(完整版)浙江省2010年到2017年高职考试试题汇编(第六章排列组合二项式),推荐文档

合集下载

浙江省2010年到2017年高职考试试题汇编(三角函数)

浙江省2010年到2017年高职考试试题汇编(三角函数)

zgz 浙江省2010年到2017年高考试题汇编(三角函数)1、(2010-4-3)关于余弦函数x y cos =的图象,下列说法正确的是( ) A 、通过点)0,1( B 、关于x 轴对称 C 、关于原点对称 D 、由正弦函数x y sin =的图象沿x 轴向左平移2π个单位而得到 2、(2010-14-3)若31cos sin =-x x ,则x 2sin =( ) A 、98 B 、98- C 、32 D 、32-3、(2010-15-3)︒︒-︒+︒12tan 18tan 112tan 18tan 的值等于( )A 、33 B 、3 C 、33- D 、3- 4、(2010-16-5)329π-弧度的角是第______象限的角。

5、(2010-20-5)已知角α为第二象限的角,且终边在直线x y -=上,则角α的余弦值为______。

6、(2010-21-5)函数x x y cos sin 3-=的最大值、周期分别是______。

7、(2010-22-6)在△ABC 中,已知2=a ,2=b ,∠︒=30B ,求∠C 。

8、(2011-14-2)已知角α是第二象限角,则由23sin =α可推知αcos =( ) A 、23-B 、21-C 、21D 、239、(2011-16-2)如果角β的终边过点)12,5(-P ,则βββt a n c o s s i n ++的值为( ) A 、1347 B 、65121- C 、1347- D 、65121 10、(2011-20-3)︒-︒15cos 15sin 22的值等于______。

11、(2011-24-3)化简:︒︒+︒︒33sin 78sin 33cos 78cos =______。

12、(2011-27-6)在△ABC 中,若三边之比为3:1:1,求△ABC 最大角的度数。

13、(2011-33-8)已知函数121cos 321sin )(++=x x x f ,求: (1)函数)(x f 的最小正周期; (2)函数)(x f 的值域。

浙江省高等职业技术教育招生考试数学真题

浙江省高等职业技术教育招生考试数学真题

2015年浙江省高等职业技术教育招生考试数学试卷本试题卷共三大题.全卷共4页.满分120分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效.2.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作答,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分.1.已知集合M={}x|x2+x+3=0,则下列结论正确的是( )A.集合M中共有2个元素 B.集合M中共有2个相同元素C.集合M中共有1个元素 D.集合M为空集2.命题甲“a<b”是命题乙“a-b<0”成立的( )A.充分不必要条件 B.必要不充分条件C.充分且必要条件 D.既不充分也不必要条件3.函数f(x)=lg(x-2)x的定义域是( )4.下列函数在定义域上为单调递减的函数是( ) A .f (x )=(32)xB .f (x )=ln xC .f (x )=2-xD .f (x )=sin x5.已知角α=π4,将其终边绕着端点按顺时针方向旋转2周得到角β,则β=( )C .-15π4D .-17π46.已知直线x +y -4=0与圆(x -2)2+(y +4)2=17,则直线与圆的位置关系是( ) A .相切 B .相离 C .相交且不过圆心 D .相交且过圆心7.若β∈(0,π),则方程x 2+y 2sin β=1所表示的曲线是( ) A .圆 B .椭圆 C .双曲线 D .椭圆或圆 8.在下列命题中,真命题的个数是( )①a ∥α,b ⊥α?a ⊥b ②a ∥α,b ∥α?a ∥b ③a ⊥α,b ⊥α?a ∥b ④a ⊥b ,b ?α?a ⊥α A .0个 B .1个 C .2个 D .3个9.若cos(π4-θ)cos(π4+θ)=26,则cos2θ=( )10.在等比数列{}a n 中,若a 1+a 2+…+a n =2n-1,则a 21+a 22+…+a 2n =( )A .(2n-1)2()2n -12C .4n-1 ()4n-111.下列计算结果不.正确的...是( ) A .C 410-C 49=C 39 B .P 1010=P 910 C .0!=1 D .C 58=P 588!12.直线3x +y +2015=0的倾斜角为( )13.二次函数f (x )=ax 2+4x -3的最大值为5,则f (3)=( ) A .2 B .-2 D .-9214.已知sin α=35,且α∈(π2,π),则tan(α+π4)=( )A .-7B .7C .-1715.在△ABC 中,若三角之比A ∶B ∶C =1∶1∶4,则sin A ∶sin B ∶sin C =( ) A .1∶1∶4 B .1∶1∶3 C .1∶1∶2 D .1∶1∶316.已知(x -2)(x +2)+y 2=0,则3xy 的最小值为( ) A .-2 B .2 C .-6 D. -6217.下列各点中与点M (-1,0)关于点H (2,3)中心对称的是( ) A .(0,1) B .(5,6) C .(-1,1) D .(-5,6)18.焦点在x 轴上,焦距为8的双曲线,其离心率e =2.则双曲线的标准方程为( ) -y 212=1 -y 24=1-x 212=1 -x 24=1二、填空题(本大题共8小题,每小题3分,共24分)19.不等式||2x -7>7的解集为________.(用区间表示) 20.若tan α=b a(a ≠0),则a cos2α+b sin2α=________. 21.已知AB →=(0,-7),则||AB →-3BA →=________.22.当且仅当x ∈________时,三个数4,x -1,9成等比数列.23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P =________.24.二项式(3x 2+2x3)12展开式的中间一项为________.25.体对角线为3cm 的正方体,其体积V =________.26.如图所示,在所给的直角坐标系中,半径为2,且与两坐标轴相切的圆的标准方程为________.第26题图三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤27.(本题满分7分)平面内,过点A (-1,n ), B (n ,6)的直线与直线x +2y -1=0垂直,求n 的值.28.(本题满分7分)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1, x ≥03-2x , x <0,求值:(1)f (-12); (2分)(2)f (2-; (3分) (3)f (t -1); (2分)29.(本题满分7分)某班数学课外兴趣小组共有15人,9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数.(1)要求组长必须参加; (2分)(2)要求选出的3人中至少有1名女生; (2分)(3)要求选出的3人中至少有1名女生和1名男生. (3分)30.(本题满分9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列. 求:(1)a, b, c的值; (3分)(2)按要求填满其余各空格中的数; (3分)(3)表格中各数之和.(3分)31.(本题满分6分)已知f(x)=3sin(ax-π)+4cos(ax-3π)+2(a≠0)的最小正周期为23.(1)求a的值; (4分)(2)求f(x)的值域. (2分)32.(本题满分7分)在△ABC中,若BC=1,∠B=π3,S△ABC=32,求角C.33.(本题满分7分)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,平面AD1C把正方体分成两部分. 求:(1)直线C1B与平面AD1C所成的角; (2分)(2)平面C1D与平面AD1C所成二面角的平面角的余弦值; (3分)(3)两部分中体积大的部分的体积.(2分)第33题图34.(本题满分10分)已知抛物线x2=4y,斜率为k的直线L, 过其焦点F且与抛物线相交于点A(x1,y1),B(x2,y2).(1)求直线L的一般式方程; (3分)(2)求△AOB的面积S;(4分)(3)由(2)判断,当直线斜率k为何值时△AOB的面积S有最大值;当直线斜率k为何值时△AOB的面积S有最小值.(3分)第34题图2015年浙江省高等职业技术教育招生考试数学试卷参考答案及评分标准一、单项选择题(本大题共18小题,每小题2分,共36分)1.【答案】 D 【解析】 x 2+x +3=0,其中Δ=1-4×1×3=-11<0从而方程无解,即集合M 为空集.∴答案选D.2.【答案】 C 【解析】 一方面,由a <b 得a -b <0;另一方面,由a -b <0可得a <b ,故甲是乙的充分且必要条件.∴答案选C.3.【答案】 A 【解析】 由⎩⎪⎨⎪⎧x ≠0,lg (x -2)≥0,x -2>0.得x ≥3,答案选A.4.【答案】 C 【解析】 A ,B 为单调递增函数,D 项中sin x 为周期函数.∴答案选C.5.【答案】 C 【解析】 由题意β=α-2×2π=π4-4π=-154π,答案选C.6.【答案】 B 【解析】 圆心到直线的距离d =||2-4-412+12=32>17=半径,∴直线与圆相离,故选B.7.【答案】 D 【解析】 ∵β∈(0,π),∴sin β∈(0,1],当sin β=1时,得x 2+y 2=1它表示圆;当sin β≠1时,由sin β>0∴此时它表示的是椭圆.答案选D.8.【答案】 C 【解析】 ②a ,b 有可能相交,④a 有可能在α内,①③正确.答案选C.9.【答案】 A 【解析】 ∵cos(π4-θ)cos(π4+θ)=(cos π4cos θ+sin π4sin θ)·(cos π4cos θ-sin π4sin θ)=12cos 2θ-12sin 2θ=12(cos 2θ-sin 2θ)=12cos2θ=26,∴cos2θ=23.故答案选A. 10.【答案】 D 【解析】 ∵a 1+a 2+…+a n =a 1(1-q n )1-q=2n-1,∴q =2,a 1=1,又a 21+a 22+…+a 2n 是以a 21=1为首项,q 2=4为公比的等比数列,∴a 21+a 22+…+a 2n =13()4n -1,故选D.11.【答案】 D 【解析】 C 58=P 58P 55=P 585!,∴答案选D.12.【答案】 C 【解析】 直线3x +y +2015=0转化为y =-3x -2015,k =tanθ=-3,∴θ=arctan(-3)=2π3.13.【答案】 C 【解析】 函数f (x )的最大值为4×a ×(-3)-424×a =5,解得a =-12,即f (x )=-12x 2+4x -3∴f (3)=92.答案选C. 14.【答案】 D 【解析】 ∵sin α=35,且α∈(π2,π)∴cos α=-45,tan α=-34,tan(α+π4)=tan α+tanπ41-tan α·tanπ4=17.答案选D. 15.【答案】 B 【解析】 ∵三角之比A ∶B ∶C =1∶1∶4,且A +B +C =π,∴A =B =π6,C =2π3.故sin A ∶sin B ∶sin C =1∶1∶ 3.答案选B.16.【答案】 C 【解析】 ∵4=(x -2)(x +2)+y 2=x 2+y 2≥2||xy ,即2||xy ≤4,3||xy ≤6,得3xy ≤-6或3xy ≥6,故3xy 的最小值为-6,答案选C.17.【答案】 B 【解析】 设P (x ,y )与点M (-1,0)关于点H (2,3)中心对称,则x -12=2,y +02=3.∴x =5,y =6.答案选B.18.【答案】 A 【解析】 ∵双曲线的焦距为8,∴c =4,又离心率为e =c a=2,∴a =2,即得b 2=c 2-a 2=12,故双曲线的标准方程为x 24-y 212=1,答案选A.二、填空题(本大题共8小题,每小题3分,共24分)19.【答案】 (-∞,0)∪(7,+∞) 【解析】 ∵||2x -7>7∴2x -7>7或2x -7<-7,即x <0或x >7,故解集为(-∞,0)∪(7,+∞)20.【答案】 a 【解析】 ∵tan α=b a,∴sin α=b a 2+b2,cos α=a a 2+b2,代入即可解得a cos2α+b sin2α=a (cos 2α-sin 2α)+2b sin αcos α=a .21.【答案】 28 【解析】 ∵BA →=-AB →=(0,7),∴||AB →-3BA →=||(0,-28)=28.22.【答案】{}-5,7【解析】 ∵三个数4,x -1,9成等比数列,∴有(x -1)2=4×9=36,解得x =-5或x =7.23.【答案】 29 【解析】 两个人分别出“石头”与“剪刀”有两种可能,且各自出“石头”与“剪刀”的概率为13,P =2×13×13=29.24.【答案】 26C 612x -5【解析】 ∵展开式的中间一项为第7项,∴中间一项为26C 612x -5.25.【答案】 3错误!cm 3【解析】 设正方体的边长为a ,∵体对角线为3cm ,∴(错误!a )2+a 2=32,得a =3,∴体积V =3错误!cm 3.26.【答案】 (x +2)2+(y +2)2=4 【解析】 因为圆与第三象限的x ,y 轴相切,所以圆心为(-2,-2),半径为2,故圆的标准方程为(x +2)2+(y +2)2=4.三、解答题(本大题共8小题,共60分)27.【解】因为直线x +2y -1=0的斜率K 1=-12(1分)所以由题意得过点A 、B 的直线斜率为2(2分) 由斜率公式得:2=6-nn -(-1)(2分)解得n =43(2分)28.【解】(1)∵-12<0,f (-12)=3-2×(-12)=4(2分)(2)∵2-=2-12=12=22>0(1分)∴f (2-=(2-2-1=2-1-1=12-1=-12(2分)(3)当t -1≥0时,即t ≥1时,f (t -1)=(t -1)2-1=t 2-2t (1分) 当t -1<0时,即t <1时,f (t -1)=3-2(t -1)=5-2t (1分)29.【解】(1)组长必须参加,只要从剩下的14人中任取2人即可完成事件,选法总数为C 214=14×132×1=91种 (2分) (2)3人中至少有1名女生分为三类选法:1女2男,2女1男,3女0男,选法总数为: C 16C 29+C 26C 19+C 36=216+135+20=371种(2分)(3)3人中至少有1名女生和1名男生分为2类选法:1女2男,2女1男,选法总数为:C 16C 29+C 26C 19=216+135=351 种(3分)30.【解】(1)因为每列的数成等比数列,即 2,1,a 成等比数列,所以a =12(1分)又因为每行的数成等差数列,即可求出第二列第五行的数字为32,同理可求出第二列第四行的数字为34,依次可求得b =516(1分)c =316 (1分)(2)(答全对得3分,每行或每列答对得分)(3)由(1)(2)可得:第一行各数和为:116+332+18+532+316=2032=58,第二行各数和为:18+316+14+516+38=54,同样的方法可分别求得第三行各数之和为52,第四行各数之和为5,第五行各数之和为10. 所以各数之和为 10+5+52+54+58=1158(3分)31.【解】(1)f (x )=3sin(ax -π)+4cos(ax -3π)+2 =-3sin ax -4cos ax +2 =5sin(ax +β)+2 (2分)由题意有23=⎪⎪⎪⎪⎪⎪2πa (1分)解得:a =±3π(1分)(2)因为sin(ax +β)∈[-1,1](1分) 所以f (x )的值域为:f (x )∈[-3,7](1分)32.【解】∵ S △ABC =12BC ×AB ×sin B ⇒AB =2(1分)由余弦定理:AC 2=AB 2+BC 2-2BC ×AB ×cos B (1分) ∴ AC = 3 (1分) ∵BC 2+AC 2=AB 2(1分) ∴△ABC 是直角三角形 (1分) ∴ ∠C =90°(2分)33.【解】(1)因为直线C 1B ∥AD 1,且AD 1⊂平面AD 1C ,推知直线C 1B ∥平面AD 1C (1分) 所以直线C 1B 与平面AD 1C 所成的角为0°(1分)(2)连接C 1D ,交C 1D 于E, 连接AE, 因为E 是对角线交点,三角形ACD 1是等边三角形,所以DE ⊥CD 1,AE ⊥CD 1,所以∠AED 是平面C 1D 与平面AD 1C 所成二面角的平面角(1分) 在三角形ADE 中,DE =22a ,AE =62a ,所以 cos ∠AED =DE AE=22a 62a =33. (2分) (3)设两部分中体积大的部分体积为V 1, 体积小的部分的体积为V 2, 正方体体积为V ,则有V =a 3,V 2=VA -D 1DC =a 36(1分)所以所求部分的体积V 1=V -V 2=a 3-a 36=56a 3(1分)第33题图34.【解】(1)由题意抛物线x 2=4y 的焦点F (0,1),因为直线L 的斜率为k, 所以直线L 的方程为y -1=kx 化为一般式即为:kx -y +1=0(3分)(2)联立方程得:⎩⎪⎨⎪⎧x 2=4y ①kx -y +1=0 ②, 将②代入①得:x 2-4kx -4=0,x 1+x 2=4k , x 1x 2=-4,||AB =1+k 2||x 1-x 2=1+k2(x 1+x 2)2-4x 1x 2=1+k2(4k )2+16=1+k 216k 2+16=4(1+k 2) (2分)又因为原点(0,0) 到直线kx -y +1=0的距离为:d =11+k2(1分)所以△AOB 的面积S =12d ||AB =12×11+k 2×4(1+k 2)=21+k 2(1分) (3)由(2)得x 2-4kx -4=0, Δ=16k 2+16>0, ∴k ∈R (1分) 因为S =21+k 2,所以无论k 取何值,面积S 无最大值(1分) k =0时,S =2为最小值 (1分)。

