专题:一次函数图象问题(超经典、超全)

合集下载

八上 一次函数图像性质 知识点+例题+练习 (非常好 分类全面)

八上 一次函数图像性质 知识点+例题+练习 (非常好 分类全面)

6.3 一次函数的图像知识点1 一次函数的图像(重点)1.一次函数b=(0y+kxk)的图像是___________,与坐标轴的两个交点≠(,)和(,)2.正比例函数kxy=(0k)的图像是经过_______________的一条直线。

≠3.画函数图像的常用方法是___________,一般分三步:______________、______________、______________。

知识点2 一次函数b=(0kxy+k)的图像与性质的关系(重点)≠的符号共同决定的;一次函数的增减性取决于__________,与y 轴交点取决于__________。

(2)k 的大小决定直线的倾斜程度,k 越大,直线_________,k 越小,直线_________。

例2.一次函数32+-=x y 的图像一定不过( )A.第一象限B.第二象限C.第三象限D.第四象限例3.点),(111y x P ,),(222y x P 是一次函数34+-=x y 图像上的两个点,且21x x <,则1y 与2y 的大小关系是( )A. 21y y >B. 21y y <C. 21y y =D.无法确定 知识点3 正比例函数kx y =(0≠k )与一次函数b kx y +=(0≠k )图像的关系(难点)1、 一次函数b a x k y +=)-((0≠k )的图像是由正比例函数kx y =(0≠k )沿x 轴向左(0>a )或向右(0a <)平移a 个单位长度得到的一条直线。

一次函数b kx y +=(0≠k )的图像是由正比例函数kx y =(0≠k )沿y 轴向上(0>b )或向下(0<b )平移b 个单位长度得到的一条直线。

2. 两直线11b x k y +=(0≠k )与22b x k y +=(021≠k k 、)位置关系; (1)当___________ 且 _________时,两直线平行; (2)当___________ 且 _________时,两直线重合; (3)当___________ 时,两直线相交;(4)当___________ 且 _________时,两直线交于y轴上一点(0,b)或(0,1b).2例4.已知直线x,根据下列条件,分别求出各直线的表达式。

