离散数学第9章习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题9
1. 设G 是一个(n ,m)简单图。证明:,等号成立当且仅当G 是完全图。
证明:(1)先证结论:
因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。 (2) =〉G 是完全图 因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G 的每个结点的点度都为n-1,G 为完全图。 G 是完全图 =〉 因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。■
2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。
证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。与题设m = n+1,矛盾。因此,G 中存在顶点u ,d (u )≥3。■
3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5)
解:除序列(1)不是图序列外,其余的都是图序列。因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。
可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。最后,将奇数序列对应的点两两一组,添加连线即可。下面以(2)为例说明:
(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}
每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)
将奇数3,3 对应的结点v 2,v 3一组,画一条连线
其他序列可以类式作图,当然大家也可以画图其它不同的图形。■
4.证明:在(n ,m )图中。
证明:图的点度数是一组非负整数{d(v 1),d(v 2)…d(v n )},那么这组数的算术平均值一定大于等于其中的最小值,同时小于等于其中的最大值。对应到图的术语及为:最大值为,最小值为δ,平均值 = (d(v 1)+d(v 2)…+d(v n ))/n = 2m/n,所以。■
5.证明定理10.2。
【定理10.2】 对于任何(n ,m )有向图G =(V ,E ),
证明:有向图中,每条有向边为图贡献一度出度,同时贡献一度出度,所以总出度和总入度相等,并和边数相等。因此,上述关系等式成立。■
6.设G 是(n ,m )简单二部图,证明:。
证明:本题目,我们只需要说明n 阶的简单二部图的边数的最大值 = 即可。
设n 阶的简单二部图,其两部分结点集合分别为V1,V2,那么|V1| + |V2| = n 。此种情况下,当G 为完全二部图时,有最多的边数,即max(m) = |V1||V2|,变形为,max(m) =( n-|V2|)|V2|.此函数的最大值及为n 阶二部图的边的上限值,其上限值为当|V2|=n/2 时取得。及max(max(m)) = ,所以n 阶二部图(n,m), ■
7. 无向图G 有21条边,12个3度数结点,其余结点的度数均为2,求G 的阶数n 。
解:根据握手定理有: 21 =( 3Χ12 + 2(n-12))/2, 解此方程得n = 15■
10.判断图10.29中的两个图是否同构,并说明理由。
图9-1.15
解:题中两个图不同构,因为左边图的唯一3度点有2个1度点为其邻接点,而右图唯一的3度点只有1个1度点为其邻接点。因此这两个图不可能同构■
13. 设有向图D=
(1) 在图中找出所有长度分别为1,2,3,4的圈 (至少用一种表示法写出它们,并以子图形式画出它们)。
(2) 在图中找出所有长度分别为3,4,5,6的回路,并以子图形式画出它们。
解:(1)
(2)子图略
C=AA
C=ADA
C=Ae 4Be 7Ce 5A
C=Ae 4Be 8Ce 5A C=Ae 4Be 7Ce 6De 2A
C=Ae 4Be 8Ce 6De 2A
图
10.29
长度为三的回路:Ae1Ae1Ae1A,Ae1Ae3De2A,Ae4Be7Ce5A,Ae4Be8Ce5A
长度为四的回路:AAAAA,AAADA,AABe7CA,AABe8CA,ABe7CDA,ABe8CDA
长度为五的回路:AAAAAA,AAAADA,AAABe7CA,AAABe8CA,AABe7CDA,AABe8CDA, AADADA,AAAe4Be7Ce5A,AAAe4Be8Ce5A, ADAe4Be7Ce5A,ADAe4Be8Ce5A■
15. 若u和v是图G中仅有的两个奇数度结点,证明u和v必是连通的。
证明:反证法,假设u和v不连通,那么他们必然分布于此图的两个连通分支中。那么它们将分别是各连通分支中唯一的奇数度结点。根据握手定理,一个图中奇度点的个数为偶数。而两个连通分支中,奇度点的个数为奇数。矛盾。矛盾的产生,是由于假设不连通导致的,因此,题设结论成立■
17.设(n, m)简单图G满足,证明G必是连通图。构造一个的非连通简单图。
证明:假设G不连通,分支G1,G2..Gk,那么他们的边数的最大值max(m)=Σ(ni-1)ni/2≤Σ(ni-1)(n-1)/2=(n-1)/2Σ(ni-1)=(n-1)(n-k)/2,所以,只有当k=1时,才能满足题设要求,G是连通图。如果将顶点集合分成两个点集,|V1|=1,|V2|=n-1,构成如下的有两个分支的非连通简单图,G1=(1,0),G2=Kn-1,满足题设条件■
18. 设G是阶数不小于3的连通图。证明下面四条命题相互等价:
(1)G无割边;
(2) G中任何两个结点位于同一回路中;
(3) G中任何一结点和任何一边都位于同一回路中;
(4) G中任何两边都在同一回路中。
证明:(1)=〉(2)
因为G连通,且G无割边,所以任意两个结点u,v,都存在简单道路p=u…wv.又因为G无割边,所以,删除边wv后,子图依然连通,即w,v存在简单道路p’,以此类推,可以找到一条核p每条边都不相同的p’’=v…u,这样p和p’’就构成了一条回路。
(2)=〉(3)
因为G中任意两个结点都位于同一回路中,所以任意结点u,和任意边e的两个端点v1,v2都分别在两个回路C1,C2中,如果C1=C2=u…v1…v2…u,那么将回路中v1…v2,用v1v2=e替换,就得到新的新的回路,并满足要求。如果C1≠C2,C1=u…v1…u,C2=u…v2…u,那么构成新的道路P=u…v1…u…v2…u,在其中将重复边剔出掉,得到新的回路C3,其中包含v1,v2结点,可以将回路中v1…v2用v1v2=e替换,就得到新的新的回路,并满足要求.
(3)=〉(4)
对任意两条边e1,e2其端点分别为u1,u2,v1,v2。根据(3)存在回路C1 = u1…v1v2…u1,C2=u2…v1v2…u2。那么可以形成新的闭道路P=u1…v1v2…u2…v1v2…u1,在其中将重复边剔出到,得到新的回路C3,其中包含e2和u1,u2结点,可以将回路中u1…u2用u1u2=e1替换,就得到新的新的回路,包含e1,e2,满足要求.
(4)=>(1)
因为任意两条边都在同一回路中,所以不存在割边。假设边e是割边,那么删除此边,图不