中职数学排列组合二项式定理概率复习测试题

中职数学排列组合二项式定理概率复习测试题

中职数学排列组合二项式定理概率复习测试题排列组合、二项式定理、概率测试题试卷(一)一、选择题1.从4,,5,7,11,13这五个数字中任取两个不同的数字组成分数,则不同的分数共有()A.10B.15C.20D.252.五个人排成一队,甲乙必须相邻的排法有()种A.24B.48C.36D.1203.记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2为老人相邻但不在两端,不同的排法共有()。

A.1440种B.960种C.720种D.480种4.五个人排队照相,甲一定在乙的左边,则不同的排法有()种。

A.60B.72C.120D.1005.4名男生与4名女生排队照相,女生不相邻的排法有()种。

444A.A88B.2A4C.A4D.A84A56.数字1,2,3,4,5可以组成没有重复数字的四位偶数__________个.(用数字作答)二、填空题例题:从10个人中选出两个人去开会,不同选法的种数为________.(用数字作答)7.从7个人中选3人参加比赛,甲乙两人恰有一人当选的选法则有___________种.(用数字作答)8.在5件产品中,有3件合格品,2件次品,从这5件产品中任意抽出3件,至少有1件是次品的抽法有____________种.9.从1,2,3,4,5这5个数中任取两个,和为偶数有_________种不同的取法(用数字作答)510.在二项式的展开式中,含某4的项的系数是________(用数字作答).(某2-)1某511.若(3某-1)a0a1某a2某2a3某3a4某4a5某5,则a1a2a3a4a5_______________.712.在的展开式中的第4项的二项式系数为___________________.(某-2y)15(2某-)的展开式中,含有某项的系数为____________.13.在某24(某-)14.二项式展开式中的常数项为第________项。

1某5(2某-1)15.的二项式系数和为______________.816设(1-2某)a0a1某a2某a8某8,则a1a2a8__________.考点4:古典概率17.在一个袋子里中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同。

职高数学 排列组合二项式概率测试题(含答案)

职高数学 排列组合二项式概率测试题(含答案)