初中数学一次函数的图像专项练习30题有答案

初中数学一次函数的图像专项练习30题有答案

一次函数(图像题)专项练习一1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y=kx+b与y=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y>y,其中正确的1122个数是()0 2 1 3 D A..C.B.3.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()5.如图所示,如果k?b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l:y=x+1与直线l:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()21A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在同一坐标系内的图象大致是()A.B.C.D.8.函数y=2x+3的图象是()A.B.过点(1,5),(0,﹣)的直线0过点(0,3),(,﹣)的直线DC..过点(﹣1,﹣1),(﹣,0)的直线,过点(0,3)(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1表示的是同一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.1.已知直=x+=x+,满,,两直线的图象是()12.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.313.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米)与降雨的时间t(天))的关系如图所示,则下列说法正确的是(.33A.B.降雨后,蓄水量每天减少5万米降雨后,蓄水量每天增加5万米33C.D.降雨开始时,蓄水量为20万米降雨第6天,蓄水量增加40万米14.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的().DCA.B..2.x_________时,y>y=kx+b16.一次函数的图象如图所示,当._________时,有y<0x17.一次函数的图象如图所示,根据图象可知,当0>.的图象,当是一次函数y=kx+bx_________时,y.如图,直线18l 的图象如图所示,则下列结论:与19.一次函数y=kx+by=x+a21 yy<中,时,>当;=yyx=3③0a;<①k0②>;当时,④x32211正确的判断是_________.20.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,当x_________时,y>y.212121.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________..在平面直角坐标系中画出函数的图象.22(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?﹣x+5图象的一部分,利用图象回答下列问题:24.如图是一次函数y=(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由..﹣y=2x1.已知函数25y=﹣和x+21)在同一个平面直角坐标系中画出这两个函数的图象;(1 2)根据图象,写出它们的交点坐标;(y>取什么值时,)根据图象,试说明当(3xy?21.26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.)两点.,1),B(﹣1029.已知一次函数的图象经过点A(﹣3,)画出图象;(1 0?y=0,y<)(2x为何值时,y>0,,y=﹣2x+230.已知一次函数)在所给的平面直角坐标系中画出它的图象;(1 )根据图象回答问题:(2 ;_________y_________图象与①x轴的交点坐标是,与轴的交点坐标是.0y_________x②当时,>参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y=kx+b与y=x+a的图象可知k<0,a<0,当x>2时,y>y,①③正确.故选C 11223.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k?b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D.由题意可得,6,)应在交点的上方,即第二部分.故选B,故点(.解得7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.,﹣)0,故错误;0,3),不过(、把8.Ax=0代入函数关系式得2×0+3=3,故函数图象过点(,﹣),故错误;B、由A知函数图象不过点(0C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.kk<0,则k与k异号,2121因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b<b,则y与y轴的交点在y与y轴的交点的下边,因而B、C都是错误的.2121.D故选.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;3C、根据图示知,降雨开始时,蓄水量为10万米,故本选项错误;333D、根据图示知,降雨第6天,蓄水量增加了40万米﹣30万米=10万米,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.=,k=,故斜率3,0)16.由图形可知,该函数过点(0,2),(,,即>2所以解析式为,令y=y>20<解之得:x,故答案为x<﹣2时,17.根据题意,要求y<0x的范围,即:x+3<0,解可得:x<﹣2 >0218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>时,有y 0正确;<19.根据图示及数据可知:①一次函数y=kx+b的图象经过第二、四象限,则k1 0错误;②y=x+a的图象经与y轴交与负半轴,则a>2 =y③一次函数y=kx+b与y=x+a的图象交点的横坐标是3,所以当x=3时,y正确;2211④当x>3时,y<y 正确;21,④①,③故正确的判断是<﹣4.在直线y即直线12的上方,则x,所以20.根据图示可知点P的坐标是(﹣4,2)y>21 1<1.故答案为x<x21.根据图象和数据可知,当y<0即图象在x轴下侧,6,0).22).函数与坐标轴的交点的坐标为(0,3,((1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;.0>y时,2>x;y=0时,x=2;0<y时,2<x)2(.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y>y.2126.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.3=.1×﹣3x的图象与坐标轴所围成的三角形的面积是S=×OB=3(4)∵OA=1,,∴函数y=3AOB △(,0),﹣1),描点即可,如图所示;)函数27.(1y=2x﹣1与坐标轴的坐标为(0(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;≤.x012x0y3()当≤时,﹣≤,因此28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

专题:一次函数的图像及性质重难点(答案)有答案

专题:一次函数的图像及性质重难点(答案)有答案

初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。

初中数学《一次函数的图像》典型例题及答案解析

初中数学《一次函数的图像》典型例题及答案解析
C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。

(最新整理)初中数学一次函数的图像专项练习30题(有答案)ok

(最新整理)初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学一次函数的图像专项练习30题(有答案)ok)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学一次函数的图像专项练习30题(有答案)ok的全部内容。

.B.C.D..B.C.D..B.C.D.y=﹣x﹣把平面直角坐标系分成四个部分,则点(,) .B.C.D.,﹣)的直线),(0,﹣),(﹣,(﹣,.B.C.D..B.C.D..B.C.D..B.C.D..B.C.D..一次函数的图象如图所示,根据图象可知,当18.如图,直线l是一次函数y=kx+b的图象,当x _________ 时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是 _________ .20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x _________ 时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是 _________ .22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而 _________ ;(2)图象与x轴的交点坐标是 _________ ;与y轴的交点坐标是 _________ ;(3)当x _________ 时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2。

初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( )A . 过点(0,3),(0,﹣)的直线B . 过点(1,5),(0,﹣)的直线C . 过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( )A .B .C .D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( )A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( )A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

