平面向量数量积的坐标运算含答案
高三数学平面向量坐标运算试题答案及解析
高三数学平面向量坐标运算试题答案及解析1.已知,向量与垂直,则实数的值为()A.B.3C.D.【答案】A【解析】因为所以又向量与垂直,所以,,即,解得:故选A.【考点】向量的数量积的应用.2.已知向量=(5,-3),=(-6,4),则=( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)【答案】D【解析】根据向量坐标运算法则,=(5,-3)+(-6,4)=(-1,1),选D【考点】平面向量坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.5.若平面向量满足,垂直于轴,,则____【答案】或【解析】设,所以,因为垂直于轴;所以,解得,或.故答案为或【考点】向量的坐标表示;向量垂直.6.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.7.已知=(3,4),=(2,3),=(5,0),则||•()=()A.(12,3)B.(7,3)C.(35,15)D.(6,2)【答案】C【解析】∵=(3,4),=(2,3),=(5,0),∴||=5,+=(7,3),∴||•()=5(7,3)=(35,15)故选C.8.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.9.若向量,则( )A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)【答案】B【解析】解:所以选B.【考点】向量的运算.10.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算11.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.12.在复平面内为坐标原点,复数与分别对应向量和,则()A.B.C.D.【答案】B【解析】由复数的几何意义知,,,则,所以,故选B.【考点】1.复数的几何意义;2.平面向量的坐标运算;3.平面向量的模13.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算14.在平面直角坐标平面上,,且与在直线上的射影长度相等,直线的倾斜角为锐角,则的斜率为 ( )A.B.C.D.【答案】C【解析】设直线l的斜率为k,得直线l的方向向量为,再设与的夹角分别为θ1、θ2,则,因为与在直线上的射影长度相等,所以·=·,即|1+4k|=|-3+k|解之得,k=,故选C.【考点】1.向量在几何中的应用;2.平面向量的坐标运算;3.直线的斜率.15.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示16.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积17.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模18.已知正边长等于,点在其外接圆上运动,则的最大值是 .【答案】【解析】可以考虑建立如图所示的平面直角坐标系,则,所以,显然,所以的最大值是.【考点】平面向量综合运算.19.已知向量,,且//,则等于 ( )A.B.2C.D.【答案】A【解析】因为,向量,,且//,所以,,解得,,即,故选A.【考点】平面向量的坐标运算,共线向量,向量的模.20.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算21.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为__________.【答案】【解析】,,向量在方向上的投影为==.【考点】1、向量的坐标表示;2、向量的投影.22.设平面向量,,则 .【答案】.【解析】,,,.【考点】1.平面向量的坐标运算;2.平面向量的模的计算23.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.24.已知平面向量,,且,则向量( )A.B.C.D.【答案】A【解析】先用向量的乘积展开,再代入求的坐标,即.【考点】向量的乘积运算.25.已知向量,下列结论中不正确的是()A.B.C.D.【答案】A【解析】根据题意,由于,那么可知,故选项B 正确,对于C,由于成立,根据向量的几何意义可知,垂直向量的和向量与差向量长度相等,故D成立,因此选A.【考点】向量的概念和垂直的运用点评:解决的关键是利用向量的数量积以及向量的共线来得到结论,属于基础题。
高三数学平面向量坐标运算试题答案及解析
高三数学平面向量坐标运算试题答案及解析1.平面向量,,(),且与的夹角等于与的夹角,则 .【答案】2.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.2.平面向量,,(),且与的夹角等于与的夹角,则()A.B.C.D.【答案】 D.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知向量a=(cos ,sin ),b=(-sin ,-cos ),其中x∈[,π].(1)若|a+b|=,求x的值;(2)函数f(x)=a·b+|a+b|2,若c>f(x)恒成立,求实数c的取值范围.【答案】(1)x=或x=(2)(5,+∞)【解析】(1)∵a+b=(cos -sin ,sin -cos ),∴|a+b|==,由|a+b|=,得=,即sin 2x=-.∵x∈[,π],∴π≤2x≤2π.因此2x=π+或2x=2π-,即x=或x=.(2)∵a·b=-cos sin -sin cos =-sin 2x,∴f(x)=a·b+|c+b|2=2-3sin 2x,∵π≤2x≤2π,∴-1≤sin 2x≤0,∴2≤f(x)=2-3sin 2x≤5,∴[f(x)]max=5.又c>f(x)恒成立,因此c>[f(x)]max ,则c>5.∴实数c的取值范围为(5,+∞).5.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.6.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为________.【答案】6【解析】由a⊥b得,4(x-1)+2y=0,即2x+y=2,∴9x+3y=32x+3y≥2=2=6.当且仅当“32x=3y”时,即y=2x时,上式取“=”.此时x=,y=1.7.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A8.四边形是平行四边形,,,则= ()A.B.C.D.【答案】(A)【解析】因为.故选(A).【考点】1.向量的加减.2.向量的相等.9.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数()A.B.C.D.【答案】C【解析】设,将直线方程代人,整理得,,所以,,.由于点在圆上,所以,,解得,,故选.【考点】直线与圆的位置关系,平面向量的坐标运算.10.已知向量=(,),=(,),若,则=.【答案】【解析】由已知.,解得,.【考点】平面向量的坐标运算.11.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线12.设向量,满足,,且与的方向相反,则的坐标为【答案】【解析】设,∵与的方向相反,故又∵,则,解得,,故答案为.【考点】共线向量,平面向量的坐标运算.13.已知向量a=(1,m),b=(m,2),若a∥b,则实数m等于()A.-B.C.-或D.0【答案】C【解析】由a∥b,得m2-2=0,解得m=±.故选C.14.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.15.若向量=(2,3),=(4,7),则=________.【答案】(-2,-4)【解析】=+=-=(-2,-4).16.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=________.【答案】(-3,-5)【解析】由题意,得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).17.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p =(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.18.已知a=(sin α,sin β),b=(cos(α-β),-1),c=(cos(α+β),2),α,β≠kπ+(k∈Z).(1)若b∥c,求tan α·tan β的值;(2)求a2+b·c的值.【答案】(1)-3(2)-1【解析】(1)若b∥c,则2cos(α-β)+cos(α+β)=0,∴3cos αcos β+sin αsin β=0,∵α,β≠kπ+ (k∈Z),∴tan αtan β=-3.(2)a2+b·c=sin2α+sin2β+cos(α-β)cos(α+β)-2=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2=sin2α+cos2αsin2β+cos2αcos2β-2=sin2α+cos2α-2=1-2=-1.19.已知点A(-1,5)和向量a=(2,3),若=3a,则点B的坐标为().A.(7,4)B.(7,14)C.(5,4)D.(5,14)【答案】D【解析】设B(x,y),由=3a,得解得20.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.21.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.22. .若向量,则A.B.C.D.【答案】B【解析】【考点】向量的坐标运算.23.若向量,且与的夹角为则 .【答案】(-3,-6)【解析】由与的夹角为知,【考点】向量数量积的性质和向量的坐标运算.24.向量,,则()A.B.C.D.【答案】A【解析】,故选A.【考点】平面向量的减法运算25.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.26.设、是平面内两个不平行的向量,若与平行,则实数 .【答案】【解析】不妨假设,则,因为,所以.【考点】平面向量的坐标运算.27.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.28.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.29.已知向量,,且,则等于()A.B.C.D.【答案】A【解析】,,且与共线,所以,故选A.