂了左⼿给你个栗⼦,给我关注点赞;看不懂右⼿给你个锤⼦,砸开脑壳看看有没有带脑⼦。
考研数据结构代码

考研数据结构代码考研数据结构代码一、简介1·1 数据结构概述1·2 考研数据结构重要性1·3 考研数据结构的基本知识点二、线性表2·1 定义与特点2·2 顺序表2·2·1 顺序表的基本操作2·2·2 顺序表的存储结构2·3 链表2·3·1 单链表2·3·2 双链表2·3·3 循环链表三、栈与队列3·1 栈的定义与基本操作3·2 栈的应用举例3·3 队列的定义与基本操作 3·4 队列的应用举例四、树与二叉树4·1 树的基本概念4·2 树的存储结构4·2·1 双亲表示法4·2·2 孩子表示法4·2·3 孩子兄弟表示法 4·3 二叉树的定义与基本性质 4·4 二叉树的遍历4·4·1 先序遍历4·4·2 中序遍历4·4·3 后序遍历4·5 线索二叉树五、图5·1 图的基本概念5·2 图的存储结构5·2·1 邻接矩阵5·2·2 邻接表5·3 图的遍历算法5·3·1 深度优先搜索 5·3·2 广度优先搜索 5·4 最小树5·4·1 Prim算法5·4·2 Kruskal算法 5·5 最短路径5·5·1 Dijkstra算法 5·5·2 Floyd算法六、排序6·1 内部排序与外部排序 6·2 插入排序6·2·1 直接插入排序6·2·2 希尔排序6·3 交换排序6·3·1 冒泡排序6·3·2 快速排序6·4 选择排序6·4·1 简单选择排序 6·4·2 堆排序6·5 归并排序6·6 基数排序七、查找7·1 顺序查找7·2 折半查找7·3 哈希表查找八、附件8·1 相关代码实例8·2 数据结构参考书籍九、法律名词及注释9·1 著作权法:保护文学、艺术作品的权益。
顺序表c语言代码

顺序表c语言代码顺序表是一种常见的数据结构,在C语言中可以使用数组来实现。
下面是一个简单的顺序表C语言代码示例:```c#include <stdio.h>#define MAXSIZE 100 // 定义最大容量typedef struct {int data[MAXSIZE]; // 数据存储数组int length; // 当前长度} SqList; // 顺序表类型定义// 初始化顺序表void InitList(SqList *L) {L->length = 0;}// 判断是否为空int ListEmpty(SqList L) {return L.length == 0;}// 获取元素int GetElem(SqList L, int i, int *e) {if (i < 1 || i > L.length) {return 0;}*e = L.data[i - 1];return 1;}// 插入元素int ListInsert(SqList *L, int i, int e) {if (L->length == MAXSIZE) { // 判断是否已满return 0;}if (i < 1 || i > L->length + 1) { // 判断插入位置是否合法return 0;}for (int j = L->length; j >= i; j--) { // 后移元素L->data[j] = L->data[j - 1];}L->data[i - 1] = e; // 插入新元素L->length++; // 长度加1return 1;}// 删除元素int ListDelete(SqList *L, int i, int *e) {if (i < 1 || i > L->length) { // 判断删除位置是否合法 return 0;}*e = L->data[i - 1]; // 取出需要删除的元素for (int j = i; j < L->length; j++) { // 前移元素L->data[j - 1] = L->data[j];}L->length--; // 长度减1return 1;}// 打印顺序表void PrintList(SqList L) {for (int i = 0; i < L.length; i++) {printf('%d ', L.data[i]);}printf('');}int main() {SqList L;InitList(&L);ListInsert(&L, 1, 1);ListInsert(&L, 2, 2);ListInsert(&L, 3, 3);ListInsert(&L, 4, 4);PrintList(L);int e;ListDelete(&L, 2, &e);printf('Delete element: %d', e);PrintList(L);return 0;}```在这个例子中,我们使用了结构体来定义了一个顺序表类型,其中包括数据存储数组和当前长度。
数据结构c语言版课后习题答案

数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。
C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。
对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。
数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。
它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。
答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。
- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。
- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。
- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。
2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。
