数学八年级下册一次函数

合集下载

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x

-4
-2
0
2
4

y= 1 x 2

-2
-1
0
1
2

y=-1 x

人教版八年级下册数学册第十九章 一次函数的图像和性质

人教版八年级下册数学册第十九章 一次函数的图像和性质

2)、描点
y=2x+1
3)、连线
因为一次函数的图象是 一条直线,所以只要取 两个点就能画出函数的
图象
练习
选取适当的两点在坐标系中画出下面函数的图象 (同桌各画一组)
1)、y =2x 2)、y =-2x
y =2x+2 y =-2x+2
y =2x-2 y =-2x-2
练习
选取适当的两点在坐标系中画出下面函数的图象 (同桌各画一组)
1)、y =2x 2)、y =-2x
y =2x+2 y =-2x+2
y =2x-2 y =-2x-2
y=2x+2
y=-2x
y=2x-2
y=-2x+2
y=-2x-2
y=-2x
自学提示二
自学内容:
观察第一组函数的图象,根据你的观察完成导学 案中的3、4、5题。
自学方法:
阅读课本,利用数形结合、类比的数学思想 方法。
自学要求: 先独立思考后小组交流完成。
自学互帮
自学内容:
观察第一组函数的图象,根据你的观察完成导学 案中的问题。
自学方法:
阅读课本,利用数形结合、类比的数学思想 方法。
自学要求: 先独立思考后小组交流完成。
释疑
自学内容:1、 观察第一组函数的图象,根据你 的观察回答下列问题:
(1)这三个函数的图象形状都 是直线,并且倾斜程度 相同 ;
量x 可以是任意的实数,
解:1)、列表
列表表示几组对应值
x
. . . -2
-1 0 1
2
...
y=2x+1 . . .
-3 -1
1
3
5 ...

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版
(1)放入一个小球后水桶中水面升高________ cm; (2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个) 之间的一次函数关系式;(不要求写出自变量的取值范围) (3)水桶中至少放入几个小球时有水溢出?
解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件
第21章 一次函数
21.2 一次函数的图像(tú 和性质 xiànɡ)
第一页,共二十四页。
第21章 一次函数
第2课时(kèshí) 一次函数的性质
知识目标 目标突破 总结反思
第二页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
知识(zhī shi)目标
1.经历(jīnglì)观察图像探索一次函数的增减性的过程,会应用一次函 数的增减性解决字母参数问题. 2.经历探索一次函数的图像和k,b的关系的过程,会运用一次函数的 图像和比例系数的关系求解字母参数.
D.k<0,b<0
[解析] ∵一次函数y=kx+b的图像(tú xiànɡ)经过一、三象限,∴k>0.又∵ 该图像与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.
第八页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
(2)2017·广安当k<0时,一次函数y=kx-k的图像不经过( )
第十六页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
【归纳总结】一次函数的其他性质:
(1)一次函数 y=kx+b(k≠0,k,b 为常数)与 x 轴的交点坐
b 标为(-k,0),与
y
轴的交点坐标为(0,b);
(2)一次函数与不等式的关系:可以根据函数关系式将一个变
量满足的不等关系,转变为另一个变量满足的不等关系,从而确
第二十一页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ) 2.已知直线y=2x+m不经过第二象限,求m的取值范围.
解:∵k=2>0,
∴直线经过第一、三象限. ∵直线不经过第二象限,
∴直线经过第一、三、四象限,故m<0.