【考点】1.共线向量;2.平面向量的坐标运算30.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示31.已知.(1)若,求的值;(2)若,且,求的值.【答案】(1);(2)7.【解析】(1)利用向量数量积的坐标表示,可转化为三角函数,然后利用利用三角函数的相关公式对其变形,则可求解;(2)利用向量数量积的坐标表示,可转化为角的三角函数,然后利用角之间的关系,使用两角和与差的三角函数相关公式可求解.试题解析:(1)解:(1)∵∴(2)∵∴,,==7【考点】平面向量的数量积、两角和与差的三角函数、同角三角函数关系式.32.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模33.已知向量=(cosθ,sinθ),向量=(,-1),则|2-|的最大值与最小值的和是()A.4B.6C.4D.16【答案】C【解析】因为|2-|,故其最大值为,最小值为,它们的和为,选C.【考点】平面向量坐标运算、平面向量的模、两角差的正弦定理.34.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,且,,解得,,故,故选A.【考点】1.平面向量垂直;2.平面向量的坐标运算35.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.36.已知,,,为坐标原点.(Ⅰ),求的值;;(Ⅱ)若,且,求与的夹角.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求、的坐标,,利用三角函数公式化简求得;(Ⅱ)利用已知条件求,确定的值,在由求解.试题解析:(Ⅰ),,,∴,.(Ⅱ)∵,,,,即,,又,,又,,,∴.【考点】平面向量的坐标运算,向量的夹角与模.37.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.38.已知向量,,,若∥,则=___ ..【答案】5【解析】因为,向量,,,所以,,又∥,所以,,故答案为5.【考点】平面向量的坐标运算39.已知平面向量,,如果向量与平行,那么与的数量积等于( )A.B.C.D.【答案】D【解析】,,∴,.∵与平行,∴,解得.∴.∴.故选D.【考点】向量的概念及其与运算,考查向量平行,考查两个向量的数量积.40.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】由.故选B.【考点】向量的坐标运算41.已知的三个内角所对的边分别为a,b,c,向量,,且.(Ⅰ)求角的大小;(Ⅱ)若向量,,试求的取值范围【答案】(Ⅰ) . (Ⅱ).【解析】(Ⅰ)由题意得,即. 3分由余弦定理得,. 6(Ⅱ)∵, 7∴.∵,∴,∴.∴,故. 12分【考点】平面向量的坐标运算,和差倍半的三角函数公式,正弦型函数图象和性质,余弦定理的应用。
平面向量数量积的坐标
平面向量数量积的坐标表示教学目标:掌握两个向量数量积的坐标表示方法,掌握两个向量垂直的坐标条件,能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.教学过程:首先我们推导平面向量的数量积坐标表示:记a =(x 1,y 1),b =(x 2,y 2),∴a =x 1i +y 1j ,b =x 2i +y 2j∴a ·b =(x 1i +y 1j )(x 2i +y 2j )=x 1x 2i 2+(x 1y 2+x 2y 1)i ·j +y 1y 1j 2=x 1x 2+y 1y 21.平面向量数量积的坐标表示:已知a =(x 1,y 1),b =(x 2,y 2),∴a ·b =x 1x 2+y 1y 22.两向量垂直的坐标表示:设a =(x 1,y 1),b =(x 2,y 2)则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0[例1]已知a =(1, 3 ),b =( 3 +1, 3 -1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求a ·b 及|a ||b |,再结合夹角θ的范围确定其值. 解:由a =(1, 3 ),b =( 3 +1, 3 -1)有a ·b = 3 +1+ 3 ( 3 -1)=4,|a |=2,|b |=2 2 .记a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=22 又∵0≤θ≤π, ∴θ=π4评述:已知三角形函数值求角时,应注重角的范围的确定.[例2]已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1. 分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有x a +y b =(3x +4y ,4x +3y )又(x a +y b )⊥a ⇔(x a +y b )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ① 又|x a +y b |=1⇔|x a +y b |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ② 由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±57再代入①得:x =2435∴⎪⎪⎩⎪⎪⎨⎧-==753524y x 或⎪⎪⎩⎪⎪⎨⎧=-=753524y x[例3]在△ABC 中,AB →=(1,1),AC →=(2,k ),若△ABC 中有一个角为直角,求实数k 的值.解:若A =90°,则AB →·AC →=0,∴1×2+1×k =0,即k =-2若B =90°,则AB →·BC →=0,又BC →=AC →-AB →=(2,k )-(1,1)=(1,k -1)即得:1+(k -1)=0,∴k =0若C =90°,则AC →·BC →=0,即2+k (k -1)=0,而k 2-k +2=0无实根,所以不存在实数k 使C =90°综上所述,k =-2或k =0时,△ABC 内有一内角是直角.评述:本题条件中无明确指出哪个角是直角,所以需分情况讨论.讨论要注意分类的全面性,同时要注意坐标运算的准确性.[例4]已知:O 为原点,A (a ,0),B (0,a ),a 为正常数,点P 在线段AB 上,且AP →=tAB → (0≤t ≤1),则OA →·OP →的最大值是多少?解:设P (x ,y ),则AP →=(x -a ,y ),AB →=(-a ,a ),由AP →=tAB →可有:⎩⎨⎧=-=-at y at a x ,解得⎩⎨⎧=-=at y at a x ∴OP →=(a -at ,at ),又OA →=(a ,0),∴OA →·OP →=a 2-a 2t∵a >0,可得-a 2<0,又0≤t ≤1,∴当t =0时,OA ·OP →=a 2-a 2t ,有最大值a 2.[例5]已知|a |=3,|b |=2,a ,b 夹角为60°,m 为何值时两向量3a +5b 与m a -3b 互相垂直?解法:(3a +5b )·(m a -3b )=3m |a |2-9a ·b +5m a ·b -15|b |2=27m +(5m -9)×3×2cos60°-15×4=42m -87=0∴m =8742 =2914时,(3a +5b )⊥(m a -3b ).1.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x =__________.解析:∵a =(1,1),b =(2,5),∴8a -b =(8,8)-(2,5)=(6,3).又∵(8a -b )·c =30,∴(6,3)·(3,x )=18+3x =30.∴x =4.答案:42.已知a =(-5,5),b =(0,-3),则a 与b 的夹角为________.解析:∵cos θ=a ·b |a ||b |=-1552×3=-22.∴θ=3π4. 答案:3π43.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是__________. 解析:b ·(a +λb )=b ·a +λb ·b =2×1+4×1+2λ=0⇒λ=-3.答案:-34.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于__________. 解析:2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,∴n 2=3,|a |=2.答案:2一、填空题1.已知向量a =(4,-3),|b |=1,且a ·b =5,则向量b =______.解析:设b =(m ,n ),则由a ·b =5得4m -3n =5, ①又因为|b |=1,所以m 2+n 2=1, ②由①②可得(5n +3)2=0,∴n =-35, ∴⎩⎨⎧m =45,n =-35. ∴b =⎝⎛⎭⎫45,-35. 答案:⎝⎛⎭⎫45,-35 2.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确命题的序号为__________.(把所有正确命题的序号全填上)答案:②③3.设向量a =(1,2),b =(x, 1),当向量a +2b 与2a -b 平行时,a ·b 等于__________. 解析:a +2b =(1+2x,4),2a -b =(2-x,3),∵a +2b 与2a -b 平行,∴(1+2x )×3-4×(2-x )=0,∴x =12,a ·b =(1,2)·⎝⎛⎭⎫12,1=1×12+2×1=52. 答案:524.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角是__________.解析:设c =(x ,y ),则(a +b )·c =(-1,-2)·(x ,y )=-x -2y =52,又|c |=5,且a ·c =x +2y =|a ||c |·cos α,故cos α=-12,α=120°. 答案:120°5.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b =__________. 解析:a 与b 共线且方向相反,∴b =λa (λ<0),设b =(x ,y ),则(x ,y )=λ(1,-2),得⎩⎪⎨⎪⎧x =λ,y =-2λ.由|b |=35,得x 2+y 2=45,即λ2+4λ2=45,解得λ=-3,∴b =(-3,6). 答案:(-3,6)6.以原点O 及点A (5,2)为顶点作等腰直角三角形OAB ,使∠A =90°,则AB →的坐标为__________.解析:设AB →=(x ,y ),则有|OA →|=|AB →|=52+22=x 2+y 2,①又由OA →⊥AB →,得5x +2y =0,②由①②联立方程组,解得x =2,y =-5或x =-2,y =5.