二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。
答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。
3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它提供了快速的数据访问能力,但需要处理哈希冲突。
答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。
- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。
- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。
- 删除操作:找到键对应的哈希桶,删除相应的键值对。
4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。
数据结构实验报告(C语言)顺序表__排序

int i,j,n,x,change; n=L->length; change=1; for(i=1;i<=n-1 && change;++i){
change=0; for(j=1;j<=n-i-1;++j)
if(L->r[j] > L->r[j+1]){ x=L->r[j]; L->r[j]=L->r[j+1]; L->r[j+1]=x; change=1;
void QuickSort(SqeList *L,int low,int high){ int mid; if(low<high){ mid=Partition(L,low,high); QuickSort(L,low,mid-1); QuickSort(L,mid+1,high); }
}
//直接选择排序
printf("\n7-直接选择排序结果为:\n"); SelectSort(&l); PrintList(&l); printf("\n"); printf("\n8-二路归并结果为:\n"); MergeSort(&l);
PrintList(&l); printf("\n"); } else printf("请输入大于 0 的值: "); return 0; }
} else{
MR->r[k]=R->r[j]; ++j; } ++k; } while(i<=mid) MR->r[k++]=R->r[i++]; while(j<=high) MR->r[k++]=R->r[j++]; }
C语言链表的排序

C语言链表的排序/某==========================功能:选择排序(由小到大)返回:指向链表表头的指针==========================某//某选择排序的基本思想就是反复从还未排好序的那些节点中,选出键值(就是用它排序的字段,我们取学号num为键值)最小的节点,依次重新组合成一个链表。
head存储的是第一个节点的地址,head->ne某t存储的是第二个节点的地址;任意一个节点p的地址,只能通过它前一个节点的ne某t来求得。
单向链表的选择排序图示:---->[1]---->[3]---->[2]...---->[n]---->[NULL](原链表)head1->ne某t3->ne某t2->ne某tn->ne某t---->[NULL](空链表)firttail---->[1]---->[2]---->[3]...---->[n]---->[NULL](排序后链表)firt1->ne某t2->ne某t3->ne某ttail->ne某t图10:有N个节点的链表选择排序1、先在原链表中找最小的,找到一个后就把它放到另一个空的链表中;2、空链表中安放第一个进来的节点,产生一个有序链表,并且让它在原链表中分离出来(此时要注意原链表中出来的是第一个节点还是中间其它节点);3、继续在原链表中找下一个最小的,找到后把它放入有序链表的尾指针的ne某t,然后它变成其尾指针;某/tructtudent某SelectSort(tructtudent某head){tructtudent某firt;/某排列后有序链的表头指针某/tructtudent 某tail;/某排列后有序链的表尾指针某/tructtudent某p_min;/某保留键值更小的节点的前驱节点的指针某/tructtudent某min;/某存储最小节点某/tructtudent某p;/某当前比较的节点某/firt=NULL;while(head!=NULL)/某在链表中找键值最小的节点。
数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。
(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。
(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。
l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。
c语言单链表程序代码

c语言单链表程序代码单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
单链表的优点在于插入和删除操作的效率高,但是访问任意节点的效率较低。
下面是一个简单的单链表程序代码:```c#include <stdio.h>#include <stdlib.h>struct Node {int data;struct Node* next;};void insert(struct Node** head, int data) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = *head;*head = newNode;}void printList(struct Node* head) {while (head != NULL) {printf("%d ", head->data);head = head->next;}printf("\n");}int main() {struct Node* head = NULL;insert(&head, 1);insert(&head, 2);insert(&head, 3);printList(head);return 0;}```这个程序定义了一个结构体`Node`,包含一个整型数据`data`和一个指向下一个节点的指针`next`。