(完整版)一次函数的图像和性质练习题

(完整版)一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数y kx(k 0) 一定经过点,经过(1,), 一次函数y kx b(k 0)经过(0,)点,(,0)点.2.直线y 2x 6与x轴的交点坐标是 ,与y轴的交点坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数y mx (4m 4)的图象过原点,则m的值为.4.如果函数y x b的图象经过点P(0,1),则它经过x轴上的点的坐标为 .5. 一次函数y x 3的图象经过点(, 5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2) y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是 .8.若直线y=2x+6与直线y=mx+5平行,则m=.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是.10.将直线y= — 2x向上平移3个单位得到的直线解析式是 ,将直线y= — 2x向下移3个单得到的直线解析式是 .将直线y= - 2x+3向下移2个单得到的直线解析式是.11.直线y kx b经过一、二、三象限,则k 0, b 0,经过二、三、四象限,则有k 0, b 0,经过一、二、四象限,则有k 0, b 0.12. 一次函数y (k 2)x 4 k的图象经过一、三、四象限,则k的取值范围是.13.如果直线y 3x b与y轴交点的纵坐标为 2 ,那么这条直线一定不经过第象限.14.已知点A(-4, a),B(-2,b) 都在一次函数y=-x+k(k为常数)的图像上,则a与b的大小 2关系是a—b(填" <““=”或“ >")15. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0 时,y=; 当x=p寸,y=0.(2)k=, b=.(3)当x=5 时,y=;当y=30 时,x=.二、选择题1.已知函数y (m 3)x 2,要使函数值y随自变量x的增大而减小,则m的取值范围是2 .已知直线y kx b ,经过点A(x i, y 1)和点B(x 2, y 2),若k 0,且x 1 X 2,则y 1与y 2的大5.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()两个一次函数y ax b 与y 2 bx a ,它们在同一直角坐标系中的图象可能是三、解答题1,已知一次函数 y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点;(2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.2 . 设一次函数y kx b(k 0),当x 2时,y 3,当x 1时,y 4。