排列组合二项式概率测试题满分120分 时间 120分钟一、选择题(本题共15个小题,每小题 3分,共45分)1.某段铁路共有5个车站,共准备多少种不同的车票( ).A .10B .20C .15D .322.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( )A .4B .7C .10D .123.将4封不同的信投入3个不同的信箱,则不同的投送方法有多少种( ).A . 43B . 34C . 34C D . 34P4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A .6B .4C .8D .105.某商场有四个大门,若从一个门进入,购买商品后再从另一个门出去,不同的进出方法共有多少种 ( ).A .12B .20C .24D .286.6名学生站成一排,其中甲不能站在排尾的不同排法种数是( ).A.1556P P B .1555P P C .56P D .6565P 2P -7.n N ∈,n <25,则乘积(25-n )(26-n )⋅⋅⋅(39-n )等于( ).A.2539P n n -- B .1539P n - C .1525P n - D . 1439P n -8.从集合A ={2,3,5,7,11}中任取两个数作为对数log a x 的底数和真数,则可以得到不同的对数值为( ).A .20B .30C .40D .609.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种10.在二项式521x -()的展开式中,含2x 的项是( ).A .25x -B .25xC .240x -D .240x11.抛掷两枚硬币,则两枚硬币都正面朝上的概率为( ).A . 12B . 14C . 18D . 3412.甲、乙两人进行射击比赛,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则甲乙二人恰有一人击中目标的概率是( ).A .0.32B .0.44C .0.12D .0.5613.从“舞蹈、相声、小品……”等5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,也不能是“相声”,则不同的演出方案种数是( )A . 48B . 72C . 96D .10814.某人参加一次考试,4道题中解对3道题则为及格,已知他的解题正确率为0.6,则他能及格的概率是( ).A .0.3456B .0.1296C .0.4752D .0.524815.袋中有5个大小相同的球,其中2个红球,3个白球,从袋中任意抽取2个球,抽取的球为不 同颜色的概率是( ).A . 25B . 35C . 715D . 1225二、填空题(本题有15个空,每空2分,共30分)16.已知事件A 在一次试验中不发生的概率为0.2,则事件A 发生的概率为_____.17.在学校举行的演讲比赛中,共有6名选手进入决赛,则选手甲不在第一个也不在最后一个演讲的概率为______.18.从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地不经过乙地到丙地有2条路可走,那么从甲地到丙地有______种走法.19.若43410n n C C C +=,则n =______.20.某铁路客运段上有9个站,那么该线路上共有______种不同的票价. 21.7个座位,3个人去坐,每人坐一个座位,有______种不同的坐法.22.612x (+)展开式中二项式系数最大的项是第______项.23.245n nC -=,则n =_________. 24.在三次独立重复试验中,事件A 至少发生1次的概率为6364.则事件A 在一次试验中发生 的概率为_________.25.抛掷两颗骰子,出现总数之和等于7的概率为_________.26.5个人用抽签的方法分配两张电影票,第二个人抽到电影票的概率是_____. 27.4名男同学和3名女同学站成一排照相,则男同学与女同学相间排列的排法种数有_____种.28.从1到100中任取一个数,则这个数既能被2整除,又能被5整除的概率是_______.29.一批产品的次品率为0.1,有放回的抽取3次,则恰好有1次取到次品的概率是_______.30.右表是某个随机变量ξ的概率分布,其中m 的值是_________.三、解答题(本题共7个小题,共45分) 31.用0,1,2,3,4,5可以组成多少个没有重复数字的三位偶数?32. 7个人站成一排照相,(1)若甲不能站在中间,共有多少种不同的排法?(2)若甲必须站在两端,共有多少种不同的排法?(3)若甲乙中间必须间隔一个人,共有多少种不同的排法?33.甲乙两人参加安全知识竞赛,共有10道不同题目,其中选择题7道,判断题3道,甲乙二人依次各抽一题,(1)甲抽到选择题,乙抽到判断题的概率是多 少?(2)甲乙二人抽到不同题型的概率是多少?34.求101x x-()的展开式中的常数项. 35. 7()2x x-的二项展开式中,求(1)第4项;(2)含3x 项的系数. 36.某小组有3名男生和2名女生,任选3个人去参加某项活动,求所选3个人中女生数目ξ的概 率分布.37.一个袋中装有10个形状和大小相同的球,其中8个红球和2个白球,(1)若从中任取1球,求出现白球的概率;(2)若从中有放回地任取1个,连取2次,求出现白球次数ξ的概率分布.排列组合二项式概率测试题答案一、 选择题1—5 B D A B A 6—10 B B A C C 11—15 B B B C B二、填空题16.0.8 17. 2318.14 19.920.36 21.21022.4 23.1024. 34 25. 1626. 2527.144 28. 11029.0.243 30.0.04三、解答题31.个位数字为0有25P 20=个位数字不为0,有11442P P 32=种 故所求没有重复数字共有211544P 2P P 52+=个. 32.(1)1666P P 4320=种 (2)1626C P 1440=种(3) 152552C P P 1200=种33.(1)设A ={甲抽到选择题,乙抽到判断题}()117311109C C 7C C 30P A ==(2)设B ={甲乙二人抽到不同题型}()1111733711109C C C C 7C C 15P A +== 34. 101101C m m m m T xx -+⎛⎫=- ⎪⎝⎭ ()102101C m m m x-=- 令1020m -=,得5m =故,第6项为常数项.()556101C 252T =-=- 35.(1)33443172C T T x x +⎛⎫==- ⎪⎝⎭()333471C 2x x ⎛⎫=- ⎪⎝⎭()43358x x -=⨯-280x =- (2)7172C mm m m T x x -+⎛⎫=- ⎪⎝⎭()77C 2m m m m x x --=-()7272C m m m x -=- 令723m -=,得2m =故第三项为含3x 的项,该项的系数为()2272C 84-= 36.ξ的可能取值为0,1,2.()032335C C 1P 0C 10ξ===;()122335C C 63P 1C 105ξ====,()212335C C 3P 2C 10ξ=== 所以,ξ的概率分布为37.(1)设A ={出现白球},则()21P 105A == (2)ξ的可能取值为0,1,2. 有放回的任取一球,取到白球的概率不变,每次取到白球的概率都是12p =. ()02214160C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()121481C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以,ξ的概率分布为。

2017高考试题分类汇编-排列组合二项式定理

2017高考试题分类汇编-排列组合二项式定理

排列组合二项式定理1.(2017浙江)已知多项式,则=________,=________.2.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)3.(2017新课标Ⅲ理数)(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .804.(2017新课标Ⅱ理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种 5(2017新课标Ⅰ理数).621(1)(1)x x ++展开式中2x 的系数为 A .15 B .20C .30D .35 6(2017天津理)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)(11)(2017山东理)已知()13n x +的展开式中含有2x 项的系数是54,则n =. 7(2017北京文)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________.②该小组人数的最小值为__________.8(2017北京理)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与最接近的是(参考数据:lg3≈0.48)32543212345(1)(2)x x x a x a x a x a x a +++++++=4a 5a MN(A)1033(B)1053(C)1073(D)10939(2017北京理)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.。

浙江省排列组合历年高中高考题包括答案 .docx

浙江省排列组合历年高中高考题包括答案 .docx

排 列 组 合1. 【 2009年. 浙江卷. 理16】甲、乙、丙3 人站到共有7 的台 上,若每 台 最多站2 人,同一 台上的人不区分站的位置, 不同的站法种数是(用数字作答) .2. 【 2008 年 . 浙江卷 . 理 16】用 1, 2,3, 4, 5, 6 成六位数(没有重复数字) ,要求任何相 两个数字的奇偶性不同,且 1 和 2 相 , 的六位数的个数是 (用数字作答 ).3. 【 2007 年 . 浙江卷 . 理 14】某 店有 11 种 志, 2 元 1 本的 8 种, 1 元 1 本的 3 种,小 有 10 元志(每种至多 一本, 10 元 好用完) , 不同 法的种数是 __________(用数字作答)4. 【 2005 年 . 浙江卷 . 理 9】 从集合 { O , P ,Q , R , S } 与 {0 , 1, 2, 3,4, 5,6, 7,8, 9} 中各任取 2 个元素排成一排 ( 字母和数字均不能重复 ) .每排中字母 O , Q 和数字 0 至多只能出 一个的不同排法种数是_________. ( 用数字作答 ) .5.【 2017 年. 浙江卷 .16 】从 6 男 2 女共 8 名学生中 出 1 人,副1 人,普通2 人 成 4 人服 ,要求服 中至少有1 名女生,共有 ______种不同的 法.(用数字作答)6.【 2018 年 . 浙江卷 .16 】从 1, 3, 5,7, 9 中任取 2 个数字,从 0, 2, 4,6 中任取 2 个数字,一共可以 成___________个没有重复数字的四位数 .( 用数字作答 )7. 【 2014 年 . 浙江卷 . 理 14】在 8 券中有一、二、三等 各 1 ,其余5 无 . 将 8 券分配 4个人,每人2 ,不同的 情况有_____种(用数字作答) .8. 【 2013 年 . 浙江卷 . 理 14】将 A , B , C ,D , E ,F 六个字母排成一排,且 A ,B 均在 C 的同 , 不同的排法共有 __________ 种( 用数字作答 ) .9. 【 2012 年 . 浙江卷 . 理 6】若从 1,2,3 ,⋯, 9 9 个整数中同 取 4 个不同的数,其和 偶数, 不同的取法共有 ()A . 60 种B . 63 种C . 65 种D . 66 种10. 【 2010 年 . 浙江卷 . 理 17】有 4 位同学在同一天的上、 下午参加 “身高与体重” 、“立定跳 ” 、“肺活量”、“握力”、“台 ”五个 目的 ,每位同学上、下午各 一个 目,且不重复 . 若上午不 “握力”目,下午不 “台 ” 目,其余 目上、下午都各 一人 . 不同的安排方式共有______________种(用数字作答) .11. 【 2011 年 . 浙江卷 . 理 9】有 5 本不同的 ,其中 文 2 本,数学 2 本,物理1 本. 若将其随机的并排 放到 架的同一 上, 同一科目的 都不相 的概率(A )1( B )2( C )3D455 55答案:33640 266 【答案】 8424660 126060 480 D264 48/120=2/5。

2017年浙江省高职考试理论试卷

2017年浙江省高职考试理论试卷

2017年浙江省高校招生职业技能理论考试电子与电工类试卷姓名准考证号码本试题卷共六大题。

全卷共10页。

满分150分,考试时间90分钟。

注意事项:1.所有试题均需在答题纸上作答。

未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效。

2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3.选择题每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