`insert`函数用于在链表头部插入一个新节点,`printList`函数用于打印整个链表。
在`main`函数中,我们创建了一个空链表`head`,然后插入了三个节点,最后打印整个链表。
这个程序虽然简单,但是涉及到了单链表的基本操作。
数据结构知识点分级

数据结构知识点分级1. 数据结构基本概念。
- 数据、数据元素、数据项的定义。
- 数据结构的定义,包括逻辑结构(线性结构如线性表、非线性结构如树和图)和存储结构(顺序存储、链式存储等)。
- 数据类型(基本数据类型和抽象数据类型)的概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)以及算法复杂度(时间复杂度和空间复杂度的基本分析方法,如大O表示法)。
2. 线性表。
- 线性表的定义、逻辑结构特点(线性关系,元素之间一对一的关系)。
- 顺序表。
- 顺序表的存储结构(用数组实现)。
- 顺序表的基本操作实现,如初始化、插入、删除、查找等操作的代码实现(以C语言为例)及时间复杂度分析。
- 链表。
- 单链表的定义、节点结构(数据域和指针域)。
- 单链表的基本操作(创建、插入、删除、查找)的代码实现和时间复杂度分析。
- 循环链表和双向链表的概念及基本操作特点与单链表的区别。
3. 栈和队列。
- 栈。
- 栈的定义(后进先出,LIFO)。
- 顺序栈和链栈的存储结构及基本操作实现(入栈、出栈、判断栈空、栈满等操作)。
- 栈的应用,如表达式求值(中缀表达式转后缀表达式并求值)。
- 队列。
- 队列的定义(先进先出,FIFO)。
- 顺序队列(循环队列的概念来解决顺序队列的假溢出问题)和链队列的存储结构及基本操作实现(入队、出队、判断队空、队满等操作)。
- 队列的应用,如操作系统中的进程调度等。
二、进阶级知识点。
1. 树结构。
- 树的基本概念。
- 树的定义(节点、边、根节点、子树等概念)。
- 树的度、层次、深度等概念。
- 二叉树的定义(每个节点最多有两个子树的有序树)、性质(如二叉树的第i 层最多有2^(i - 1)个节点等性质)。
- 二叉树的存储结构。
- 顺序存储结构(完全二叉树的顺序存储特点及实现)。
- 链式存储结构(二叉链表、三叉链表的结构及节点定义)。
- 二叉树的遍历。
- 前序遍历、中序遍历、后序遍历的递归和非递归算法实现及时间复杂度分析。
数据结构c++顺序表、单链表的基本操作,查找、排序代码

实验1:顺序表的基本操作实验2:单链表的基本操作实验3:查找实验4:排序实验1代码及结果:#include <iostream>using namespace std;template <class T>class sq_LList{private:int mm;int nn;T *v;public:sq_LList(){mm=0;nn=0;return;}sq_LList(int);void prt_sq_LList();int flag_sq_LList();void ins_sq_LList(int,T);void del_sq_LList(int);};//建立空顺序表template <class T>sq_LList<T>::sq_LList(int m){mm=m;v=new T[mm];nn=0;return;}//顺序输出顺序表中的元素与顺序表长度template <class T>void sq_LList<T>::prt_sq_LList(){int i;cout<<"nn="<<nn<<endl;for(i=0;i<nn;i++)cout<<v[i]<<endl; return;}//检测顺序表的状态template <class T>int sq_LList<T>::flag_sq_LList(){if(nn=mn)return(-1);if(nn=0)return(0);return (1);}//在表的指定元素前插入新元素template<class T>void sq_LList<T>::ins_sq_LList(int i,T b){int k;if(nn==mm){cout<<"overflow"<<endl;return;}if(i>nn)i=nn+1;if(i<1)i=1;for(k=nn;k>=i;k--)v[k]=v[k-1];v[i-1]=b;nn=nn+1;return ;}//在顺序表中删除指定元素template<class T>void sq_LList<T>::del_sq_LList(int i){int k;if(nn==0){cout<<"underflow!"<<endl;return;}for(k=i;k<nn;k++)v[k-1]=v[k];nn=nn-1;return ;}int main(){sq_LList<double>s1(100);cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();s1.ins_sq_LList(0,1.5);s1.ins_sq_LList(1,2.5);s1.ins_sq_LList(4,3.5);cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();s1.del_sq_LList(0);s1.del_sq_LList(2);cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();return 0;}运行及结果:实验2代码#include<iostream>#include<iomanip>using namespace std;struct node{float data;node *next;};node *create(){ //建立单链表node *head,*p,*s;head=new node;p=head;p->data=0;p->next=0; //表头创建完成float newnum=0;cin>>newnum;if(newnum<0){cout<<"未输入数据...