答案:(-2,5)或(2,-5)7.已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使AP →·BP →有最小值,则点P 的坐标是__________.解析:设点P 的坐标为(x,0),则AP →=(x -2,-2),BP →=(x -4,-1).AP →·BP →=(x -2)(x-4)+(-2)(-1)=x 2-6x +10=(x -3)2+1.当x =3时,AP →·BP →有最小值1,∴点P 的坐标为(3,0).答案:(3,0)8.直角坐标平面内有三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则AE →·AF →=__________.解析:∵BC →=(6,9),∴BE →=13BC →=(2,3),BF →=23BC →=(4,6). 又AB →=(2,-4),∴AE →=AB →+BE →=(4,-1),AF →=AB →+BF →=(6,2),∴AE →·AF →=4×6+(-1)×2=22.答案:22二、解答题9.平面内三个点A ,B ,C 在一条直线上,且OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),且OA →⊥OB →,求实数m ,n 的值.解:∵A ,B ,C 三点在同一直线上,∴AC →∥AB →.∵OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),∴AC →=OC →-OA →=(7,-1-m ),AB →=OB →-OA →=(n +2,1-m ),∴7(1-m )-(n +2)·(-1-m )=0,即mn -5m +n +9=0.①∵OA →⊥OB →,∴(-2)×n +m ×1=0,即m -2n =0.②联立①②解得⎩⎪⎨⎪⎧ m =6n =3或⎩⎪⎨⎪⎧ m =3,n =32.10.已知a =(1,2),b =(-3,2),当k 为何值时:(1)k a +b 与a -3b 垂直?(2)k a +b 与a -3b 平行?平行时它们同向还是反向?解:(1)k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).当(k a +b )·(a -3b )=0时,这两个向量垂直.由(k -3)×10+(2k +2)×(-4)=0.解得k =19,即当k =19时,k a +b 与a -3b 垂直.(2)当k a +b 与a -3b 平行时,存在惟一的实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),得:⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得⎩⎨⎧k =-13,λ=-13. 所以当k =-13时,k a +b 与a -3b 平行, 因为λ<0,所以-13a +b 与a -3b 反向. 11.已知c =m a +n b =(-23,2),a 与c 垂直,b 与c 的夹角为120°,且b ·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.解:∵a 与c 垂直,∴a ·c =0.又∵c =m a +n b ,∴c ·c =m a ·c +n b ·c ,∴12+4=-4n ,∴n =-4.∵b ·c =|b ||c |cos120°,∴-4=|b |×4×⎝⎛⎭⎫-12,∴|b |=2. ∴a ·c =m a 2-4a ·b ,|a |=22,∴a ·b =2m .又b ·c =m (a ·b )-4b 2,∴-4=2m 2-16,∴m 2=6,∴m =±6.当m =6时,a ·b =2 6.∴cos θ=a ·b |a ||b |=2622×2=32,∴θ=π6. 当m =-6时,a ·b =-2 6.∴cos θ=-32,∴θ=5π6. 因此m =6,n =-4时,θ=π6; m =-6,n =-4时,θ=5π6.平面向量数量积的坐标表示1.在已知a =(x ,y ),b =(-y ,x ),则a ,b 之间的关系为2.已知a =(-4,3),b =(5,6),则3|a |2-4a ·b 为 ( )3.若a =(-3,4),b =(2,-1),若(a -x b )⊥(a -b ),则x 等于 ( )4.若a =(λ,2),b =(-3,5),a 与b 的夹角为钝角,则λ的取值范围为 ( )5.已知a =(-2,1),b =(-2,-3),则a 在b 方向上的投影为 ( )6.已知向量c 与向量a =( 3 ,-1)和b =(1, 3 )的夹角相等,c 的模为 2 ,则 c = .7.若a =(3,4),b =(1,2)且a ·b =10,则b 在a 上的投影为 .8.设a =(x 1,y 1),b =(x `2,y `2)有以下命题:①|a |=x 12+y 12 ②b 2=x 22+y 22 ③a ·b =x 1x `2+y 1y `2 ④a ⊥b x 1x `2+y 1y `2=0,其中假命题的序号为 .9.已知A (2,1),B (3,2),D (-1,4),(1)求证:AB →⊥AD → ;(2)若四边形ABCD 为矩形,求点C 的坐标.10.已知a =(3,-2),b =(k ,k )(k ∈R),t =|a -b |,当k 取何值时,t 有最小值?最小值为多少?11.设向量a ,b 满足|a |=|b |=1及|3a -2b |=3,求|3a +b |的值.。
2022年第部分 第二章 § 平面向量数量积的坐标表示
由 a·b<0,得 1+2λ<0,故 λ<-12, 由 a 与 b 共线得 λ=2,故 a 与 b 不可能反向. 所以 λ 的取值范围为-∞,-12. (3)因为 a 与 b 的夹角为锐角, 所以 cos θ>0,且 cos θ≠1, 所以 a·b>0 且 a,b 不同向. 由 a·b>0,得 λ>-12,由 a 与 b 同向得 λ=2. 所以 λ 的取值范围为-12,2∪(2,+∞).
3.已知向量a=(3,-1),b=(1,-2),求: (1)(a+b)2; (2)(a+b)·(a-b). 解:a=(3,-1),b=(1,-2), (1)a+b=(3,-1)+(1,-2)=(4,-3), ∴(a+b)2=|a+b|2=42+(-3)2=25.
(2)法一:∵a=(3,-1),b=(1,-2), ∴a2=32+(-1)2=10,b2=12+(-2)2=5, ∴(a+b)·(a-b)=a2-b2=10-5=5. 法二:∵a=(3,-1),b=(1,-2), ∴a+b=(3,-1)+(1,-2)=(4,-3), a-b=(3,-1)-(1,-2)=(2,1), ∴(a+b)·(a-b)=(4,-3)·(2,1) =4×2+(-3)×1=5.
8.已知 a=(1,1),b=(0,-2),当 k 为何值时, (1)ka-b 与 a+b 共线; (2)ka-b 的模等于 10?
解:∵a=(1,1),b=(0,-2), ka-b=k(1,1)-(0,-2)=(k,k+2). a+b=(1,1)+(0,-2)=(1,-1).
1.设a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0. 应用该条件要注意:由a⊥b可得x1x2+y1y2=0;反过来,由 x1x2+y1y2=0可得a⊥b.
高三数学平面向量坐标运算试题答案及解析
高三数学平面向量坐标运算试题答案及解析1.已知m,n,则“a=2”是“m n”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】由已知m n,故知“a=2”是“m n”的充分而不必要条件,故选B.【考点】1.向量平行的条件;2.充要条件.2.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为()A.(-,)B.(,-)C.(,)D.(-,-)【答案】C【解析】设点D的坐标为(x,y),∵AD是边BC上的高,∴AD⊥BC,∴⊥,又C,B,D三点共线,∴∥.又=(x-2,y-1),=(-6,-3),=(x-3,y-2),∴,解方程组得x=,y=,∴点D的坐标为(,).5. [2014·北京东城区综合练习]已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=()A.-2B.2C.-D.【答案】C【解析】由向量a=(2,3),b=(-1,2)得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),因为ma+nb与a-2b共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理得=-.6.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.7.(2013•重庆)OA为边,OB为对角线的矩形中,,,则实数k= _________.【答案】4【解析】由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 48.(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)【答案】A【解析】∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.9.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.10.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A11.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]【答案】D【解析】因为⊥,所以可如图建立直角坐标系,设O(x,y),||=a,||=b,因为=+,所以P(a,b)因为||=||=1,所以由知,点O在以点(a,0)为圆心,1为半径的圆上,所以同理由得,.所以.又由得,而由可得,,即,所以.综上所述,即.12.已知平面向量,,. 若,则实数的值为()A.B.C.D.【答案】B【解析】由题意知,,由于,则,解得,故选B.【考点】1.平面向量的坐标运算;2.共线向量13.已知A(-2,4)、B(3,-1)、C(-3,-4)且=3,=2,求点M、N及的坐标.【答案】(9,-18).【解析】∵ A(-2,4)、B(3,-1)、C(-3,-4),∴=(1,8),=(6,3),∴=3=(3,24),=2=(12,6).设M(x,y),则有=(x+3,y+4),∴ M点的坐标为(0,20).同理可求得N点的坐标为(9,2),因此=(9,-18).故所求点M、N的坐标分别为(0,20)、(9,2),的坐标为(9,-18).14.