第一部分基础理论(必做题,满分90分)一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

1.两个电阻1R和2R串联,已知:1R:2R=1:2,则电阻上的电压比是A.1:2B.2:1C.1:3D.1:42.如果“12V”的电压加在标有“24V、12W”的周电器上,则该用电器的实际功率是A.3WB.6WC.8WD.12W3.如图所示电路,电阻R的阻值均为1Ω,则A、B间的等效电阻是A.4ΩB.6ΩC.8ΩD.10Ω 题3图4.如图所示电路,已知:Cl一C2一20μF,c。

=40μF,则A、B间的总电容是A.5μFB.10μFC.20μFD.30μF 题4图5.已知某正弦交流电流,当t=0时,电流i=5A ,初相位为30°,则该正弦交流电流的最大值是A.2.5AB.5AC.10AD.14.14A6.设二极管两端所加的正向电压为VD U ,则二极管正常导通的条件是A.VD U >0B.VD U >击穿电压C.VD U >死区电压D.VD U <07.如图所示,负载电压L u 的波形为题7图(a ) 题7图(b ) A. B.C. D.8.如图所示电路,2R 是A.负载电阻B.负反馈电阻C.输入电阻D.平衡电阻 题8图9.如图所示电路,两稳压管稳定电压均为7.5V ,正向导通电压均为0.7V ,电路输出电压O U 是A.1.4VB.7.5VC.8.2VD.15V 题9图10.如图所示,在三极管的输出特性曲线中,静态工作点Q1所处的位置,对应的是A.甲类功放B.乙类功放C.丙类功放D.甲乙类功放 题10图二、填空题(本大题共10小题,每空格2分,共20分)11.已知某电路中A 、B 两点的电位分别为V A=2V ,VB=10V ,则A 、B 间的电压AB U 为 。

浙江省学考选考高2020届高2017级高考数学一轮复习经典题目专题汇编:排列组合二项式定理

浙江省学考选考高2020届高2017级高考数学一轮复习经典题目专题汇编:排列组合二项式定理

浙江省学考选考高2020届高2017级高考数学一轮复习经典题目专题汇编排列组合二项式定理一、排列组合1、(金丽衢十二校2019届高三第一次联考)在从100到999的所有三位数中,百位、十位、个位数字依次构成等差数列的有___ 个;构成等比数列的有 个.2、(浙江省名校协作体2019届高三上学期第一次联考)用黑白两种颜色随机地染如图所示表格中6个格子,每个格子染一种颜色,并且从左到右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法种数为_________.3、(七彩阳光联盟2019届高三上学期期初联考)甲、乙、丙3人同时参加5个不同的游戏活动,每个游戏最多有2人可以参与(如果有2人参与同一个游戏,不区分2人在其中的角色),则甲、乙、丙3人参与游戏的不同方式总数是 . 4、(舟山中学2019届高三5月高考模拟)在新华中学进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果这2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 (用数字作答). 5、(温州九校2019届高三第一次联考)4名学生参加3个兴趣小组活动,每人参加一个或两个小组,那么3个兴趣小组都恰有2人参加的不同的分组共有_________种.6、(嘉兴市2019届高三上学期期末检测)浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这 7 门高中学考科目中选择 3 门作为高考选考科目,成绩计入高考总分. 已知报考某高校 A 、 B 两个专业各需要一门科目满足要求即可, A 专业:物理、化学、技术; B 专业:历史、地理、技术. 考生小李今年打算报考该高校这两个专业的选考方式有 ▲ 种.(用数字作答)7、(浙南名校联盟(温州九校)2019届高三上学期期末联考)甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有A .84种B .100种C .120种D .150种 8、(绍兴市2019届高三3月适应性考试)有甲乙丙三项任务,甲乙各需一人承担,丙需2人承担且至少一个是男生,现从3男3女共6名学生中选出4人承担这三项任务,不同的选法种数是 ▲ .(用数字作答)9、(杭州市2019届高三4月教学质量检测(二模))已知集合{}1,3,5A =,{}0,2,4B =,分别从A ,B 中各取2个不同的数,能组成不同的能被3整除的四位偶数的个数是 (用数字作答).10、(绍兴市上虞区2019届高三第二次(5月)教学质量调测)某市举办全运会开幕式.现从A 、B 、C 、D 、E 5个节目中任选3个节目进行开幕式表演,若3个节目中有A 和B 时,A 需排在B 的前面出场(不一定相邻),则不同的出场方法有 种.11、(台州市2019届高三4月调研)已知六人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为A.72B.96C.120D.28812、(温州市2019届高三2月高考适应性测试)已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡、若顾客甲只带了现金,顾客乙只用支付宝或微信付款,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有▲ 种.13、(浙江省名校协作体2019届高三2月联考)某校高一(16) 班有5位同学报名参加数学、物理、化学三科兴趣小组, 若每位同学只能参加一科兴趣小组,且每科兴趣小组都有人参加, 则共有▲ 种不同的报名方法(用数字作答).14、(七彩阳光联盟2019届高三下学期第三次联考)安排4名男生、3名女生去参加甲、乙两个不同的社团活动,每个社团至少3人,且社团甲的男生数不少于社团乙的男生数,则这样的排法有种.15、(浙江省重点中学2019届高三12月期末热身联考)如图,有7个白色正方形方块排成一列,现将其中4块涂上黑色,规定从左往右数,无论数到第几块,黑色方块总不少于白色方块的涂法有__种。

(完整word版)浙江省高职考试数学试卷汇总(2011-2016年),推荐文档

(完整word版)浙江省高职考试数学试卷汇总(2011-2016年),推荐文档

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B =I ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x =,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞U 的不等式(组)是 ( ) A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D . 2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B . p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( ) A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M=错误!未找到引用源。

浙江高职考试数学试题汇总[2011_2017]

浙江高职考试数学试题汇总[2011_2017]

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B =( )A . {2}x x >-B . {23}x x -<<C . {1}x x >D . {13}x x <<(11浙江高职考)4.设甲:6x π=;乙:1sin 2x =,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件 (11浙江高职考)18.解集为(,0][1,)-∞+∞的不等式(组)是 ( )A . 221xx -≥- B . 1011x x -≥⎧⎨+≤⎩C .211x -≥ D . 2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A . 2A ∈B .2A ∉C .2A ⊆D . {}2A ⊆(12浙江高职考)3.已知ab c >>,则下面式子一定成立的是 ( )A . ac bc >B . a c b c ->-C . 11a b< D . 2a c b +=(12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B .p 是q 的必要条件,但p 不是q 的充分条件 C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x >,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( ) A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-xx B . ⎩⎨⎧>-<-13202x x C . 022>-x x D . 2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M=错误!未找到引用源。

浙江省2010年高等职业技术教育招生考试

浙江省2010年高等职业技术教育招生考试

2010年浙江省高等职业技术教育招生考试数 学 试 卷一. 选择题(本大题共15小题,每小题3分,共45分)1.已知全集{1,2,3,4,5,6,7,8}U =,{3,4,5}A =,{1,3,6}B =,则集合{2,7,8}是 ( ) A. A B ⋃ B. A B ⋂ C. U U C A C B ⋃ D. U U C A C B ⋂2.若2(2)2f x x x =-,则(2)f ( ) A.0 B. -1 C. 3 D. 23.已知点(,3),(5,2)A x B y -,且(4,5)AB =,则,x y 的值为 ( ) A. 1,10xy =-= B. 1,10x y == C. 1,10x y ==- D. 1,10x y =-=- 4.关于余弦函数cos y x =的图像,下列说法正确的是 ( ) A.通过点(1,0) B. 关于x 轴对称C. 关于原点对称D.由正弦函数sin y x =的图像沿x 轴向左平移2π个单位而得到 5. 62与20.5的等比中项是 ( ) A.16 B .±2 C.4 D .±46.如果曲线C 的方程为2210x xy y -++=,那么下列各点在曲线C 上的是 ( ) A. (-1,2) B. (1,-2) C. (2,-3) D. (3,6)7.直线10x +=的倾斜角是 ( )A.6π B. 3πC. 23πD. 56π8.若0,x > 要使4x x+取最小值,则x 必须等于 ( )A.1 B .±2 C.-2 D .29.若圆柱的轴截面的面积为S ,则圆柱的侧面积等于 ( )A. S πB.2S C. S D. 2S π 10.如图,在正方形1111ABCD A B C D -中,异面直线1AC 与BD 所成的角是( )A. 090 B. 060 C. 045 D. 03011.四名学生与两名老师排成一排拍照,要求两名老师必须站在一起的不同排法共有 ( )A. 720种B. 120种C. 240种D. 48种111第10题图12. 双曲线221259y x -=的渐近线方程是 ( )A. 53y x =±B. 35y x =±C. 43y x =±D. 34y x =± 13.抛物线20y x +=的焦点在( )A.x 轴正半轴上B. y 轴正半轴上C. x 轴负半轴上D. y 轴负半轴上14.若1sin cos 3x x -=,则sin 2x = ( ) A. 98 B. 98- C. 23 D. 23-15. 0000tan18tan121tan18tan12+-的值等于 ( )A B 、、二. 填空题(本大题共6小题,每小题5分,共30分) 16. 293π-弧度的角是第 象限的角. 17.圆22230x y x y +-+=的面积等于 。

2017高考真题分类汇编——排列组合二项式定理

2017高考真题分类汇编——排列组合二项式定理

1、[2017.全国1]展开式中的系数为 A .15B .20C .30D .352、[2017.全国2]安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种3、[2017.全国2]一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .4、[2017.全国3]5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .805、[2017.江苏](5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.6、[2017.天津]用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)7、[2017.山东]为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+,已知101011ˆ225,1600,4i i i i x y b =====∑∑,该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )708、9、[2017.山东]已知(13)n x + 的展开式中含有X 的系数是54,则n =____10、 621(1)(1)x x ++2x 211、12、[2017.浙江]。