\n";//输入负数则结束system("pause");}while(newnum>=0 ){ //??如何用字符型作为结束标志s=new node; //创建表中数据s->data=newnum;p->next=s;p=s;cin>>newnum;}p->next=NULL; //最后元素指针return(head); //返回空表头}//插入一个结点x,将成为第i个节点void insertnode(node *head,int i,float x){node *s,*p;int j;s=new node;s->data=x;p=head;j=1; //查找第i个结点,由p指向while(p!=NULL && j<i){j++;p=p->next;}s->next=p->next;p->next=s;}//删除结点xvoid deletenode(node *head,float x){node *p,*s;if(head->next==NULL)cout<<"这是空链表,不能执行删除操作\n"; else{s=head;p=head->next;while(p!=NULL && p->data!=x)if(p->data!=x){s=p;p=p->next;}if(p!=NULL){s->next=p->next;delete(p);}else cout<<"未找到!\n";}}//存取链表某节点Kvoid read(node*head,int k){while(head->next!=0&&k>0){head=head->next;k--;}cout<<"该处数据为"<<head->data<<".\n\n"; }int main( ) {node *linktable=0;int choice=1;cout<<"1.创建链表\n";cout<<"2.显示信息\n";cout<<"3.删除信息\n";cout<<"4.查找信息\n";cout<<"5.插入信息\n";cout<<"6.读取信息\n";cout<<"0.退出程序\n";cout<<"请输入您的选择:";cin>>choice;while(1){switch (choice){case 0: exit(0);case 1:{cout<<"输入正数数据,并以负数作为结束标记\n";linktable=create();break;}case 2:{cout<<"链表长度为"<<length(linktable)<<",详细信息:\n";printlist(linktable);break;}case 3:{cout<<"要删除的数据为?\n";float del;cin>>del;deletenode(linktable,del);break;}case 4:{if(linktable->next==0)cout<<"链表为空,不能查找\n";else{cout<<"要查找数据为?";float search;cin>>search;find(linktable,search);} break;}case 5:{cout<<"存储数据为?";int des;float it;cin>>it;cout<<"想让该数据存储为第几个节点?";cin>>des;if((des>(length(linktable)+1)||des<1))cout<<"输入错误\n";elseinsertnode(linktable,des,it);break;}case 6:{cout<<"想读取第几个节点?";int c;cin>>c;if(c<1||c>length(linktable))cout<<"位置不合法\n";elseread(linktable,c);break;}default :cout<<"输入错误!\n";}system("pause");system("cls");cout<<"当前信息:\n";printlist(linktable);cout<<"\n1.创建链表\n";cout<<"2.显示信息\n";cout<<"3.删除信息\n";cout<<"4.查找信息\n";cout<<"5.插入信息\n";cout<<"6.读取信息\n";cout<<"0.退出程序\n";cout<<"继续选择:\n";cin>>choice;}return 0;}实验三查找实验名称:实验3 查找实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序树和哈希表的构造和查找方法。
单链表的基本操作代码

单链表的基本操作代码单链表是一种常用的数据结构,它具有优秀的插入和删除性能,在数据存储和处理方面具有广泛的应用。