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.15.在平面直角坐标系中,若点,,,则________.【答案】【解析】.【考点】向量的坐标运算及向量的模.16.在平面直角坐标系中,△的顶点坐标分别为,,点在直线上运动,为坐标原点,为△的重心,则的最小值为__________.【答案】9【解析】把数量积用坐标表示出来,应该能求出其最小值了.设,由点坐标为,因此,所以当时,取得最小值9.【考点】数量积的坐标运算.17.已知向量,则向量的夹角为 .【答案】【解析】,所以,=,故答案为.【考点】平面向量的坐标运算、数量积、夹角.18.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算19.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,,则,所以,故选A.【考点】平面向量的坐标运算20.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积21.已知两点,向量,若,则实数的值为( )A.-2B.﹣l C.1D.2【答案】B【解析】由已知得,所以由得,,解得.【考点】向量垂直的坐标表示22.已知向量,,如果向量与垂直,则的值为()A.B.C.D.【答案】C【解析】,,,由于向量与垂直,所以,故选C.【考点】1.平面向量垂直;2.平面向量的坐标运算23.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.24.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.25.已知双曲线:,若存在过右焦点的直线与双曲线相交于两点且,则双曲线离心率的最小值为()A.B.C.D.【答案】C【解析】因为过右焦点的直线与双曲线相交于两点且,故直线与双曲线相交只能如图所示的情况,即A点在双曲线的左支,B点在右支,设,右焦点,因为,所以,由图可知,,所以故,即,即,选C.【考点】平面向量的坐标运算、双曲线性质、双曲线离心率、不等式的性质.26.平行四边形中,=(1,0),=(2,2),则等于()A.4B.-4C.2D.-2【答案】A【解析】由,所以.故选A.【考点】1.向量的加减运算;2.向量的数量积27.若,则 .【答案】(3,4)【解析】.【考点】向量的坐标运算.28.若向量,则向量与的夹角的余弦值为 .【答案】【解析】,,两向量的夹角的余弦为.【考点】向量的加、减、数量积运算.29.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.30.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且(x,y∈R),则x+y的取值范围为_____.【答案】[1,2]【解析】如图建立直角坐标系,O为坐标原点,设C(1,0),,,则,,,即,,解得,,又,,.【考点】向量坐标运算、三角函数.31.如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()A.B.C.D.【答案】D【解析】设扇形所在的圆的半径为1,以所在的直线为轴,为原点建立平面直角坐标系,,则,由题意可得,令,则在不是单调函数,从而在一定有解,即在时有解,可得,即,经检验此时此时正好有极大值点.【考点】1.向量的坐标运算;2.函数的性质.32.如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则()A. B. C. D.【答案】A【解析】设圆的半径为1,以作为坐标原点建立坐标系,则,,,,,,,,因为,所以,所以,,所以.【考点】向量运算点评:本题关键是建立坐标系,求出向量坐标,利用向量相等解题是关键,属中档题.33.若向量,且的夹角为钝角,则的取值范围是【答案】【解析】因为的夹角为钝角,所以,所以的取值范围是。
2021年高中数学《平面向量数量积的坐标表示、模、夹角》精选练习(含答案)
2021年高中数学《平面向量数量积的坐标表示、模、夹角》精选练习一、选择题1.已知向量a=(0,-23),b=(1,3),则向量a 在b 方向上的投影为( ) A. 3 B.3 C.- 3 D.-32.设x ∈R ,向量a=(x,1),b=(1,-2),且a ⊥b ,则|a +b|=( ) A. 5 B.10 C.2 5 D.103.已知向量a=(2,1),b=(-1,k),a ·(2a -b)=0,则k=( )A.-12B.-6C.6D.124.a ,b 为平面向量,已知a=(4,3),2a +b=(3,18),则a ,b 夹角的余弦值等于( )A.865B.-865C.1665D.-16655.已知A(-2,1),B(6,-3),C(0,5),则△ABC 的形状是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形6.设向量a=(1,0),b=⎝ ⎛⎭⎪⎫12,12,则下列结论中正确的是( ) A.|a|=|b| B.a ·b=22C.a -b 与b 垂直D.a ∥b 7.已知向量错误!未找到引用源。
=(2,2),错误!未找到引用源。
=(4,1),在x 轴上有一点P ,使错误!未找到引用源。
·错误!未找到引用源。
有最小值,则点P 的坐标是( )A.(-3,0)B.(2,0)C.(3,0)D.(4,0)8.若a=(x,2),b=(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,103B.⎝ ⎛⎦⎥⎤-∞,103C.⎝ ⎛⎭⎪⎫103,+∞D.⎣⎢⎡⎭⎪⎫103,+∞ 9.已知错误!未找到引用源。
=(-3,1),错误!未找到引用源。
=(0,5),且错误!未找到引用源。
∥错误!未找到引用源。
,错误!未找到引用源。
⊥错误!未找到引用源。
(O 为坐标原点),则点C 的坐标是( )A.⎝ ⎛⎭⎪⎫-3,-294B.⎝ ⎛⎭⎪⎫-3,294C.⎝ ⎛⎭⎪⎫3,294D.⎝⎛⎭⎪⎫3,-294 二、填空题10.设向量a=(1,2m),b=(m +1,1),c=(2,m).若(a +c)⊥b ,则|a|=________.11.已知向量a=(1,3),2a +b=(-1,3),a 与2a +b 的夹角为θ,则θ=________.12.已知向量a=(3,1),b 是不平行于x 轴单位向量,且a ·b=3,则向量b 坐标为______.13.平面向量a=(1,2),b=(4,2),c=ma +b(m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m=________.14.已知正方形ABCD的边长为1,点E是AB边上的动点,则错误!未找到引用源。
高一数学平面向量坐标运算试题答案及解析
高一数学平面向量坐标运算试题答案及解析1.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求向量;(Ⅱ)若,且与垂直,求与的夹角的正弦值.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)因为是在坐标前提下解决问题,所以求向量,即求它的坐标,这样就必须建立关于坐标的方程;(Ⅱ)求与的夹角的正弦值,首先应想到求它们的余弦值,如何求,还是要建立关于它的方程,可由与垂直关系,确立方程来解决问题.试题解析:(Ⅰ),可设, 1分∴,, 2分∴ 4分∴或. 6分(Ⅱ)∵与垂直,∴,即 8分∴,∴, 10分,所以与的夹角的正弦值 12分【考点】平面向量的坐标运算和向量之间的关系.2.在直角坐标系中,已知点,点在三边围成的区域(含边界)上(1)若,求;(2)设,用表示,并求的最大值.【答案】(1),(2)1.【解析】(1)本小题中因为思路一即化为坐标运算:从而求得x,y,即可求出其模长,思路二先化向量运算,再化坐标运算:即可求得模长;(2)本小题因为所以则,两式相减得,m-n=y-x,令y-x=t,以下把问题转化为目标函数为t的线性规划问题加以解决.试题解析:(1)解法一:又解得x=2,y=2,即所以解法二:则,所以所以(2),两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.【考点】平面向量的线性运算与坐标运算;线性规划问题.3.已知(1)若,求x的范围;(2)求的最大值以及此时x的值.【答案】(1);(2),或【解析】(1)先利用向量的数量积的坐标表示把的解析式表示出来,得,然后解关于的一个一元二次不等式得到的范围,然后再解三角不等式即可。
(2)用换元法求的最大最小值,然后求的取值即可。
试题解析:解:(1)由题意,即,;(2)∵令,则,当,即或时,.【考点】1、向量的坐标运算;2、三角不等式;3、换元法求函数的最值;4.已知点,,向量,若,则实数的值为.【答案】4【解析】由题知,=(2,3),由向量共线的充要条件及得,,解得=4考点:点坐标与向量坐标关系;向量平行的条件5.已知向量,,函数.(1)若,求的最大值并求出相应的值;(2)若将图象上的所有点的纵坐标缩小到原来的倍,横坐标伸长到原来的倍,再向左平移个单位得到图象,求的最小正周期和对称中心;(3)若,求的值.【答案】(1),;(2),(3)。
平面向量数量积的坐标表示
求k的值.
答案:(1)b (3 , 4)或b ( 3 , 4)
55
55
(2)( 2, 2 2)或( 2, 2 2) (3)k 5
提高练习
1、已知OA (3,1),OB (0,5),且AC // OB,
BC AB,则点C的坐标为
C(3, 29) 3
2、已知A(1,2)、B(4、0)、C(8,6)、 D(5,8),则四边形ABCD的形状是矩形.
如证明四边形是矩形,三角形的高,菱形对角线垂直等.
5、两向量垂直、平行的坐标表示
a =(x1,y1),b= (x2,y2),则
a // b(b 0) a b x1 y2 x2 y1 0
a b a b 0 x1x2 y1 y2 0
例4:已知 a 1,2,b 3,2,当k取何值时,
3、已知 a = (1,2),b = (-3,2), 若k a +2 b 与 2 a - 4b 平行,则k = - 1.
小结:
(1)掌握平面向量数量积的坐标表示, 即两个向量的数量积等于它们对应坐标 的乘积之和;
(2)要学会运用平面向量数量积的坐标表 示解决有关长度、角度及垂直问题.
a =(x1,y1),b= (x2,y2),则
解:1) ka b k1,2 3,2 k 3,2k 2
a 3b 1,233,2 10,4
当ka b a 3b 0时 这两个向量垂直
由k 310 2k 2 4 0 解得k=19
2) 当ka b与a 3b平行时,存在唯一实数, 使ka b a 3b
得 k
1 3
1). k a b 与 a 3b 垂直? 2). k a b 与 a 3b 平行? 平行时它们是同向
还是反向?