2010浙江通用技术高考试题(含参考答案)

2010浙江通用技术高考试题(含参考答案)

(每套题的答案均在后面)2010年3月普通高等学校招生浙江省统一考试通用技术1、低碳经济是指在可持续发展理念指导下.通过技术创新、制度创新、产业转型、新能源开发等多种手段.尽可能地减少煤炭、石油等高碳能源消耗.减少温室气体排放.达到经济社会发展与生态环境保护双赢的一种经济发展形态。

下列关于"低碳经济"的说法不正确...的是A.减少了温室气体的排放.保护了人类的生存环境B.加快了新能源的开发.促进了社会生产方式的转变C.在发展经济的同时.使人与自然和谐发展D.展现了技术的美好未来.使人们不再担忧技术的负面作用2、如图所示是一款为上海世博会设计的机器人.它除了供游客查询信息外.还能为游客演奏音乐、表演中国功夫等。

该机器人的使用主要是为了A.实现人机关系的信息交互B.实现人机关系的安全目标C.满足特殊人群的需要D.实现人机关系的健康目标3、如图所示为一款带手把的碗。

手把的设计主要体现了设计的A.经济原则B.美观原则C.实用原则D.技术规范原则4、如图所示为一款可以在沙发上使用的笔记本电脑桌.设计该电脑桌时不需要...考虑的因素是A.沙发的宽度B.人体的宽度C.笔记本电脑的尺寸D.沙发的高度5、张明用薄铁板加工如图所示的零件.下列操作方法中不正确...的是A.划针紧贴导向工具.在薄铁板上划线.样冲倾斜对准交叉点.扶正冲眼B.左手紧握薄铁板.右手握紧手锯进行锯割.推锯加压.回拉不加压C.用台虎钳夹紧零件.锉削锯割面.推锉时左手施压由大变小.右手施压由小变大D.将钻头正直装夹在台钻上.用手钳夹紧零件.对准冲眼钻孔6、周文用麻花钻加工了一个孔.该孔剖开后的形状应该是7、如图所示为电子喇叭电路图.在该电路图中出现的电子元件符号除了电池、喇叭、开关外.还有A三极管、电阻、电容 B.电阻、二极管、三极管C.电容、变压器、电阻D.变压器、三极管、电容8、如图所示为某零件的轴测图.其正确的俯视图是9、进行产品评价必须制订相应的标准.由于产品设计的内容和目标不同.评价的标准也就不同.应该有所侧重。