最全一次函数图像专题(带解析)完整版.doc

最全一次函数图像专题(带解析)完整版.doc

最全一次函数图像专题(带解析)完整版.doc最全一次函数图像专题(带解析)完整版一次函数也称为一次方程或线性方程,是数学中的重要概念。

在本专题中,我们将详细讨论一次函数的图像及相关概念和性质。

一、一次函数的定义与性质一次函数是指形如y = kx + b的函数,其中k和b为常数,k 称为斜率,b称为截距。

一次函数的图像是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

二、一次函数的图像特征1. 斜率k的正负决定了直线的倾斜方向。

当k为正数时,直线向右上方倾斜;当k为负数时,直线向右下方倾斜。

2. 斜率k的绝对值决定了直线的倾斜程度。

绝对值越大,倾斜程度越大。

3. 当k为0时,直线为水平线;当k不存在时,直线为竖直线。

三、一次函数图像的基本形状1. 当k>0时,直线从左下方向右上方倾斜。

2. 当k=1时,直线为45°斜线。

3. 当k=-1时,直线为水平斜线。

4. 当k=0时,直线为水平线。

5. 当k不存在时,直线为竖直线。

四、一次函数的图像平移1. 沿x轴平移的结果:将y = kx + b中的b替换为b',则得到的函数为y = kx + b'。

平移后的直线与原直线平行,斜率不变,但截距发生了变化。

2. 沿y轴平移的结果:将y = kx + b中的k替换为k',则得到的函数为y = k'x + b。

平移后的直线与原直线平行,截距不变,但斜率发生了变化。

五、一次函数的图像伸缩1. 垂直伸缩的结果:将y = kx + b中的k替换为ak,其中a 为正数。

当a>1时,直线变得更陡峭;当0<a<1时,直线变得更平缓。

2. 水平伸缩的结果:将y = kx + b中的x替换为x/a,其中a为正数。

当a>1时,直线变得更平缓;当0<a<1时,直线变得更陡峭。

六、一次函数的解析法与图像的关系1. 斜率k的正负决定了图像的倾斜方向。

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。

2.在图中,当x>2时,y2>y1,因此结论③正确。

由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。

而k<0,因此结论①错误。

因此选项C正确。

3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。

4.本题为选择题,无需改写。

5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。

6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。

因此选项C正确。

7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。

8.函数y=2x+3的斜率为2,截距为3,应该是选项A。

9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。

10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。

11.由于b1<b2,因此直线y1在直线y2的下方。

由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。

因此选项B正确。

12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。

13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。

14.本题为选择题,无需改写。

15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。

16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。

18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。

19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。

初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项演习30题(有答案)1.函数y=ax+b与y=bx+a的图象在统一坐标系内的大致地位准确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,个中准确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不成能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,假如k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在统一坐标系内的图象大致是()A.B.C.D.8.函数y=2x+3的图象是()A.过点(0,3),(0,﹣)的直线B.过点(1,5),(0,﹣)的直线C.过点(﹣1,﹣1),(﹣,0)的直线D.过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1暗示的是统一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,知足b1<b2,且k1k2<0,两直线的图象是()A.B.C.D.12.如图所示,暗示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时光的增长而直线上升.若该水库的蓄水量V (万米3)与降雨的时光t(天)的关系如图所示,则下列说法准确的是()A.降雨后,蓄水量天天削减5万米3 B.降雨后,蓄水量天天增长5万米3C.降雨开端时,蓄水量为20万米3 D.降雨第6天,蓄水量增长40万米314.拖沓机开端行驶时,油箱中有油4升,假如每小时耗油0.5升,那么油箱中余油y (升)与它工作的时光t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经由第一.三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x _________ 时,y>2.17.一次函数的图象如图所示,依据图象可知,当x _________ 时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x _________ 时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,准确的断定是_________ .20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则依据图象可得,当x_________ 时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值规模是_________ .22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并依据图象答复下列问题.(1)当﹣2≤x≤4,求函数y的取值规模.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,应用图象答复下列问题:(1)求自变量的取值规模.(2)在(1)在前提下,y是否有最小值?假如有就求出最小值;假如没有,请解释来由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在统一个平面直角坐标系中画出这两个函数的图象;(2)依据图象,写出它们的交点坐标;(3)依据图象,试解释当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并依据图象答复下列问题:(1)y的值随x的增大而_________ ;(2)图象与x轴的交点坐标是_________ ;与y轴的交点坐标是_________ ;(3)当x _________ 时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是若干?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)断定点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)假如y的取值规模﹣4≤y≤2,求x的取值规模.29.已知一次函数的图象经由点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)依据图象答复问题:①图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________ ;②当x _________ 时,y>0.参考答案:1.分四种情形:①当a>0,b>0时,y=ax+b的图象经由第一.二.三象限,y=bx+a的图象经由第一.二.三象限,无选项相符;②当a>0,b<0时,y=ax+b的图象经由第一.三.四象限;y=bx+a的图象经由第一.二.四象限,C选项相符;③当a<0,b>0时,y=ax+b的图象经由第一.二.四象限;y=bx+a的图象经由第一.三.四象限,无选项相符;④当a<0,b<0时,y=ax+b的图象经由第二.三.四象限;y=bx+a的图象经由第二.三.四象限,无选项相符.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③准确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经由第二.三.四象限.故选C4.依据图象知:A.a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B.a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不成能;C.a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D.a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经由第一.二.四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情形:(1)当k>0时,正比例函数y=﹣kx的图象过原点.第一.三象限,一次函数y=kx﹣2的图象经由第一.三.四象限,选项A相符;(2)当k<0时,正比例函数y=﹣kx的图象过原点.第二.四象限,一次函数y=kx﹣2的图象经由第二.三.四象限,无选项相符.故选A.8.A.把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B.由A知函数图象不过点(0,﹣),故错误;C.把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D.分离令x=0,y=0,此函数成立,故准确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点肯定一条直线,衔接这两点就可得到y=﹣x﹣1的图象.故选D10.整顿为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B.C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一.三象限;a与b同号,同正时y=ax+b过第一.二.三象限,故D错误;同负时过第二.三.四象限,故B错误;②当ab<0时,正比例函数y=abx过第二.四象限;a与b异号,a>0,b<0时y=ax+b 过第一.三.四象限,故C错误;a<0,b>0时过第一.二.四象限.故选A13.A.依据图象知,水库的蓄水量因该跟着降雨的时光的增长而增多;故本选项错误;B.本图象的直线,所以天天的降雨量是相等的,所以,蓄水库天天的增长的水的量是(40﹣10)÷6=5;故本选项准确;C.依据图见知,降雨开端时,蓄水量为10万米3,故本选项错误;D.依据图见知,降雨第6天,蓄水量增长了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.依据题意列出关系式为:y=40﹣5t,斟酌现实情形:拖沓机开端工作时,油箱中有油4升,即开端时,函数图象与y轴交于点(0,40),假如每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D 15.∵正比例函数y=kx的图象经由第一.三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经由一.三.四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.依据题意,请求y<0时,x的规模,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.依据题意,不雅察图象,可得直线l过点(2,0),且y随x的增大而增大,剖析可得,当x>2时,有y>019.依据图示及数据可知:①一次函数y1=kx+b的图象经由第二.四象限,则k<0准确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2准确;④当x>3时,y1<y2准确;故准确的断定是①,③,④20.依据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.依据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<1 22.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,是以x的取值规模应当是0<x≤5(y轴上的点是空心圆,是以x≠0);25.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A.B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发明﹣2.5×2﹣1=﹣6≠﹣4,是以A点不在函数y=2x﹣1的图象上,然后用同样的办法剖断B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,是以x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2).(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)不雅察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0); (0,2)②<1。