第03讲 平面向量的数量积 (精讲)(含答案解析)
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
高中数学必修二 6 3 2 平面向量数量积的坐标表示(精练)(含答案)
6.3.2 平面向量数量积的坐标表示(精练)【题组一 数量积的坐标运算】1.(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16C .17D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C 2.(2020·广东高一期末)若(1,2),(2,3)=-=a b 则(2b)b a -⋅=( ) A .-5 B .5C .-6D .6【答案】A【解析】因为(1,2),(2,3)=-=a b ,所以(2b)b a -⋅=(4,1)(2,3)42135-⋅=-⨯+⨯=-.故选:A.3.(2020·湖北高一期末)已知向量()4,5a =,()22,11a b -=-,则向量a 在向量b 方向上的投影为( )A .1B .2-C .2D .-1【答案】B【解析】由题意,()4,5a =,()22,11a b -=-,可得()26,6b -=-,则()3,3b =-,所以43353a b ⋅=⨯-⨯=-,()233b =+-=所以向量a 在向量b 方向上的投影为3232a b b⋅-==-.故选:B.4.(2020·湖北武汉市·高一期末)已知()1,2A -,()4,1B-,()3,2C ,则cos BAC ∠=( )A .10-B .10C .2-D .2【答案】D【解析】由已知得()3,1AB =,()2,4AC =,∴cos cos ,23AB AC BAC AB AC AB AC⋅∠====.故选:D. 5.(2020·安徽合肥市·高一期末)已知点()1,1A -,()1,2B ,()2,1C --,()3,4D ,则向量CD →在BA→方向上的投影是( ) A.- B.2-C.D.2【答案】A【解析】由题可知,(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,所以(2,1)BA →=--,(5,5)CD →=, 则向量CD →在BA →方向上的投影是||BA CD BA →→→⋅==-故选:A.6.(2020·四川内江市)已知向量(1,2)a =,(,4)b x =,(2,)c y =,若//a b ,a c ⊥,则()b a c ⋅-=( ) A .14 B .-14C .10D .6【答案】C【解析】向量(1,2)a =,(,4)b x =,(2,)c y =,//a b ,可得142x ⨯=,解得2x =,(2,4)b =,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .7.(2020·山东聊城市·高一期末)向量(1,3)a =,(3,1)b =,则向量a b +与a b -的夹角为( ) A .12πB .6πC .3π D .2π 【答案】D【解析】设θ为a b +与a b -的夹角,(1,3)a =,(3,1)b =,则1+31+a b +=(,,131a b -=(-,)||=6a b ++||6a b -=-又()()0cos 04a b a b a b a bθ+⋅-===+-,0,2πθπθ≤≤∴=. 故选:D .8.(2020·尤溪县第五中学高一期末)已知向量(1,2)a =,(,4)a b m +=,若a b ⊥ ,则m =( ) A .3- B .2-C .2D .3【答案】A【解析】()()(,4)1,2(1,2)b a b a m m =+-=-=-,因为a b ⊥,所以()112230a b m m ⋅=-⨯+⨯=+=,解得:3m =-,故选:A9.(2020·全国高一课时练习)设(3,4)a =,a b ⊥且b 在x 轴上的投影为2,则b =( ) A .8(2,)3B .3(2,)2-C .8(2,)3-D .3(2,)2-【答案】B【解析】由题意,向量b 在x 轴上的投影为2,可设(2,)b y =, 因为a b ⊥,可得2340a b y ⋅=⨯+=,解得32y =-,所以3(2,)2b =-.故选:B. 10.(2021·江苏高一)已知平面向量(1,)a m =,()0,2b =,若(3)b a mb ⊥-,则实数m =( ) A .1- B .0C .1D .2【答案】B【解析】因为(3)b a mb ⊥-,所以(3)0b a mb ⋅-=,即23a b mb ⋅=,又(1,)a m =,()0,2b =,故324m m ⨯=,解得0m =.故选:B.11.(2020·全国高一)已知向量()()126,,3,2e e λ==-,若12,e e 为钝角,则λ的范围是( ) A .(,9)-∞ B .(9,)+∞C .(,4)(4,9)-∞⋃D .(,4)(4,9)-∞-⋃-【答案】D【解析】12,e e 为钝角,∴12·0e e <且12,e e 不共线,∴18201230λλ-+<⎧⎨+≠⎩,解得9λ<且4λ≠-, λ∴的范围是(-∞,4)(4-⋃-,9).故选:D.12.(多选)(2021·江苏高一)已知向量(),3a m =,()2,4b =-,若()a b a +⊥,则( ) A .1m =或3m =- B .1m =-或3m = C .2a b +=或10a b += D .2a b +=或26a b +=【答案】AC【解析】因为向量(),3a m =,()2,4b =-,所以()2,1b m a +=+-,若()a b a +⊥,则()()2130m m +⨯+-⨯=,即2230m m +-=,解得1m =或3m =-, 故A 正确,B 错;当3m =-时,(b m a +=+=当1m =时,(a b m +=+=故C 正确,D 错.故选:AC.13.(多选)(2020·全国高一)设向量()2,0a =,()1,1b =,则( ) A .a b = B .()//a b b - C .()a b b -⊥ D .a 与b 的夹角为π4【答案】CD【解析】因为()2,0a =,()1,1b =, 所以2,2a b ==,所以a b ≠,故A 错误; 因为()2,0a =,()1,1b =,所以()()=1,1a b --,又()1,1b =, 则1111⨯≠-⨯,所以()a b -与b 不平行,故B 错误; 又()110a b b -⋅=-=,故C 正确;又2cos ,222a b a b a b⋅<>===⋅, 又a 与b 的夹角范围是[]0,π, 所以a 与b 的夹角为π4,故D 正确. 故选:CD.14.(2020·全国高一)已知向量()1,2a =-,()4,3b =,22c =.若a 与()b c -垂直,则向量a 与c 的夹角的余弦值是______.【答案】10-【解析】由已知14(2)32a b ⋅=⨯+-⨯=-,5a =,∵a 与()b c -垂直,∴()0a b c a b a c ⋅-=⋅-⋅=,∴2a c a b ⋅=⋅=-,∴2cos 105a c a c a c⋅-<⋅>===-⨯.15.(2020·绵阳市·四川省绵阳江油中学)已知向量()1,2a =,与向量(),1b x = (1)当x 为何值时,a b ⊥;(2)当3x =为何值时,求向量a 与向量b 的夹角; (3)求2b a -的最小值以及取得最小值时向量b 的坐标. 【答案】(1)2x =-;(2)4π;(3)最小值3,(2,1)=b . 【解析】(1)20a b x ⋅=+=,2x =-,所以2x =-时,a b ⊥;(2)由题意(3,1)b =,3cos ,25a b a b a b⋅+<>===⨯,4a b π<>=;(3)由已知2(2,3)b a x -=--, 所以2(2)b a x -=-2x =时,2b a -取得最小值3,此时(2,1)=b .【题组二 巧建坐标解数量积】1.(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值.【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=.2.(2020·江西高一期末)如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,D 为线段BC 中点,E 为线段AD 中点.(1)求AD BC ⋅的值;(2)求EB ,EC 夹角的余弦值.【答案】(1)6;(2. 【解析】(1)依题意可知ABC为直角三角形,BC =则(0,0)B ,(0,2)A,C , 因为D 为BC的中点,故D ,∴()3,2AD =-,()2BC =,∴36AD BC ⋅=⨯=.(2)由E 为线段AD 中点可知2E ⎛⎫ ⎪⎪⎝⎭,∴12EB ⎛⎫=-- ⎪ ⎪⎝⎭,312EC ⎛⎫=- ⎪ ⎪⎝⎭,∴cos ,||||EB ECEB EC EB EC ⋅<>=11-⨯+⨯==3.(2020·河北邢台市·高一期中)如图,扇形OAB的圆心角为90︒,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.(1)若30BON ∠=︒,试用向量OA ,OB 表示向量ON ; (2)求MB ON ⋅的取值范围. 【答案】(1)1322ON OA OB =+;(2)[]2,4-. 【解析】(1)如图,以O 为坐标原点,建立直角坐标系xOy , 则()0,0O ,()0,2A ,()2,0B ,)N,所以()0,2OA =,()2,0OB =,()3,1ON =.设ON xOA yOB=+,则212x y =⎧⎪⎨=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩所以1322ON OA OB =+. (2)设()0θ90BON θ∠=︒≤≤︒,则()2cos ,2sin N θθ,()0,1M , 则()2,1MB =-,()2cos ,2sin ON θθ=, 所以()4cos 2sin MB ON θθθϕ⋅=-=+, 其中cos 5ϕ=,sin 5ϕ=(ϕ为锐角). 因为090θ︒≤≤︒,所以90ϕθϕϕ≤+=+︒, 则()maxcos cos 5θϕϕ+==,()()mincos cos 90sin 5θϕϕϕ+=︒+=-=-,所以MBON ⋅的取值范围为[]2,4-.【题组三 数量积与三角函数综合运用】1.(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( ) A .1 B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 2.(2020·辽宁高一期末)已知向量()1,cos2a x =,(sin 2b x =,将函数()f x a b =⋅的图象沿x 轴向左平移ϕ()0ϕ>个单位后,得到的图象关于原点对称,则ϕ的最小值为( )A .12πB .6πC .512π D .3π 【答案】D【解析】()sin 222sin 23f x a b x x x π=⋅⎛⎫==+⎪⎝⎭, 将函数()f x 的图象向左平移ϕ个单位,得到()2sin 22sin 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭, 该函数的图象关于原点对称,∴该函数是奇函数,23k πϕπ∴+=,k Z ∈,62k ππϕ∴=-+,k Z ∈,又0ϕ>,min 3πϕ∴=.故选:D .3.(2020·陕西宝鸡市·高一期末)已知α是锐角,3(,sin )2a α=,1(,2cos )3b α=-,且a b ⊥,则α为( ) A .15° B .45°C .75°D .15°或75°【答案】D【解析】a b ⊥,3(,sin )2a α=,1(,2cos )3b α=-,112sin cos 0sin 222a b ααα∴⋅=-=⇒=,又()0,90α∈,则20,180α,230α∴=或150,解得α=15°或75°.故选:D4.(2020·辽宁大连市·)已知向量1,tan 3a α⎛⎫= ⎪⎝⎭,()1,cos b α=,若a b ⊥,则3cos 2πα⎛⎫+= ⎪⎝⎭( )A .13- B .13C .D 【答案】A【解析】若a b ⊥,则1tan cos 03a b αα⋅=+⋅=,即1sin 3α=-, 所以31cos sin 23παα⎛⎫+==- ⎪⎝⎭.