最新浙江省高职考试数学试卷汇总(2011-2016年)汇编

最新浙江省高职考试数学试卷汇总(2011-2016年)汇编

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B = ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x=,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞ 的不等式(组)是 ( )A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D .2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B .p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M={}230x xx ++=,则下列结论正确的是( )A . 集合M 中共有2个元素B . 集合M 中共有2个相同元素C . 集合M 中共有1个元素D .集合M 为空集 (15浙江高职考)2.命题甲""ab <是命题乙"0"a b -<成立的( )A . 充分不必要条件B . 必要不充分条件C .充分且必要条件D . 既不充分也不必要条件 (15浙江高职考)16.已知2(2)(2)0x x y -++=,则3xy 的最小值为( )A .2- B . 2 C . 6- D . 62-(15浙江高职考)19.不等式277x ->的解集为 (用区间表示).(16浙江高职考)1..已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B,则A B =A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}(16浙江高职考)2.不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)- (16浙江高职考)3.命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件(16浙江高职考)若1x>,则91x x +-的最小值为 第三章函数(11浙江高职考)2.若2410(2)log 3x f x +=,则(1)f = ( )A .2B .12 C . 1 D . 214log 3(11浙江高职考)3.计算3234(7)⎡⎤-⎣⎦的结果为 ( )A . 7B . -7C . 7D . 7-(11浙江高职考)5. 函数1y x=-的图像在 ( ) A . 第一、二象限 B . 第一、三象限 C . 第三、四象限 D . 第二、四象限 (11浙江高职考)9.下列函数中,定义域为{,x x R ∈且0}x ≠的函数是 ( )A .2y x = B . 2x y = C . lg y x = D . 1y x -=(11浙江高职考)13.函数2y x =+的单调递增区间是( )A .[)0,+∞ B . (),0-∞ C . (),-∞+∞ D . [)2,+∞(11浙江高职考)17.设15x a +=,15y b -=,则5x y += ( )A .a b + B . ab C . a b - D .ab(11浙江高职考)34. (本小题满分11分) (如图所示)计划用12m 长的塑刚材料构建一个窗框. 求:(1)窗框面积y 与窗框长度x 之间的函数关系式(4分); (2)窗框长取多少时,能使窗框的采光面积最大(4分); (3)窗框的最大采光面积(3分). (12浙江高职考)2.函数()3f x kx =- 在其定义域上为增函数,则此函数的图像所经过的象限为 ( )A .一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 二、三、四象限 (12浙江高职考)4.若函数(f x )满足(1)23f x x +=+,则(0)f = ( )A . 3B . 1C . 5D .32-(12浙江高职考)12. 某商品原价200元,若连续两次涨价10%后出售,则新售价为 ( ) A . 222元 B . 240元 C . 242元 D . 484元(12浙江高职考)17.若2log 4x =,则12x = ( )A . 4B . 4±C . 8D . 16(12浙江高职考)19. 函数2()log (3)7f x x x =-+-的定义域为(用区间表示). (12浙江高职考)34. (本小题满分10分)有400米长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一个矩形菜地,如图,设矩形菜地的宽为x 米. (1)求矩形菜地面积y 与矩形菜地宽x 之间的函数关系式(4分);x(第34题图)(2)当矩形菜地宽为多少时,矩形菜地面积取得最大值? 菜地的最大面积为多少?(6分); (13浙江高职考)2.已知()2223f x x =-,则(0)f = ( ) A . 0 B .3- C .23- D . 1- (13浙江高职考)4.对于二次函数223y x x =--,下述结论中不正确的是( )A . 开口向上B . 对称轴为1x =C . 与x 轴有两交点D . 在区间(),1-∞上单调递增(13浙江高职考)5.函数()24f x x =-的定义域为( )A .()2,+∞ B . [)2,+∞ C .(),2][2,-∞-+∞ D .实数集 R(13浙江高职考)19.已知log 162a =,28b=,则b a -= .(13浙江高职考)34. (10分)有60()m 长的钢材,要制作一个如图所示的窗框. (1)求窗框面积2()y m 与窗框宽()x m 的函数关系式;(2)求窗框宽()x m 为多少时,窗框面积2()y m 有最大值;(3 ) 求窗框的最大面积.(14浙江高职考)2.已知函数12)1(-=+xx f ,则=)2(f ( )A . -1B . 1C . 2D . 3(14浙江高职考)5.下列函数在区间),0(+∞上为减函数的是( )A .13-=x y B . x x f 2log )(= C . x x g )21()(= D . x x h sin )(=(14浙江高职考)21.计算:=8log 4 . (14浙江高职考)23.函数352)(2++-=x x x f 图象的顶点坐标是 .(14浙江高职考)33.(8分)已知函数⎩⎨⎧>+-≤≤=)1(,3)1()10(,5)(x x f x x f . (1)求)5(),2(f f 的值;(4分)(2)当*∈N x 时,)4(),3(),2(),1(f f f f …构成一数列,求其通项公式.(4分)(14浙江高职考)34.(10分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,如图所示.现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上. (1)根据所给条件,求出椭圆的标准方程;(3分) (2)求长方形面积S 与边长x 的函数关系式;(3分)(3)求当边长x 为多少时,面积S 有最大值,并求其最大值.(4分)(15浙江高职考)3.函数lg(2)()x f x x-=的定义域是( )A .[)3,+∞ B .(3,)+∞ C .(2,)+∞ D .[)2,+∞(15浙江高职考)4.下列函数在定义域上为单调递减的函数是( )A .3()()2x f x = B .()ln f x x = C .()2f x x =- D .()sin f x x =(15浙江高职考)13.二次函数2()43f x ax x =+-的最大值为5,则(3)f =( )A .2 B . 2- C .92D .92-(15浙江高职考)28.( 本题满分7分)已知函数21,0()32,0x x f x x x ⎧-≥=⎨-<⎩,求值: (1)1()2f -;(2分)(2)0.5(2)f -;(2分) (3)(1)f t -.(3分)A BDC(16浙江高职考)4.下列函数在其定义域上单调递增的是A .()2f x x =+B .2()23f x x x =-++ C .12()log f x x = D .()3xf x -=(16浙江高职考)5.若函数2()6f x x x =-,则A .(6)(8)(10)f f f +=B . (6)(8)2(7)f f f +=C . (6)(8)(14)f f f +=D . (6)(8)(2)f f f +=-(16浙江高职考)19.函数21()2155f x x x x =--+-的定义域为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 . (16浙江高职考)32. 某城市住房公积金2016年初的账户余额为2亿元人民币,当年全年支出3500万元,收入3000万元.假设以后每年的资金支出额比上一年多200万元,收入金额比上一年增加10%.试解决如下问题:(1)2018年,该城市的公积金应支出多少万元?收入多少万元?(2)到2025年底,该城市的公积金账户余额为多少万元?(可能有用的数据:21.1 1.21=,31.1 1.331=,41.1 1.464=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.12.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)第四章平面向量(11浙江高职考)25. 若向量(3,4)m =- ,(1,2)n =-,则||m n = ___________.(12浙江高职考)10.已知平面向量(2,3)(,),2(1,7)a b x y b a ==-=, ,则,x y 的值分别是 ( )A . 31x y =-⎧⎨=⎩B . 122x y ⎧=⎪⎨⎪=-⎩ C . 325x y ⎧=⎪⎨⎪=⎩ D . 513x y =⎧⎨=⎩ (13浙江高职考)7.AB AC BC --= ( )A .2BCB .2CBC .0D . 0(14浙江高职考)7.已知向量)1,2(-=a ,)3,0(=b ,则=-|2|b a( ) A .)7,2(- B . 53 C . 7 D . 29(15浙江高职考)21.已知(0,7)AB =-,则3AB BA -= .(16浙江高职考)6.如图,ABCD 是边长为1的正方形,则AB BC AC ++=A.2 B . 22 C.22+ D.0第五章数列(11浙江高职考)8.在等比数列{}n a 中,若355a a ⋅=,则17a a ⋅的值等于 ( )A .5B .10C .15D .25 (11浙江高职考)30. (本小题满分7分) 在等差数列{}n a 中,113a =,254a a +=,33n a =,求n 的值.(12浙江高职考)5. 在等差数列{}n a 中,若25413a a ==,,则6a = ( )A .14B . 15C .16D .17 (12浙江高职考)32. (本题满分8分)在等比数列{}n a 中,已知11,a =3216a=,(1)求通项公式n a ;(4分)(2)若n nb a =,求{}n b 的前10项和.(4分)(13浙江高职考)10.根据数列2,5,9,19,37,75……的前六项找出规律,可得7a = ( ) A . 140 B . 142 C . 146 D . 149 (13浙江高职考)22.已知等比数列的前n 项和公式为112nnS =-,则公比q = .(13浙江高职考)29. (7分) 在等差数列{}n a 中,已知271,20.a a ==(1)求12a 的值. (2)求和123456.a a a a a a +++++(14浙江高职考)8.在等比数列}{n a 中,若27,342==a a ,则=5a ( )A .81- B . 81 C . 81或81- D . 3或3-(14浙江高职考)22.在等差数列}{n a 中,已知35,271==S a ,则等差数列}{n a 的公差=d.(15浙江高职考)10.在等比数列{}n a 中,若1221n n a a a +++=- ,则2212a a ++……2na += ( ) A .2(21)n - B .21(21)3n - C .41n - D . 1(41)3n - (15浙江高职考)22.当且仅当x ∈ 时,三个数4,1,9x -成等比数列. (15浙江高职考)30.(9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列.求:(1),,a b c 的值;(3分)(2)按要求填满其余各空格中的数;(3分) (3)表格中各数之和.(3分)(16浙江高职考)7.数列{}n a 满足:*111,,()n n a a n a n N +==-+∈,则5a =A.9B. 10C.11D.12(16浙江高职考)22.等比数列{}n a 满足1234a a a ++=,45612a a a ++=,则其前9项的和9S = .第六章排列、组合与二项式定理(11浙江高职考)11.王英计划在一周五天内安排三天进行技能操作训练,其中周一、周四两天中至少要安排一天,则不同的安排方法共有 ( )A . 9种B . 12种C . 16种D . 20种(11浙江高职考)32. (本小题满分8分) 求91()x x-展开式中含3x 的系数. (12浙江高职考)13.从6名候选人中选出4人担任人大代表,则不同选举结果的种数为 ( ) A . 15 B . 24 C . 30 D . 360(12浙江高职考)33. (本小题满分8分) 求613x x ⎛⎫- ⎪⎝⎭展开式的常数项.(13浙江高职考)17.用1,2,3,4,5五个数字组成五位数,共有不同的奇数 ( ) A . 36个 B . 48个 C . 72个 D . 120个(13浙江高职考)33. (8分) 若展开式(1)nx +中第六项的系数最大,求展开式的第二项. (14浙江高职考)20. 从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法.(14浙江高职考)29.(7分)化简:55)1()1(++-x x .(15浙江高职考)11.下列计算结果不正确的是( ) A .4431099CC C-=B .1091010P P =C . 0!=1D .66888!P C =cba121 12(15浙江高职考)24.二项式212332()x x +展开式的中间一项为 .(15浙江高职考)29.(本题满分7分)课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数. (1)要求组长必须参加;(2分)(2)要求选出的3人中至少有1名女生;(2分)(3)要求选出的3人中至少有1名女生和1名男生.(3分)(16浙江高职考)8.一个班级有40人,从中选取2人担任学校卫生纠察队员,选法种数共有A. 780 B . 1560 C. 1600D. 80(16浙江高职考)29.(本题满分7分)2()n x x-二项展开式的二项式系数之和为64,求展开式的常数项.第七章概率(14浙江高职考)9. 抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于( ) A . 0.5 B . 0.6 C . 0.7 D . 0.8(14浙江高职考)23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P = .(16浙江高职考)23.一个盒子里原来有30颗黑色的围棋子,现在往盒子里再投入10颗白色围棋子并充分搅拌,现从中任取1颗棋子,则取到白色棋子的概率为 .第八章三角函数(11浙江高职考)14.已知α是第二象限角,则有3sin 2α=可推知cos α= ( )A .32-B . 12-C . 12D .32(11浙江高职考)16.如果角β的终边过点(5,12)P -,则sin cos tan βββ++的值为 ( )A .4713 B . 12165- C . 4713- D . 12165(11浙江高职考)20.22sin15cos 15︒-︒的值等于 .(11浙江高职考)24. 化简:cos78cos33sin 78sin 33︒︒+︒︒=______________. (11浙江高职考)27.(本小题满分6分)在ABC ∆中,若三边之比为1:1:3,求ABC∆最大角的度数.(11浙江高职考)33. (本小题满分8分)已知数列11()sin 3cos 122f x x x =++,求:(1)函数()f x 的最小正周期(4分); (2)函数()f x 的值域(4分).(12浙江高职考)6.在0~360︒范围内,与390︒- 终边相同的角是 ( )A . 300°B . 600°C . 2100°D . 3300° (12浙江高职考)11.已知(,)2παπ∈, 且3cos 5α=-,则sin α= ( ) A .45-B . 45C . 34D . 34- (12浙江高职考)21.化简sin()cos()2ππαα-++= .(12浙江高职考)24. 函数38sin ()y x x R =-∈的最大值为____________.(12浙江高职考)28. (本题满分7分)在ABC ∆中,已知6,4,60ab C ︒===,求c 和sin B .(12浙江高职考)30.已知函数2()2sin cos 2cos 13f x x x x =-++.求:(1)()4f π;(3分) (2)函数()f x 的最小正周期及最大值.(4分) (13浙江高职考)6.在0~360︒︒范围内,与1050︒终边相同的角是 ( )A .330︒B .60︒C .210︒D .300︒(13浙江高职考)8.若sin α=45-,α为第四象限角,则cos α= ( )A .45-B . 45C . 35D . 35- (13浙江高职考)13.乘积sin(110)cos(320)tan(700)-︒⋅︒⋅-︒的最后结果为 ( )A . 正数B . 负数C . 正数或负数D . 