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322O A O A =,∴34OA =,∵432OA OA =,。

最全一次函数图像专题(带解析)完整版.doc

最全一次函数图像专题(带解析)完整版.doc

2018/06/10一.选择题(共15小题)1.(2016•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=03.已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A.3m+1 B.3m C.m D.3m﹣14.在一次函数y=kx+b中,k为()A.正实数B.非零实数 C.任意实数 D.非负实数5.(2017•台湾)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A.L1B.L2C.L3D.L46.(2017•清远)一次函数y=x+2的图象大致是()A .B .C .D .7.(2017•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是()A .B .C .D .8.(2016•台湾)如图,有四直线L1,L2,L3,L4,其中()是方程式13x﹣25y=62的图象.A.L1B.L2C.L3D.L49.(2016•贵阳)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<210.(2015•芜湖)关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D .11.(2017•乐山)若实数k,b满足kb<0且不等式kx<b的解集是x >,那么函数y=kx+b的图象只可能是()A .B .C .D .12.(2015•江津区)已知一次函数y=2x﹣3的大致图象为()1A. B.C.D.13.(2014•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.14.(2017•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣115.(2016•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二.填空题(共10小题)16.(2017•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是_________.17.已知一次函数y=(k﹣1)x|k|+3,则k=_________.18.当m=_________时,函数y=(m﹣3)x2+4x﹣3是一次函数.19.已知2x﹣3y=1,若把y看成x的函数,则可表示为_________.20.已知函数y=(m﹣1)+1是一次函数,则m=_________.21.若函数y=(m﹣)+m是一次函数,则m的值是_________.22.已知函数是一次函数,则m=_________,此函数图象经过第_________象限.23.根据图中的程序,当输入数值x为﹣2时,输出数值y为_________.24.在函数y=﹣2x﹣5中,k=_________,b=_________.25.购某种三年期国债x元,到期后可得本息和为y元,已知y=kx,则这种国债的年利率为(用含k的代数式表示)_________.三.解答题(共5小题)26.已知函数是一次函数,求k和b的取值范围.27.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?28.已知是y关于x的一次函数,并且y的值随x值的增大而减小,求m的值.29.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.30.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.答案与评分标准一.选择题(共15小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。