单链表的基本操作包含创建链表、插入节点、删除节点、查找节点等,下面是单链表的基本操作代码:1. 定义单链表结构体:typedef struct ListNode {int val;struct ListNode *next;} ListNode;2. 创建单链表:ListNode *createList(int arr[], int n) {ListNode *head = NULL, *tail = NULL, *p = NULL;for(int i = 0; i < n; i++) {p = (ListNode *)malloc(sizeof(ListNode));p->val = arr[i];p->next = NULL;if(head == NULL) {head = tail = p;} else {tail->next = p;tail = p;}}return head;}3. 插入节点:void insertNode(ListNode **head, int val, int pos) {ListNode *p = (ListNode *)malloc(sizeof(ListNode)); p->val = val;p->next = NULL;if(*head == NULL) {if(pos != 0) {printf("Invalid position\n");return;} else {*head = p;return;}}if(pos == 0) {p->next = *head;*head = p;} else {int i = 0;ListNode *q = *head;while(q != NULL && i < pos - 1) {q = q->next;i++;}if(q == NULL || i != pos - 1) {printf("Invalid position\n");return;}p->next = q->next;q->next = p;}}4. 删除节点:void deleteNode(ListNode **head, int pos) {if(*head == NULL) {printf("List is empty\n");return;}if(pos == 0) {ListNode *p = *head;*head = (*head)->next;free(p);} else {int i = 0;ListNode *p = *head, *q = NULL; while(p != NULL && i < pos) { q = p;p = p->next;i++;}if(p == NULL || i != pos) {printf("Invalid position\n");return;}q->next = p->next;free(p);}}5. 查找节点:ListNode *findNode(ListNode *head, int val) {ListNode *p = head;while(p != NULL) {if(p->val == val) {return p;}p = p->next;}return NULL;}单链表的基本操作是数据结构中最基础的部分,掌握好这些代码对于往后的学习和应用都会有很大的帮助。
顺序表的查找完整实现代码

i--;
return i;
}
struct node{
int key;
struct nodct node *ST,int key)
{
struct node *m = ST;
while(m->next!=NULL&&m->key!=key)
else
high = mid-1;
}
return 0;
}
void getData(STable *t)
{
char *fp = ".\\stu.dat";
int i=1;
fstream ff(fp,ios::in|ios::trunc);
ff.read((char *)&(t->length),4);
#define LE(a,b) ((a) <= (b))
typedef int keyType;
typedef struct {
int key;
float info;
}sTable;
int seq_search(sTable ST[],int n,int key)
{
ST[0].key = key;
int i = n;
i++;
}
fa.close();
int j,k;
ST.elem = stu;
getData(&ST);
cout<<"class people is "<<ST.length<<endl;
cout<<"cin the k"<<endl;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1:顺序表的基本操作实验2:单链表的基本操作实验3:查找实验4:排序实验1代码及结果:#include <iostream>using namespace std;template <class T>class sq_LList{private:int mm;int nn;T *v;public:sq_LList(){mm=0;nn=0;return;}sq_LList(int);void prt_sq_LList();int flag_sq_LList();void ins_sq_LList(int,T);void del_sq_LList(int);};//建立空顺序表template <class T>sq_LList<T>::sq_LList(int m){mm=m;v=new T[mm];nn=0;return;}//顺序输出顺序表中的元素与顺序表长度template <class T>void sq_LList<T>::prt_sq_LList(){int i;cout<<"nn="<<nn<<endl;for(i=0;i<nn;i++)cout<<v[i]<<endl; return;}//检测顺序表的状态template <class T>int sq_LList<T>::flag_sq_LList(){if(nn=mn)return(-1);if(nn=0)return(0);return (1);}//在表的指定元素前插入新元素template<class T>void sq_LList<T>::ins_sq_LList(int i,T b){int k;if(nn==mm){cout<<"overflow"<<endl;return;}if(i>nn)i=nn+1;if(i<1)i=1;for(k=nn;k>=i;k--)v[k]=v[k-1];v[i-1]=b;nn=nn+1;return ;}//在顺序表中删除指定元素template<class T>void sq_LList<T>::del_sq_LList(int i) {int k;if(nn==0){cout<<"underflow!"