零 (13浙江高职考)14.函数sin cos y x x =+的最大值和最小正周期分别为( )A .2,2πB .2,2πC .2,πD .2,π(13浙江高职考)16.在ABC ∆ 中,若::1:2:3A B C ∠∠∠=,则三边之比::a b c = ( )A .1:2:3 B . 1:2:3 C . 1:4:9 D . 1:3:2(13浙江高职考)21.求值:tan75tan15︒︒+= .(13浙江高职考)26.给出120,α︒=-在所给的直角坐标系中画出角α的图象 .(13浙江高职考)30. (8分) 若角α的终边是一次函数2(0)y x x =≥所表示的曲线,求sin 2.α(13浙江高职考)31. (8分) 在直角坐标系中,若(1,1,),(2,0),(0,1)A B C --,求ABC∆的面积ABC S ∆.(14浙江高职考) 6.若α是第二象限角,则πα7-是( )A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角(14浙江高职考)10.已知角β终边上一点)3,4(-P ,则=βcos ( )A .53- B . 54C .43- D . 45(14浙江高职考)11.=︒⋅︒+︒⋅︒102sin 18sin 18cos 78cos ( )A .23-B .23C . 21-D .21(14浙江高职考)14.函数x x y 2cos sin 2+=的最小值和最小正周期分别为( )A . 1和π2B . 0和π2C . 1和πD . 0和π (14浙江高职考)26.在闭区间]2,0[π上,满足等式1cos sin =x ,则=x .(14浙江高职考)27.(6分)在△ABC 中,已知5,4==c b ,A 为钝角,且54sin =A ,求a .(14浙江高职考)30.(8分)已知52tan ,73tan ==βα,且βα,为锐角,求βα+.(15浙江高职考)5.已知角4πα=,将其终边按顺时针方向旋转2周得角β,则β=( )A .94πB .174π C .154π-D .174π-(15浙江高职考)9.若2cos()cos()446ππθθ-+=,则cos 2θ=( ) A.23B .73C . 76D .346(15浙江高职考)14.已知3sin 5α=,且(,),2παπ∈则tan()4πα+=( ) A .7- B . 7 C . 17-D . 17 (15浙江高职考)15.在ABC ∆中,若三角之比::1:1:4A B C =,则sin :sin :sin A B C =( )A .1:1:4 B . 1:1:3 C . 1:1:2 D . 1:1:3Oxy(15浙江高职考)20.若tan (0),ba aα=≠则cos2sin 2a b αα+= .(15浙江高职考)31.( 本题满分6分) 已知()3sin()4cos(3)2f x ax ax ππ=-+-+(0a ≠)的最小正周期为23(1)求a 的值;(4分) (2)()f x 的值域.(2分)(15浙江高职考)32.在ABC ∆中,若31,,32ABCBC B S π∆=∠==,求角C . (16浙江高职考)10.下列各角中,与23π终边相同的是 A.23π- B.43π C.43π- D.73π(16浙江高职考)12.在ABC ∆中,若tan tan 1A B = ,则ABC ∆的形状是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形(16浙江高职考)17.已知[]0,x π∈,则2sin 2x >的解集为 A.(0,)2π B. 3(,)44ππ C.(,]4ππ D.(,]42ππ(16浙江高职考)24.函数2()6sin()cos(2)8sin 5f x x x x ππ=-+-+的最小值为 .(16浙江高职考)28. 已知α是第二象限角,4sin 5α=, (1)求tan α;(2)锐角β满足5sin()13αβ+=,求sin .β(16浙江高职考)31.在ABC ∆中,6,23,30a b B ︒==∠=,求C ∠的大小.第九章立体几何 (11浙江高职考)10.在空间,两两相交的三条直线可以确定平面的个数为 ( )A . 1个B . 3个C . 1个 或3个D . 4个(11浙江高职考)22.如果圆柱高为4cm ,底面周长为10cm π,那么圆柱的体积等于_____. (11浙江高职考)31. (本小题满分7分)(如图所示)在正三棱锥V ABC -中,底面边长等于6,侧面与底面所成的二面角为60︒,求:(1)正三棱锥V ABC -的体积(4分);(2)侧棱VA 的长(3分);(提示:取BC 的中点D ,连接AD 、VD ,作三棱锥的高VO .)(12浙江高职考)18.如图,正方体1111ABCD A B C D -中,两异面直线AC 与1BC 所成角的大小为 ( )A . 30°B . 45°C . 60°D . 90°(12浙江高职考)26. 已知圆锥的侧面展开图是一个半径为4cm 的半圆,则此圆锥的体积是______________cm 3.(12浙江高职考)31. (本题满分7分)如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==. 求:(1)二面角P CD A --的大小;(4分)(2)三棱锥P ABD -的体积.(3分)(13浙江高职考)9.直线a 平行于平面β,点A β∈,则过点A 且平行于a 的直线( )A .只有一条,且一定在平面β内B .只有一条,但不一定在平面β内C .有无数条,但不都是平面β内D .有无数条,都在平面β内(13浙江高职考)25.用平面截半径R = 5的球,所得小圆的半径r = 4,则截面与球心的距离等于 .(13浙江高职考)32. (7分) 如图在棱长为2的正方形ABCD A B C D ''''-中,求:(1)两面角B A D D ''--的平面角的正切值;(2)三棱锥A BCC '-的体积.D'C' A'C DABB'OD CBAVD 1C 1B 1A 1ADC BB AC DP(14浙江高职考)18. 在空间中,下列结论正确的是( ) A . 空间三点确定一个平面B . 过直线外一点有且仅有一条直线与已知直线垂直C . 如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D . 三个平面最多可将空间分成八块 (14浙江高职考)24.已知圆柱的底面半径2=r,高3=h ,则其轴截面的面积为 . (14浙江高职考)32.(7分)(1)画出底面边长为cm 4,高为cm 2的正四棱锥ABCDP -的示意图;(3分)(2)由所作的正四棱锥ABCD P -,求二面角C AB P --的度数.(4分)(14浙江高职考)8.在下列命题中,真命题的个数是( ) ①//,a b a b αα⊥⇒⊥②//,////a b a b αα⇒③,//ab a b αα⊥⊥⇒ ④,a b b a αα⊥⊂⇒⊥A . 0个B . 1个C . 2个D . 3个 (15浙江高职考)25.体对角线为3cm 的正方体,其体积V= .(15浙江高职考)33. (本题满分7分)如图所示, 在棱长为a 正方体1111ABCD A B C D -中,平面1AD C 把正方体分成两部分, 求:(1)直线1C B 与平面1AD C 所成的角;(2分)(2)平面1C D 与平面1AD C 所成二面角的平面角的余弦值; (3分)(3)两部分中体积大的部分的体积. (2分)(16浙江高职考)25.圆柱的底面面积为π2cm ,体积为4π3cm ,球的直径和圆柱的高相等,则球的体积=V 3cm .(16浙江高职考)33. (本题满分7分)如图(1)所示, 已知菱形,60ABCD BAD ︒∠=中,2AB =,把菱形ABCD 沿对角线BD 折为60︒的二面角,连接AC ,如图(2)所示,求:(1)折叠后AC 的距离; (2)二面角D AC B --的平面角的余弦值.图(1) 图(2)第十章平面解析几何(11浙江高职考)6.下列各点不在曲线C :22680xy x y ++-=上的是 ( )A . (0,0)B . (-3,-1)C . (2,4)D . (3,3) (11浙江高职考)7.要使直线1:340l x y +-=与2:230l x y λ-+=平行,则λ的值必须等于 ( )A . 0B . -6C . 4D . 6(11浙江高职考)12. 根据曲线方程22cos 1,(,)2xy πββπ+=∈,可确定该曲线是( ) A . 焦点在x 轴上的椭圆 B . 焦点在y 轴上的椭圆 C . 焦点在x 轴上的双曲线 D . 焦点在y 轴上的双曲线(11浙江高职考)15. 两圆221:2C x y +=与222:210C x y x +--=的位置关系DABCB 1A1 D 1C 1 DBACDBCA是 ( )A . 相外切B . 相内切C . 相交D . 外离 (11浙江高职考)21.已知两点(1,8),(3,4)A B --,则两点间的距离AB = .(11浙江高职考)23.设α是直线4y x =-+的倾斜角,则α= 弧度.(11浙江高职考)26. 抛物线216y x =-上一点P 到y 轴的距离为12,则点P 到抛物线焦点F 的距离是______________.(11浙江高职考)28. (本小题满分6分)求中心在原点,对称轴为坐标轴,焦点在y 轴上,离心率35e =,焦距等于6的椭圆的标准方程.(11浙江高职考)29. (本小题满分7分)过点(2,3)P 作圆222210x y x y +--+=的切线,求切线的一般式方程.(12浙江高职考)7.已知两点(1,5),(3,9)A B -,则线段AB 的中点坐标为 ( )A . (1,7)B . (2,2)C . (-2,-2)D . (2,14)(12浙江高职考)14.双曲线221169x y -=的离心率为 ( ) A .74B .53C . 43D . 54(12浙江高职考)15.已知圆的方程为224230x y x y ++-+=,则圆心坐标与半径为 ( )A . 圆心坐标(2,1),半径为2B . 圆心坐标(-2,1),半径为2C . 圆心坐标(-2,1),半径为1D . 圆心坐标(-2,1),半径为2(12浙江高职考)16.已知直线210ax y ++=与直线46110x y ++=垂直,则a的值是 ( )A . -5B . -1C . -3D . 1(12浙江高职考)20.椭圆2219x y +=的焦距为 . (12浙江高职考)22.已知点(3,4)到直线340x y c ++=的距离为4,则c =_______.(12浙江高职考)25. 直线10x y ++=与圆22(1)(1)2x y -++=的位置关系是________________.(12浙江高职考)27.(本题满分6分)已知抛物线方程为212.y x =(1)求抛物线焦点F 的坐标;(3分) (2)若直线l 过焦点F ,且其倾斜角为4π,求直线l 的一般式方程.(3分)(12浙江高职考)29. (本题满分7分)已知点(4,15)在双曲线2215x y m -=上, 直线l 过双曲线的左焦点1F ,且与x 轴垂直,并交双曲线于,A B 两点,求: (1)m 的值;(3分) (2)AB .(4分)(13浙江高职考)3.下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 ( ) A .210x y -+= B .121x y+=- C .21y x =+ D . 12(0)y x -=-(13浙江高职考)11.已知点A (1,-2)、B (3,0),则下列各点在线段AB 垂直平分线上的是 ( ) A .(1,4) B .(2,1) C .(3,0) D . (0,1) (13浙江高职考)12.条件“ab =”是结论“221ax by +=所表示曲线为圆”的 ( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件 (13浙江高职考)15.若直线1:260l x y ++=与直线2:310l x kx +-=互相垂直,则k = ( )A .32- B . 32 C . 23- D . 23(13浙江高职考)18.直线4320x y -+=与圆()()224116x y -+-= 的位置关系是( )A . 相切B . 相交C . 相离D . 不确定 (13浙江高职考)20.双曲线2214xy -=的焦距为 . (13浙江高职考)24.经过点(2,1)P -,且斜率为0的直线方程一般式为 . (13浙江高职考)28. (6分) 已知椭圆的中心在原点,有一个焦点与抛物线28y x =-的焦点重合,且椭圆的离心率23e =,求椭圆的标准方程.(14浙江高职考)12.已知两点)1,4(),5,2(--N M ,则直线MN 的斜率=k ( )A . 1B .1- C .21 D .21-(14浙江高职考)13.倾斜角为2π,x 轴上截距为3-的直线方程为 ( )A .3-=xB .3-=yC .3-=+y xD .3-=-y x(14浙江高职考)15.直线032:=-+y x l 与圆042:22=-++y x y x C 的位置关系是 ( )A . 相交切不过圆心B . 相切C . 相离D . 相交且过圆心(14浙江高职考)16.双曲线19422=-y x 的离心率=e ( ) A .32B .23 C .213 D . 313 (14浙江高职考)17.将抛物线x y 42-=绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A .x y 42= B . x y 42-= C . y x 42= D . y x 42-=(14浙江高职考)25.直线012=-+y x 与两坐标轴所围成的三角形面积=S .(14浙江高职考)28.(6分)求过点)5,0(P ,且与直线023:=+-y x l 平行的直线方程.(14浙江高职考)31.(8分)已知圆0464:22=++-+y x y xC 和直线05:=+-y x l ,求直线l 上到圆C 距离最小的点的坐标,并求最小距离.(15浙江高职考)6.已知直线40x y +-=与圆22(2)(4)17,x y -++=则直线和圆的位置关系是( )A . 相切B . 相离C . 相交且不过圆心D . 相交且过圆心 (15浙江高职考)7.若(0,),βπ∈则方程22sin 1x y β+=所表示的曲线是( )A . 圆B . 椭圆C . 双曲线D . 椭圆或圆 (15浙江高职考)12.直线320150x y ++=的倾斜角为( )A .6π B .3πC .23π D .56π(15浙江高职考)17.下列各点中与点(1,0)M - 关于点(2,3)H 中心对称的是( )A .(0,1) B . (5,6) C . (1,1)- D . (5,6)-(15浙江高职考)18.焦点在x 轴上,焦距为8的双曲线,其离心率2e =,则双曲线的标准方程为 ( ) A .221412x y -= B . 221124x y -= C . 221412y x -= D . 221124y x-= (15浙江高职考)26. 如图所示,在所给的直角坐标系中,半径为2, 且与两坐标轴相切的圆的标准方为 .(15浙江高职考)27.(本题满分7分)平面内,过点(1,),(,6)A n B n -的直线与直线210x y +-=垂直,求n 的值.(15浙江高职考)34.( 本题满分10分)已知抛物线24xy =,斜率为k 的直线l 过其焦点F 且与抛物线相交于点112,2(,),()A x y B x y .(1)求直线l 的一般式方程;(3分)(2)求AOB ∆的面积S ;(4分)(3)由(2)判断:当直线斜率k 为何值时AOB ∆的面积S 有最大值;当直线斜率k 为何值时AOB ∆的面积S 有最小值.(3分)(16浙江高职考)9.椭圆22116x y m+= 的离心率34e =,则m 的值为A.7 B 7 C. 7或25 D. 7或2567(16浙江高职考)11. 抛物线的焦点坐标为(0,2)F -,则其标准方程为A .24y x =-B . 28y x =-C . 24x y =-D .28x y =-(16浙江高职考)13.下列结论正确的是 A. 直线a 平行于平面α,则a 平行于平面α内的所有直线 B.过直线a 外一点可以作无数条直线与a 异面C.若直线a 、b 与平面α所成角相等,则a 平行于bD.两条不平行直线确定一个平面(16浙江高职考)14.如图,直线32120x y +-=与两坐标轴分别交于,A B 两点,则下面各点中,在OAB ∆内部的是A.(1,2)-B. (1,5)C. (2,4)D. (3,1)(16浙江高职考)15.点(2,)a 到直线10x y ++=的距离为2,则a 的值为A.1-或5B.1-或5-C. 1 或5- D .5-(16浙江高职考)16.点1(3,4)P ,2(,6)P a ,P 为1P2P 的中点,O 为原点,且52OP =,则a 的值为A.7B. 13-C. 7或13D. 7 或13-y xOyB(16浙江高职考)18. 若我们把三边长为,,a b c 的三角形记为(),,a b c ∆,则四个三角形()6,8,8∆,()6,8,9∆,()6,8,10∆,()6,8,11∆中,面积最大的是A. ()6,8,8∆ B . ()6,8,9∆ C.()6,8,10∆ D. ()6,8,11∆(16浙江高职考)26.直线1212:(1)(2)0,:(3)(1)10,l a x a y a l a x a y l l -++-=-+-+=⊥,则a = .(16浙江高职考)30.( 本题满分8分)设直线2380x y +-=与20x y +-=交于点M ,(1)求以点M 为圆心,半径为3的圆的方程;(2)动点P 在圆M 上,O 为坐标原点,求PO 的最大值.(16浙江高职考)34.( 本题满分9分)已知双曲线22221x y a b -=的离心率52e =,实轴长为4,直线l 过双曲线的左焦点1F 且与双曲线交于,A B 两点,83AB =. (1)求双曲线的方程;(2)求直线l 的方程.。