(完整版)一次函数图像问题附答案

(完整版)一次函数图像问题附答案

一次函数图像问题附答案一、基本识图问题1.(2007•常州)如图,图像(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A、第3分时汽车的速度是40千米/时B、第12分时汽车的速度是0千米/时C、从第3分到第6分,汽车行驶了120千米D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时二、行程问题1.(2009•滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是()A、B、C、D、2.(2007•鄂尔多斯)如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()A 、B、C、D、三、行走路线问题1. 图1是韩老师早晨出门散步时,离家的距离(y)与时间(x)之间的函数图像。

若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图1四、速度问题1.如图4所示的函数图像反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米/小时。

图42. 图中由线段OA、AB组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x 轴表示步行的时间,y轴表示步行的路程.他在6分至8分这一时间段步行的速度是()A、120米/分B、108米/分C、90米/分D、88米/分五、图像变化快慢问题Ⅰ.直线变化1. (2009•金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图像大致是()A、B、C、D、2.1、2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图像表示正确的是()Ⅱ.曲线变化3.(2005•余姚市)向高为10cm的容器中注水,注满为止,若注水量Vcm3与水深hcm之间的关系的图像大致如下图,则这个容器是下列四个图中的()A、B、C、D、六、特殊背景----------注水问题1. (2007•牡丹江)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用﹣注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为()A、B、C、D、2. (2005•黄冈)有一个装有进、出水管的容器,单位时间进、出的水量都是一定的.已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t(分)变化的图像是()A、B、C、D、七、图像对称问题1. (2007•呼和浩特)已知某函数图像关于直线x=1对称,其中一部分图像如图所示,点A (x1,y1),点B(x2,y2)在函数图像上,且﹣1<x1<x2<0,则y1与y2的大小关系为()A、y1>y2B、y1=y2C、y1<y2D、无法确定八、图像转换问题1. (2007•泰安)骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图像表示,大致正确的是()A、B、C、D、九、易错----------细节理解问题1.汽车由重庆驶往相距400千米的成都。

一次函数图像练习题及答案

一次函数图像练习题及答案

一次函数图像练习题及答案一次函数是数学中最简单的一种函数形式,它的图像是一条直线。

在学习一次函数的图像时,做一些练习题可以帮助我们更好地理解和掌握这一概念。

下面是一些一次函数图像练习题及其答案,供大家参考。

练习题1:已知一次函数 y = 2x + 3,求该函数对应的图像的斜率和截距,并画出函数图像。

答案1:这是一个一次函数,其一般形式为 y = kx + b。

比较已知函数 y = 2x + 3 和一般形式可以得知,斜率 k = 2,截距 b = 3。

斜率代表着直线的斜率,即直线上点的纵坐标变化量与横坐标变化量的比值,截距表示了直线与纵轴的交点。

根据斜率和截距,我们可以画出函数图像。

首先,选择几个合适的x 值,计算对应的 y 值,然后将这些点连接成一条直线。

选择 x = 0,代入函数 y = 2x + 3,得到 y = 2(0) + 3 = 3;选择 x = 1,代入函数 y = 2x + 3,得到 y = 2(1) + 3 = 5;将这两个点连接起来,就得到了直线的图像。