<<endl;return;}for(k=i;k<nn;k++)v[k-1]=v[k];nn=nn-1;return ;}int main(){sq_LList<double>s1(100);cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();s1.ins_sq_LList(0,1.5);s1.ins_sq_LList(1,2.5);s1.ins_sq_LList(4,3.5);cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();s1.del_sq_LList(0);s1.del_sq_LList(2);cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList();return 0;}运行及结果:实验2代码#include<iostream> #include<iomanip>using namespace std;struct node{float data;node *next;};node *create(){ //建立单链表node *head,*p,*s;head=new node;p=head;p->data=0;p->next=0; //表头创建完成float newnum=0;cin>>newnum;if(newnum<0){cout<<"未输入数据...\n";//输入负数则结束system("pause");}while(newnum>=0 ){ //??如何用字符型作为结束标志 s=new node; //创建表中数据s->data=newnum;p->next=s;p=s;cin>>newnum;}p->next=NULL; //最后元素指针return(head); //返回空表头}//插入一个结点x,将成为第i个节点void insertnode(node *head,int i,float x){node *s,*p;int j;s=new node;s->data=x;p=head;j=1; //查找第i个结点,由p指向while(p!=NULL && j<i){j++;p=p->next;}s->next=p->next;p->next=s;}//删除结点xvoid deletenode(node *head,float x){node *p,*s;if(head->next==NULL)cout<<"这是空链表,不能执行删除操作\n"; else{s=head;p=head->next;while(p!=NULL && p->data!=x)if(p->data!=x){s=p;p=p->next;}if(p!=NULL){s->next=p->next;delete(p);}else cout<<"未找到!\n";}}//存取链表某节点Kvoid read(node*head,int k){while(head->next!=0&&k>0){head=head->next;k--;}cout<<"该处数据为"<<head->data<<".\n\n"; }int main( ) {node *linktable=0;int choice=1;cout<<"1.创建链表\n";cout<<"2.显示信息\n";cout<<"3.删除信息\n";cout<<"4.查找信息\n";cout<<"5.插入信息\n";cout<<"6.读取信息\n";cout<<"0.退出程序\n";cout<<"请输入您的选择:";cin>>choice;while(1){switch (choice){case 0: exit(0);case 1:{cout<<"输入正数数据,并以负数作为结束标记\n";linktable=create();break;}case 2:{cout<<"链表长度为"<<length(linktable)<<",详细信息:\n";printlist(linktable);break;}case 3:{cout<<"要删除的数据为?\n";float del;cin>>del;deletenode(linktable,del);break;}case 4:{if(linktable->next==0)cout<<"链表为空,不能查找\n";else{cout<<"要查找数据为?";float search;cin>>search;find(linktable,search);} break;}case 5:{cout<<"存储数据为?";int des;float it;cin>>it;cout<<"想让该数据存储为第几个节点?";cin>>des;if((des>(length(linktable)+1)||des<1))cout<<"输入错误\n";elseinsertnode(linktable,des,it);break;}case 6:{cout<<"想读取第几个节点?";int c;cin>>c;if(c<1||c>length(linktable))cout<<"位置不合法\n";elseread(linktable,c);break;}default :cout<<"输入错误!\n";}system("pause");system("cls");cout<<"当前信息:\n";printlist(linktable);cout<<"\n1.创建链表\n";cout<<"2.显示信息\n";cout<<"3.删除信息\n";cout<<"4.查找信息\n";cout<<"5.插入信息\n";cout<<"6.读取信息\n";cout<<"0.退出程序\n";cout<<"继续选择:\n";cin>>choice;}return 0;}实验三查找实验名称:实验3 查找实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序树和哈希表的构造和查找方法。