2017年浙江省高职考数学试卷真题含答案

2017年浙江省高职考数学试卷真题含答案
程;(5 分) (2) 求射箭方向 AD(即与抛物线相切于 A 点的切线方向) 与水平方向夹角 兹 的正切值. (4 分)
第 36 题图 Z 数学试题 第摇 4 页 (共 4 页)
绝密绎考试结束前摇 摇 秘密绎考试结束后摇 摇 不可外传摇 阅后收回
2017 年浙江省单独考试招生文化考试
数学试题答案及评分参考
一、单项选择题( 本大题共 20 小题,1—12 小题每小题 2 分,13—20 小题每小题 3 分,共 48 分)
题摇 号 1
2
3
4
5
6
7
8
9
10
答摇 案 D
B
B
C
C
D
D
C
A
C
题摇 号 11 12 13 14 15 16 17 18 19 20
答摇 案 D
C
B
A
D
A
B
A
B
C
二、填空题( 每小题 4 分,共 28 分)
A. 焦点为(0, - 1) ,(0,1)
B. 离心率 e
=
1 2
C. 长轴在 x 轴上
D. 短轴长为 2 3
13. 下列函数中,满足“ 在其定义域上任取 x1 ,x2 ,若 x1 < x2 ,则 f( x1 ) > f( x2 ) 冶 的函数为
A. y =
3 x
B. y = 3
-
x 2
C.
y
=
(
1 2
cos蚁ABC
=
AB2 + BC2 - AC2 2AB·BC
…………2 分
=
32 2
+ 伊
22 3
- 42 伊2

2017高考十年高考数学(文科)分项版 专题06 数列(浙江专版)(解析版) 含解析

2017高考十年高考数学(文科)分项版 专题06 数列(浙江专版)(解析版) 含解析

一.基础题组1。

【2010年。

浙江卷。

文5】设ns 为等比数列{}na 的前n 项和,2580aa +=则52SS =(A )—11 (B )—8 (C)5 (D )11【答案】A【解析】:通过2580aa +=,设公比为q ,将该式转化为08322=+q a a,解得q =—2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式2。

【2010年。

浙江卷。

文14】在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是【答案】n n+23。

【2009年。

浙江卷.文11】设等比数列{}na 的公比12q =,前n 项和为n S ,则44S a = .【答案】15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--4。

【2008年。

浙江卷.文4】已知{}na 是等比数列,41252==a a ,,则公比q =(A )21- (B )2- (C )2 (D)21【答案】D【解析】:本小题主要考查等比数列通项的性质.由3352124a a q q ==⋅=⋅,解得1.2q =5. 【2015高考浙江,文17】(本题满分15分)已知数列na 和nb 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈。

(1)求na 与nb ; (2)记数列n na b 的前n 项和为nT ,求nT .【答案】(1)2;n n n a b n ==;(2)1*(1)22()n n T n n N +=-+∈【解析】【考点定位】1。

等差等比数列的通项公式;2.数列的递推关系式;3。

错位相减法求和. 二.能力题组1. 【2011年。

浙江卷。

文17】若数列2(4)()3nn n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. 180 种,由于印刷不清
在“ A ”处的数字很难识别。
14、(2016-8-2)一个班级有 40 人,从中任选 2 人担任学校卫生纠察队员,选法 种数共有( ) A、780 B、1560 C、1600 D、80
15、(2016-29-7) (x 2 )n 二项展开式的二项式系数之和为 64,求展开式的常 x
浙江省高职考试试题汇编
第六章排列、组合与二项式定理
1、(2010-11-3)四名学生与两名老师排成一排拍照,要求两名老师必须站在一起 的不同排法共有( ) A、720 种 B、120 种 C、240 种 D、48 种
2、(2010-27-9)求 ( x 1 )8 展开式的中间项。 x
7、(2013-17-2)用 1,2,3,4,5 五个数字组成五位数,共有不同的奇数( ) A、36 个 B、48 个 C、72 个 D、120 个
6、(2012-33-8)求 (3 x 1 )6 展开式的常数项。 x
11、(2015-11-2)下列计算结果不正确的是( )
zgz
第1页共2页
A、 C140 C94 C93
B、
A10 10
A190
C、 0! 1
D、 C86
A86 8!
12、(2015-24-3)二项式 (3 x2 2 )12 展开式的中间一项为______。 x3
数项。
(1)第六行两个“15”中间的 方框内数字是多少(2 分)
( 2 x 2)n
(2)若 3 x
展开式中最大
的二项式系数是 35。从图中可以看出 n 等于多少?该展开式中的常数项等于多少? (6 分)
zgz
第2页共2页
8、(2013-33-8)若展开式 (x 1)n 中第六项的系数最大,求展开式的第二项。
3、(2011-11-2)王英计划在一周五天内安排三天进行技能操作训练,其中周一、 周四两天中至少要安排一天,则不同的安排方法共有( ) A、9 种 B、12 种 C、16 种 D、20 种
4、(2011-32-6)求 ( 1 x)9 展开式中含 x3 项的系数。 x
13、(2015-29-7)课外兴趣小组共有 15 人,其中 9 名男生,6 名女生,其中 1 名 为组长,现要选 3 人参加数学竞赛,分别求出满足下列各条件的不同选法数。 (1)要求组长必须参加; (2)要求选出的 3 人中至少有 1 名女生; (3)要求选出的 3 人中至少有 1 名女生和 1 名男生。
16、(2017-14-3).掷两枚骰子(六面分别标有 1 至 6 的点数)一次,掷出点数小 于 5 的概率为
1
1
1
5
A. 6
B. 8 C. 9
D. 18
17、(2017-19-3).某商场准备了 5 份不同礼品全部放入 4 个不同彩蛋中,每个彩
蛋至少有一份礼品的放法有
A. 480 种
B. 240 种
9、(2014-20-3)从 8 位女生和 5 位男生中,选 3 位女生和 2 位男生参加学校舞蹈 队,共有______种不同选法。
10、(2014-29-7)化简: (1 x)5 (x 1)5
5、(2012-13-2)从 6 名候选人中选出 4 人担任人大代表,则不同选举结果的种数 为( ) A、15 B、24 C、30 D、360
相关文档
最新文档