注意到斜率为正,直线的图像是向上倾斜的。

练习题2:已知一次函数的图像过点 (1, 4),斜率为 3,求该一次函数的表达式。

答案2:已知直线的斜率为 3,过点 (1, 4),我们使用点斜式得到该一次函数的表达式。

点斜式为 y - y₁ = k(x - x₁),其中 (x₁, y₁) 为过直线的一点,k 为直线的斜率。

代入已知条件,得到 y - 4 = 3(x - 1)。

展开化简得到 y - 4 = 3x - 3。

移项得到 y = 3x + 1。

所以该一次函数的表达式为 y = 3x + 1。

练习题3:已知一次函数的图像与 x 轴交点为 (2, 0),y 轴交点为 (0, -3),求该一次函数的表达式。

答案3:已知直线与 x 轴的交点为 (2, 0),与 y 轴的交点为 (0, -3),我们可以通过这两个点求出直线的斜率和截距,从而得到一次函数的表达式。

一次函数图像复习专题

一次函数图像复习专题
SPAB1 2PM A B1 24612
-1
0M
3
x
3.已知直线y=kx+12和两坐标轴相交所围
成的三角形的面积为24,求k的值 y
解:由图象知,AO=12,根据面积 得到,BO=4即B点坐标为(4,0)
A(0,12)
OB
x
所以k= -3 B的坐标还有可能为(-4,0)
所以k= 3
y = 2x﹣4 与y 轴交于( 0 , - 4 )
11
o
x
-2 ●(1, ﹣2)
∴ y = 2x﹣4
y = ﹣3x + 1与y 轴交于( 0 , 1)
-4
S△=
5 2
例4、某医药研究所开发了一种新药,在试验药效时发现,如果
成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达 每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液 中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间 x(小时)的变化如图所示,当成人按规定剂量服药后,
解:(1)由题意: 2=﹣(m+1)+2m﹣6
(3) 由题意得
y 2x 4

y

3x
1
y = ﹣3 x + 1
y
y = 2x﹣4
解得 m = 9
∴ y = 10x+12
x1
解得:

y

2
(2) 由题意,m +1= 2 ∴ 这两直线的交点是(1 ,﹣2)
解得 m = 1
3)乙从出发起,经过 h与甲相遇;
A
4)甲的速度为 的速度为
km/h , 乙骑车 km/h
5)甲行走的路程s(千米)与时间t(小时) 之间的函数关系式是

一次函数图像练习题

一次函数图像练习题

一次函数图像练习题未提供具体的一次函数图像练习题,因此我将提供一些关于一次函数图像练习题的相关知识和解题方法,帮助读者更好地理解这一概念和应用。

一次函数,也称为线性函数,是数学中最简单的函数之一。

它的一般形式可以写为:f(x) = ax + b,其中a和b是常数。

一次函数的图像是一条直线,通过确定的两个点就可以唯一确定一条直线。

下面,我们将以几个具体的练习题为例,介绍解决一次函数图像的方法。

练习题一:考虑一条直线过点A(2, 3)和点B(-1, -2),求出经过这两个点的一次函数的方程。

解题方法:首先,我们可以使用点斜式来求解。

点斜式的一般形式为:y - y1 = m(x - x1),其中m是直线的斜率,(x1, y1)是直线上的某一点坐标。

我们可以计算斜率m如下:m = (y2 - y1) / (x2 - x1) = (-2 - 3) / (-1 - 2) = -5 / -3 = 5 / 3然后,在点斜式中代入一个已知点的坐标和斜率:y - 3 = (5/3)(x - 2)将等式变形,得到一次函数的方程:y = (5/3)x - 1/3所以,经过点A(2, 3)和点B(-1, -2)的一次函数的方程为y = (5/3)x - 1/3。

练习题二:已知一次函数的图像过点A(4, 6),且与x轴交于点B(-2, 0),求出该一次函数的方程。

解题方法:此题已经给出了过点A(4, 6)和点B(-2, 0)的信息,我们可以直接使用点斜式来求解。

首先,计算斜率m:m = (0 - 6) / (-2 - 4) = -6 / -6 = 1代入点斜式,并将等式变形,得到一次函数的方程:y - 6 = 1(x - 4)y = x - 2所以,经过点A(4, 6)和点B(-2, 0)的一次函数的方程为y = x - 2。