故选:A 5.(2020·陕西宝鸡市·高一期末)已知向量(sin 70,cos 70)a =,(cos80,sin 80)b =,则a b +的值为( )A .1 BC .2D .4【答案】B 【解析】(sin 70,cos 70)a =,(cos80,sin 80)b =(sin 701a ∴==,(cos801b ==,1sin 70cos80cos70sin80sin1502a b , ()22223a b a b a a b b ∴+=+=+⋅+=.故选:B.6.(2020·泰兴市第二高级中学高一期末)已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).【答案】(1)90;(2)4π-. 【解析】(1)由已知得:1a b ==,则:()()22·0a b a b a b +-=-=,因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90;(2)由(cos ,sin )a αα=,(cos ,sin )b ββ=,可得()cos cos ,sin sin k a b k k αβαβ+=++,()cos cos ,sin sin a k b k k αβαβ-=--,(cos ka b k +=,(cos a kb α-=∴=整理可得:()()222cos 112cos k k k k βαβα+-+=--+,即:()4cos 0k βα-=,0k ≠ , ()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-,即:24αβπ-=-.7.(2020·株洲市南方中学高一期末)已知向量()2sin ,1a α=,()1,cos b α=. (1)若角α的终边过点()3,4,求a b ⋅的值; (2)//a b ,且角α为锐角,求角α的大小; 【答案】(1)115;(2)4π.【解析】(1)角α的终边过点()3,4,点(3,4)到原点距离为5r ==,∴4sin 5α,3cos 5α=, ∴43112sin cos 2555a b αα⋅=+=⨯+=; (2)∵//a b ,∴2sin cos 10αα-=,sin21α=,又α为锐角,∴22πα=,∴4πα=.8.(2020·林芝市第二高级中学高一期末)在平面直角坐标系xoy中,已知向量2(,22m =-,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【答案】(1)tan 1x =(2)512π. 【解析】(1)∵m n ⊥,∴0mn ⋅=0x x -=,∴tan 1x =. (2)∵m 与n 的夹角为3π,∴2cos 122cos ,112x x m n m n m n -⋅<>===⨯||||,故1sin()42x π-=, 又(0,)2x π∈,∴(,)444πππ-∈-x ,46x ππ∴-=,即512x π=.故x 的值为512π. 9.(2020·广西桂林市·高一期末)已知向量(sin ,1)m x =-,向量13cos ,2n x ⎛⎫= ⎪⎭,函数()()f x m n m =+⋅.(1)求()f x 的最小正周期T 及其图象的对称轴的方程; (2)若方程()0f x t -=在,42ππ⎡⎤⎢⎥⎣⎦上有解,求实数t 的取值范围.【答案】(1)π,23k x ππ=+,k z ∈;(2)3,22⎡⎤⎢⎥⎣⎦. 【解析】(1)∵(sin ,1)m x =-,13cos ,2n x ⎛⎫= ⎪⎭,∴1sin ,2m n x x ⎛⎫+=+- ⎪⎝⎭,可得1()()sin (sin )2f x m n m x x x =+⋅=+21sin cos 2x x x =+∵21sin (1cos 2)2x x =-,1sin cos sin 22x x x =∴11()(1cos 2)2sin 212226f x x x x π⎛⎫=-++=-+ ⎪⎝⎭ 因此,()f x 的最小正周期22T ππ==. ∵262x k πππ-=+,k z ∈,∴对称轴方程为23k x ππ=+,k z ∈. (2)∵,42x ππ⎡⎤∈⎢⎥⎣⎦,可得52,636x πππ⎡⎤-∈⎢⎥⎣⎦,∴1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,得()sin 216f x x π⎛⎫=-+ ⎪⎝⎭的值域为3,22⎡⎤⎢⎥⎣⎦. ∵方程()0f x t -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解, ∴()f x t =在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,即得实数t 的取值范围为3,22⎡⎤⎢⎥⎣⎦. 10.(2020·甘肃白银市·高一期末)设向量()3cos ,2sin a θθ=-. (1)当43θπ=时,求a 的值: (2)若()3,1b =-,且//a b,求22cos 124θπθ-⎛⎫+ ⎪⎝⎭的值.【答案】(1;(2)23.【解析】(1)43θπ=,所以4433cos ,2sin ,332a ππ⎛⎫⎛=-= ⎪ ⎝⎭⎝,所以2322a ⎛⎫==⎪; (2)//a b ,则3cos 32sin 0θθ-+⨯=,所以1tan 2θ=,故22cos 1cos 122sin cos tan 134θθπθθθθ-===++⎛⎫+ ⎪⎝⎭.11.(2020·湖北荆门外语学校高一期中)已知向量()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-,,02x π⎛⎫∈- ⎪⎝⎭.(1)若//a b ,tan 2x =-,求实数m 的值;(2)记()f x a b =⋅,若()1f x ≤恒成立,求实数m 的取值范围.【答案】(1)±(2)(,1]-∞. 【解析】(1)∵//a b ,∴ 228sin cos (sin cos )m x x x x -=+,整理得:228tan tan 1m x x =-- ∵tan 2x =-,2321m =,解得:m = (2)∵()f x a b =⋅,()2sin ,cos a m x x =,()sin cos ,4sin b x x m x =+-, ∴()2sin (sin cos )4sin cos f x m x x x x x =+-22sin 2sin cos m x m x x =- (1cos 2)sin 2m x m x =-- (sin 2cos2)m m x x =-+sin(2)4m x π=+∵(,0)2x π∈-,∴32444x πππ-<+<,∴1sin(2)42x π-≤+<,∴01)14x π<+≤若()sin(2)14f x m x π=+≤恒成立,则11)4m x π≤+恒成立,又∵111)4x π≥=+,∴1m ≤,故实数m的取值范围为(,1]-∞.12.(2020·山西朔州市·应县一中高一期中(理))已知()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-,()0,4ω∈,若()2f x a b =⋅其图像关于点,08M π⎛⎫⎪⎝⎭对称(1)求()f x 的解析式; (2)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间; (3)当a b ⊥时,求x 的值. 【答案】(1)()24f x x π⎛⎫=- ⎪⎝⎭;(2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦;(3)28k x ππ=+,k Z ∈. 【解析】(1)()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=- ∴()2222sin4sin cos 2cos f x a b x x x x ωωωω=⋅=+-2sin22cos2x x ωω=-24x πω⎛⎫=-⎪⎝⎭∵()f x 的图象关于点,08M π⎛⎫⎪⎝⎭对称 ∴284k ππωπ⋅-=,k Z ∈即41k ω=+,k Z ∈∵()0,4ω∈ ∴1ω=∴()24f x x π⎛⎫=-⎪⎝⎭.(2)()24f x x π⎛⎫=-⎪⎝⎭的单调递增区间为: ()()322224288k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈; 单调递减区间为:()()33722224288k x k k Z k x k k Z πππππππππ+≤-≤+∈⇒+≤≤+∈; 所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的增区间是30,8π⎡⎤⎢⎥⎣⎦,减区间是3,82ππ⎡⎤⎢⎥⎣⎦; (3)∵a b ⊥∴()222sin 204f x a b x π⎛⎫=⋅=-= ⎪⎝⎭即24x k ππ-=,k Z ∈ 解得28k x ππ=+,k Z ∈13.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b ,则函数f (x )的值域.【答案】(1(2)【解析】(1)因为//a b ,所以cos 0x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan63x π==.(2)()f x a b =⋅=2cos 2x x x x+⨯=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以sin(),1]42x π+∈,所以()f x ∈.14.(2021·广东湛江)已知向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,且0.2x π⎡⎤∈⎢⎥⎣⎦,(1)求a b 及a b +的值;(2)若()·2f x a b a b λ=-+的最小值是32-,求实数λ的值. 【答案】(1)·cos 2a b x =,2cos a b x +=,(2)12λ= 【解析】(1)因为向量33cossin 22x x a ⎛⎫= ⎪⎝⎭,,cos sin()22x x b ⎛⎫=- ⎪⎝⎭,,所以33·cos cos sin sin cos 22222x x x xa b x =-=, 33cos cos ,sin sin 2222x x x x a b ⎛⎫+=+- ⎪⎝⎭,所以(cosa b +===因为02x π⎡⎤∈⎢⎥⎣⎦,,所以cos 0x >, 所以2cos a b x +=,(2)由(1)可得()2·2cos 24cos 2cos 4cos 1f x a b a b x x x x λλλ=-+=-=--, 令cos t x =,则[0,1]t ∈,令2()241g t t t λ=--,其图像的对称轴为直线44t λλ-=-=, 则问题转化为当λ为何值时,函数2()241g t t t λ=--在[0,1]t ∈上有最小值32-, ①当0λ≤时,则函数()g t 在[0,1]上递增,最小值为3(0)12g =-≠-,不合题意,舍去, ②01λ<<时,则函数()g t 在[0,]λ上递减,在[,1]λ上递增,则最小值为23()212g λλ=--=-,解得12λ=或12λ=-(舍去), ③当1λ≥时,则函数()g t 在[0,1]上递减,最小值为3(1)142g λ=-=-,解得58λ=,不合题意,舍去,综上,12λ=【题组四 数量积与几何综合运用】1.(2020·全国高一课时练习)一个平行四边形的三个顶点坐标分别是()5,7、()3,5-、()3,4,则第四个顶点的坐标不可能是( ) A .()1,8- B .()5,2-C .()11,6D .()5,2【答案】D【解析】设点()5,7A 、()3,5B -、()3,4C ,设第四个顶点为(),D x y ,分以下三种情况讨论: ①若四边形ABDC 为平行四边形,则AC BD =,即()()2,33,5x y --=+-,即3253x y +=-⎧⎨-=-⎩,解得52x y =-⎧⎨=⎩,此时,点D 的坐标为()5,2-;②若四边形ABCD 是平行四边形,则AD BC =,则()()5,76,1x y --=-, 即5671x y -=⎧⎨-=-⎩,解得116x y =⎧⎨=⎩,此时,点D 的坐标为()11,6;③若四边形ACBD 为平行四边形,则AD CB =,即()()5,76,1x y --=-,即5671x y -=-⎧⎨-=⎩,解得18x y =-⎧⎨=⎩,此时,点D 的坐标为()1,8-.