通过以上两个练习题的解答,我们可以看到,解决一次函数图像的问题主要涉及找到直线上的两个点,并利用这两个点的坐标来确定斜率和方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:一次函数图像问题
一、基本识图问题
1.(2007•常州)如图,图像(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()
A、第3分时汽车的速度是40千米/时
B、第12分时汽车的速度是0千米/时
C、从第3分到第6分,汽车行驶了120千米
D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时
二、行程问题
1.(2009•滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是()
A、B、
C、D、
2.(2007•鄂尔多斯)如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()
A 、
B 、
C 、
D 、
三、行走路线问题
1. 图1是韩老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像。

若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )
四、速度问题
1.如图4所示的函数图像反映的过程是:小明从家去书店,又去学校取封信后马上回家,其
中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米/小时。

2. 图中由线段OA 、AB 组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x 轴表示步行的时间,y 轴表示步行的路程.他在6分至8分这一时间段步行的速度是( )
A 、120米/分
B 、108米/分
C 、90米/分
D 、88米/分
图1
图4
图像变化快慢问题
Ⅰ.直线变化
1. (2011•金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图像大致是()
A、B、
C、D、
2.1、2009年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图像表示正确的是()
Ⅱ.曲线变化
3.(2010•余姚市)向高为10cm的容器中注水,注满为止,若注水量Vcm3与水深hcm之间的关系的图像大致如下图,则这个容器是下列四个图中的()
A、B、
C、D、
特殊背景----------注水问题
1. (2009•牡丹江)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用﹣注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为()
A、B、
C、D、
2. (2010•黄冈)有一个装有进、出水管的容器,单位时间进、出的水量都是一定的.已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t(分)变化的图像是()
A、B、
C 、
D 、
七、图像对称问题
1. (2011•呼和浩特)已知某函数图像关于直线x=1对称,其中一部分图像如图所示,点A (x1,y1),点B(x2,y2)在函数图像上,且﹣1<x1<x2<0,则y1与y2的大小关系为()
A、y1>y2
B、y1=y2
C、y1<y2
D、无法确定
易错----------细节理解问题
1.汽车由重庆驶往相距400千米的成都。

如果汽车的平均速度是
100千米/小时,那么汽车距离成都的路程S(千米)与行驶时间t (小时)的函数关系永图像表示为()
A、 B、 C、 D、
2. (2009•辽宁)一辆汽车由A地匀速驶往相距300千米的B地,汽车的速度是100千米/小时,那么汽车距离A地的路程S(千米)与行驶时间t(小时)的函数关系用图像表示为()
A、B、
C、D、
几何运动问题
Ⅰ.面积问题
1. (2011•重庆)如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC 在直线EF上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图像大致是()
A、B、
C、D、
2. (20010•北京)如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图像中,能正确反映y与x 的函数关系的是()
A 、
B 、
C 、
D 、
3. 如图2,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图像表示大致是下图中的()
图2
Ⅱ. 以不变应万变--------常量问题
4. 已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB 于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图像中,大致表示y与x之间的函数关系的是()
A 、
B 、
C 、
D 、
双一次函数问题
1.小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a、b分别表示两人跑的路程与小明追赶时间的关系,
根据图像判断:小明的速度比小强的速度每秒快
A、1米
B、1.5米
C、2米
D、2.5米
2.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).根据图像,下列说法错误的
是()
A.爸爸登山时,小军已走了50米
B.爸爸走了5分钟,小军仍在爸爸的前面
C.小军比爸爸晚到山顶
D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快
双分段函数问题
1.(2010•鄂尔多斯)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误的是()
A、若通话时间少于120分,则A方案比B方案便宜20元
B、若通话时间超过200分,则B方案比A方案便宜12元
C、若通讯费用为60元,则B方案比A方案的通话时间多
D、若两种方案通讯费用相差10元,则通话时间是145分或185分
参考答案:
一、1.C
二、1.D 2.B
三、1.D
四、1.6 2.D
五、1.D 2.C 3.C
六、1.B 2.A
七、1.C
八、1.A
九、1.C 2.B
十、 1.C 2.A 3.A 4.A 十一、1.D 2.D
十二、1.D。

相关文档
最新文档