综上所述,第四个顶点的坐标为()11,6或()5,2-或()1,8-,所以不可能是()5,2,故选:D. 2.(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值. (2)若点A 、B 、C 能构成三角形,求实数λ应满足的条件 . 【答案】(1)λ=2;(2)λ≠−2. 【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A 、B 、C 能构成三角形,则A 、B 、C 不共线 ∴−7(3λ−2)≠7(6−λ) ∴实数λ应满足的条件 是λ≠−23.(2021·重庆市)已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---,(4,1)OD =. (1)若四边形ABCD 是平行四边形,求,x y 的值;(2)若ABC ∆为等腰直角三角形,且B ∠为直角,求,x y 的值. 【答案】(1)2,5x y =-=-;(2)0{3x y ==-或2{3x y =-=.【解析】(1)(1,5)AD =,(1,)BC x y =---,由AD BC =得x=-2,y=-5. (2)(3,1),AB =(1,)BC x y =---,若B ∠为直角,则AB BC ⊥, ∴3(1)0x y ---=,又AB BC =,∴22(1)10x y ++=,再由3(1)y x =--,解得0{3x y ==-或2{3x y =-=.4.(2020·浙江温州市·高一期末)已知平面上三点,,A B C ,()2,3BC k =-,()2,4AC =. (1)若BC AC =,求实数k 的值.(2)若ABC ∆是以BC 为斜边的直角三角形,求实数k 的值.【答案】(1)2k =(2)2k =-【解析】(1)由于BC AC =,则=解得2k =.(2)(),1AB AC BC k =-= 由题意得A 为直角,则•0AB AC =. 即240k +=,故2k =-.5.(2020·山西朔州市·应县一中高一期中(文))已知向量OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,O 为坐标原点.(1)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值; (2)若点A 、B 、C 能构成三角形,求实数m 应满足的条件. 【答案】(1)74m =;(2)12m ≠ 【解析】(1)因为OA =()3,4-,OB =()6,3-,OC =()5,3m m ---, 所以(3,1)AB OB OA =-=,(2,1)AC OC OA m m =-=--, 若△ABC 为直角三角形,且∠A 为直角,则AB AC ⊥, ∴3(2﹣m )+(1﹣m )=0,解得74m =. (2)若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线, 得3(1﹣m )≠2﹣m ,∴实数12m ≠时,满足条件. 6.(2020·广东云浮市·高一期末)(1)已知向量a ,b 满足5a =,()1,2b =,且//a b ,求a 的坐标. (2)已知()1,4A --、()5,2B 、()3,4C ,判断并证明以A ,B ,C 为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.【答案】(1)()1,2a =或()1,2a =--;(2)ABC 为直角三角形,B 为直角,证明见解析. 【解析】(1)设(),a x y =,则225x y +=,又//a b ,所以20x y -=,联立2252x y y x ⎧+=⎪⎨=⎪⎩,解得12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩. 于是()1,2a =或()1,2a =--.(2)ABC 是直角三角形,B 为直角.证明如下:∵()()()1,45,26,6BA =---=--,()()()3,45,22,2BC =-=-,∴()()62620BA BC ⋅=-⨯-+-⨯=,∴BA BC ⊥,即ABC 为直角三角形,B 为直角.7.(2020·湖北襄阳市·襄阳五中高一月考)已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,(4,1)OD =--.(Ⅰ)若四边形ABCD 是平行四边形,求x ,y 的值;(Ⅱ)若ABC ∆为等腰直角三角形,且B 为直角,求x ,y 的值.【答案】(Ⅰ)2,5--;(Ⅱ)03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩. 【解析】(Ⅰ)(3,4)OA =-,(6,3)OB =-,(5,3)OC x y =-+,∴(1,5)AD =--,(1,)BC x y =+,由AD BC =,2x =-,5y =-; (Ⅱ)(3,1)AB =--,(1,)BC x y =+,B ∠为直角,则AB BC ⊥,3(1)0x y ∴-+-=,又||||AB BC =,22(1)10x y ∴++=,再由3(1)y x =-+,解得:03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩.。
数学复习:平面向量数量积的计算
数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
平面向量的数量积
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
平面向量的数量积(经典导学案及练习答案详解)
§5.3 平面向量的数量积学习目标1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示坐标表示数量积 a·b =|a ||b |cos θ a·b =x 1x 2+y 1y 2模 |a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a ∥b 的充要条件 a =λb (λ∈R ) x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2 答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3, cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+(t -3)2=1, 解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a=________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135 B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=(1,3)·(3,4)32+42=1525=35.教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e1,e2是两个单位向量,且|e1+e2|=3,则|e1-e2|=________.答案 1解析由|e1+e2|=3,两边平方,得e21+2e1·e2+e22=3.又e1,e2是单位向量,所以2e1·e2=1,所以|e1-e2|2=e21-2e1·e2+e22=1,所以|e1-e2|=1.思维升华(1)求平面向量的模的方法①公式法:利用|a|=a·a及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解.(2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b|,求解时应求出a·b,|a|,|b|的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a⊥b⇔a·b=0⇔|a-b|=|a+b|(其中a≠0,b≠0).跟踪训练2(1)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案 B解析方法一设a=(1,0),b=(0,1),则c=(7,2),∴cos〈a,c〉=a·c|a||c|=73,∴sin〈a,c〉=2 3.方法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.(2)(多选)(2021·新高考全国Ⅰ)已知O为坐标原点,点P1(cos α,sin α),P2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+(-sin β)2=1, 所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |22(1+cos θ).当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2 =12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ,则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+(1+3)2+2×1×(1+3)cos θ, 解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+(1+3)2-⎝ ⎛⎭⎪⎫6+2222×1×(1+3)=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[](a +b )2-(a -b )2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2,所以|a -b |=|a -b |2 =|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=(a -b )·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+(-3)2=±⎝⎛⎭⎫255,-55. 5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos 〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2, 故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为 a·b |b |·b |b |=12b ,B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233,在△BCE 中, BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的平分线. 因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC=12, 所以cos ∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N , ∴|F 1+F 2|=102×2=20 N , ∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x , DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m·n =sin C , 又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3.(2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
平面向量数量积的坐标运算
uuu r 变式: 变式: 在∆ABC中,设 AB = (2,3) 变形: uuur AC = (1, k ), 且∆ABC是直角三 角形,k的值.
已知a=(1, 0),b=(2, 1),当k为何实数时, 为何实数时, 例3. 已知 , , 为何实数时 向量ka- 与 ;(2)垂直。 向量 -b与a+3b (1)平行;( )垂直。 )平行;( 解:ka-b=(k-2, -1), a+3b=(7, 3), - - (1)由向量平行条件得 -2)+7=0, )由向量平行条件得3(k- 1 所以k= 所以 − 3 (2)由向量垂直条件得 -2) -3=0, )由向量垂直条件得7(k-
2 2
x2 + y2
2
2
(2)a ⊥ b ⇔ x1 x2 + y1 y2 = 0
: (2)a ⊥ b ⇔ x1 x2 + y1 y2 = 0 与 a // b ⇔ x 1 y 2 − x 2 y1 = 0
的区别。 的区别。
例1.设a = (3, −1),b = (1, −2),求a⋅b,|a|,|b|, 设 , , ⋅ , , , 和a, b的夹角 的夹角 θ 解: a⋅b = (3, −1) (1, −2)=3+2=5. ⋅ |a|= |b|=
5 x=± 5 解得 y = m 2 5 5
4 x + 2 y = 0 2 2 x + y =1
5 2 5 5 2 5 所求向量为 ( ,− ) 或( − , ) 5 5 5 5
四、演练反馈 r
A. 63 65 B. 33 65
r r r 1、若a = (−3,4), b = (5,12), 则 a 与 b 夹角的余弦值 为 ( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量数量积的坐标运算答案一、单选题1.已知(2,1),(1,1)a b =-=-,则(2)(3)a b a b +⋅-等于() A .10 B .-10 C .3 D .-3【答案】B【分析】根据向量坐标表示的线性运算求出2,3a b a b +-,再根据向量数量积的坐标运算即可得解.【详解】因为(2,1),(1,1)a b =-=-, 所以2(4,3),3(1,2)a b a b +=--=-,所以(2)(3)4(1)(3)210a b a b +⋅-=⨯-+-⨯=-. 故选:B.2.已知()()()1,1,2,5,3,a b c x ===,若()830a b c -⋅=,则x 等于() A .6 B .5 C .4 D .3【答案】C【分析】根据向量数量积运算列方程,化简求得x 的值. 【详解】由于()()86,3,830a b a b c -=-⋅=, 所以63330,4x x ⨯+==. 故选:C3.已知向量()2,1a =,10a b ⋅=,52a b +=,则b 等于() A 5B 10C .5 D .25【答案】C【分析】对52a b +=两边同时平方,化简可得22250a a b b +⋅+=,再将25a =,10a b ⋅=代入化简即可得出答案. 【详解】∵()2,1a =,∵25a =,又52a b +=, 所以()()225250a b+==,即22250a a b b +⋅+=, ∵5+2×10+2b =50, 所以2b =25,即b =5. 故选:C.4.已知点()1,1A ,()2,1B -,向量()2,1a =-,()1,1b =,则AB 与a b -的夹角的余弦值为() A.B. CD【分析】由平面向量的坐标运算求得AB ,a b -,结合平面向量的夹角公式即可求得答案.【详解】由题意,得()1,2AB =-,()3,0a b -=-,则AB 与a b -的夹角的余弦值为()()()221312AB a bAB a b⋅-⨯-+=-+-故选:A ..边长为2的正ABC 中,G 为重心,P 为线段上一动点,则AG AP ⋅=()A .1B .2C .()()BG BA BA BP -⋅-D .2()3AB AC AP +⋅为ABC的重心,所以为线段BC 所以23(0,3AG =-,(,AP x =-,则0AG AP x ⋅=⋅故选:B .a 与b 相互垂直,()6,8a =-,5b =,且b 与向量(1则b =() A .()3,4--B .()4,3C .()4,3-D .()4,3--【答案】D【分析】设(),b x y =,则由题意得2268025x y x y -=⎧⎨+=⎩,解出方程,检验即可.【详解】设(),b x y =,则由题意得2205a b x y ⎧⋅=⎪⎨+=⎪⎩,即2268025x y x y -=⎧⎨+=⎩, 解得43x y =⎧⎨=⎩或43x y =-⎧⎨=-⎩,设()1,0c =,当()4,3b =时,此时4cos ,05b c b c b c⋅==>, 又因为向量夹角范围为[]0,π,故此时夹角为锐角,舍去; 当()4,3b =--时,此时4cos ,05b cb c b c⋅==-<,故此时夹角为钝角,故选:D.,则AO AP ⋅的最大值为() A .2 B .4 C .6 D .3【答案】C【分析】由条件可知点P 的方程,三角换元写出P 点坐标,用坐标表示AP ,AO ,坐标运算向量的数量积,根据角的范围即可求出最大值.【详解】解:点P 在以()0,1为圆心的单位圆上,所以点P 的方程为()2211x y +-=,设P[)cos ,0,2π1sin x y θθθ=⎧∈⎨=+⎩,则()cos 2,1sin AP θθ=++,()2,0AO =,所以[]2cos 42,6AO AP θ⋅=+∈,即AO AP ⋅的最大值为6.故选:C8.已知函数()()sin 0,0,2f x A x A ωϕωϕ=+>>< ⎪⎝⎭的图象如图所示,图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭,与y 轴的交点为N ,最高点()1,P A ,且满足NM NP ⊥,则A =()A B C .D .10由0NM NP ⋅=解得,所以2π6ω=π2,所以π6ϕ=,则NM NP ⋅=5,2⎛ ⎝二、多选题9.已知向量(2,1),(,1)a m b m =-=,则下列结论正确的是() A .若a b ∥,则2m = B .若2m =,则a b ∥ C .若a b ⊥,则13m = D .若13m =,则a b ⊥【分析】根据平面向量平行与垂直的坐标表示公式,可得答案【详解】由a b ∥,得2m -正确;由a b ⊥,得2m +BCD.10.已知向量()()()1,3,2,,a b y a b a ==+⊥,则() A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,2【答案】BD【分析】根据向量的加法求出a b +,由两个向量垂直,数量积为零,求出y ,然后逐一判断各选项,a 在b 方向上的投影向量为()2a b bb⋅⋅.【详解】已知()()1,3,2,,a b y ==则()3,3a b y +=+,()a b a +⊥,()31330y ∴⨯+⨯+=,4y =-,()2,4b =-,故A 错误;12342cos ,21020a b a b a b⋅⨯-⨯===-⋅⋅,所以向量,a b 的夹角为3π4,故B 正确;()()()11,31,22,12a b +=+-=,152a b ∴+=,故C 错误;a 在b 方向上的投影向量为()()21,2a b b b⋅⋅=-,故D 正确.故选:BD. 11.已知向量()()()()3,1,cos ,sin 0π,1,0a b c θθθ==≤≤=,则下列命题正确的是()A .a b ⋅的最大值为2B .存在θ,使得a b a b +=-C .向量31,33e ⎛⎫=-- ⎪ ⎪⎝⎭是与a 共线的单位向量 D .a 在c 3c 【答案】ABD【分析】A.根据向量数量积的坐标表示,结合三角函数的恒等变形和性质,即可判断; B.利用数量积公式,可得0a b ⋅=,即可求解θ; C.根据模的公式,计算e ,即可判断; D.根据投影向量公式,即可计算求值.【详解】对于A 选项,π3cos sin 2sin 3a b θθθ⎛⎫⋅=+=+ ⎪⎝⎭,当ππ32θ+=,即π6θ=时取最大值2,故A 正确;对于B 选项,要使a b a b +=-,则0a b ⋅=, 则tan 3θ=-,因为0πθ≤≤,所以2π3θ=,故存在θ,使得a b a b +=-,故B 正确;选项,因为33e ⎛=- ⎝所以向量e 不是单位向量,故选项,因为()1,0c =为单位向量,则a 在c 上的投影向量为3||a cc c c ⋅⋅=,故D 正确ABD .12.已知向量(cos ,sin m αα=,()cos ,sin n ββ=,且()1,1m n +=,则下列说法正确的是() A .221m n += B .()cos 0αβ-=C .()sin 1αβ+=-D .m n -的值为即可判断BC ,由模长公式以及垂直关系即可判断【详解】21m =,21n =,即有222m n +=,故选项β<,如图,设点A 、B 、C 的坐标为在单位圆221x y +=.根据向量加法的平行四边形法则,四边形OACB 可得:()cos 0αβ-=,()sin 1β+=由()1,1m n +=可得:()2222m nm n +=+⋅=,可得:20m n ⋅=,22222m n m n m n -=+-⋅=,则可得:2m n -=,故选项D 成立. 故选:BD三、填空题13.已知向量()()3,1,1,a b λ=-=,若222a b a b -=+,则λ=__________.【答案】3【分析】求出a b -,利用模长公式列出方程,求出3λ=.【详解】因为()2,1a b λ-=--,所以224(1)911λλ++=+++,解得:3λ=. 故答案为:314.已知向量()3,1a =-,(),1b t =,,45a b =,则t =______. 【答案】2【分析】利用向量坐标夹角运用求参数. 【详解】因为,45a b =︒, 所以2312cos ,2101a b t a b a bt ⋅-===⋅+,且13103t t ->⇒>,整理得2123203t t t ⎛⎫--=> ⎪⎝⎭,解得:2t =或12t =-(舍去),故答案为:2.15.已知(1,2a x =-,(),1b x =且//a b ,则||a b +=______. 【答案】32【分析】根据给定条件,利用共线向量的坐标表示求出x ,再利用模的坐标表示计算作答. 【详解】因为()1,2a x =-,(),1b x =且//a b ,则21x x =-,解得=1x -,有(21,3)(3,3)a x b =-=-+,所以22|(3)332|a b -+=+=. 故答案为:3216.已知()1,0a =,()1,1b =,则a 在b 上的投影向量为________. 【答案】11(,)22【分析】由投影向量的定义求结果即可. 【详解】由题意,a 在b 上的投影向量为(1,1)111(,)22||||22b a b b b ⋅⋅=⋅=.故答案为:11(,)22。