【初二课件】人教版八年级数学下册第十九章一次函数函数课件

【初二课件】人教版八年级数学下册第十九章一次函数函数课件

x 1
2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
练一练
填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗? 答: 不是 .
(2)y是x的函数吗?为什么? 关键词:两个变量,
答:不是,因为y的值不是唯一的.
给一个x,得一个y. 易错点:顺序不要反.
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3; y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10, 其中表示y 是x 的函数关系的是 .
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
当堂练习
1.下列说法中,不正确的是( C ) A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是( C )

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。

数学人教八年级下册课件一次函数课时3

数学人教八年级下册课件一次函数课时3
b.
解:设这个一次函数的解析式为 y=kx+b(k≠0)
∵ y=kx+b 的图象过点(3,5)与(-4,-9)

3k+b=5
-4k+b=-9
解得:
k=2
b=-1
∴ 这个一次函数的解析式为 y=2x-1.
由上面的例题你能归纳出求函数解析
式的方法吗?
待定系数法:先设出函数解析式,再根据条件确定解析式中未
图象是一条直线,我们称它为直线y=kx+b.
知识回顾
已知正比例函数y=kx(k≠0)的图象经过点(-1,2),求这个
正比例函数的解析式.
解:∵正比例函数 y=kx(k≠0)经过点(-1,2)
∴-k=2,解得:k=-2
∴这个正比例函数的解析式为: y=-2x
学习目标
1.掌握用待定系数法求函数解析式的方法.
当 x>2时,y=4(x-2)+10=4x+2.
函数图象如图所示.
y 与 x 的函数解析式也可以合起来
5, 0 ≤ ≤ 2,
表示为 = ቊ
4 + 2, > 2.
思考
你能由上面的函数解析式解决以下问题吗?由函数图象也
能解决这些问题吗?
14
(1)一次购买 1.5kg 种子,需付款多少元?
需要知道几个条件.
那么该采取什么方法确定函数解
析式呢?
知识点:待定系数法
例4 已知一次函数的图象经过点(3,5)与(-4,-9),
求这个一次函数的解析式.
这两点的坐标适合解析式
分析:求一次函数 y=kx+b 的解析式,关键是求出 k、b 的值.
从已知条件可以列出关于 k、b 的二元一次方程组,并求出 k、

八年级数学下册 第章 函数及其图象 . 一次函数 一次函数的图像与坐标轴的交点

八年级数学下册 第章 函数及其图象 . 一次函数 一次函数的图像与坐标轴的交点
数的图象. [点拨] 注意数形结合,并利用方程的思想来理解,不要死记
硬背.
第十一页,共十七页。
17.3.2 2 第 课时(kèshí) 一次函数的图象与坐标轴的交点
知识点二 实际(shíjì)问题中一次函数的图象
一次函数的图象可能是一条直线、一条线段,还可能是一条射 线、一条折线或一些离散的点,这全部取决于自变量的 ___取_值__范_围__(f_àn_wé_i),因此在解题时应具体问题具体分析.
第十七页,共十七页。
第17 函数 及其图象 章
(hánshù)
17.3.2 第2课时
一次函数的图象(tú xiànɡ)与坐标轴的交点
第一页,共十七页。
第17章 函数(hánshù)及其图象
17.3.2 第2课时 一次函数 的图象 与坐标轴的交点 (tú xiànɡ)
知识目标 目标突破 总结反思
第二页,共十七页。
17.3.2 第2课时 一次函数的图象(tú xiànɡ)与坐标轴的交点
总结(zǒngjié)反思
知识点一 一次函数y=kx+b(k,b为常数,且k≠0)的图象与坐标轴的交点(jiāodiǎn)坐标的求法
1.由于 x 轴上的点的纵坐标为零,y 轴上的点的横坐标为零, 因此在求直线 y=kx+b 与 y 轴或 x 轴的交点坐标时,只需令 _x_=__0或__y_=_0__,即可分别求出直线 y=kx+b(k≠0)与 y 轴交点的纵 坐标或与 x 轴交点的横坐标.
1 ∴S△ABO=2×2×4=4.
第五页,共十七页。
17.3.2 第2课时(kèshí) 一次函数的图象与坐标轴的交点
【归纳总结】
直线y=kx+
与x轴的交点坐标为-bk,0;
b(k≠0)与坐标与y轴的交点坐标为(0,b);

人教版八年级数学下册课件:19.2一次函数--2.3 一次函数与方程、不等式(2)一次函数与二元一次方程组

人教版八年级数学下册课件:19.2一次函数--2.3  一次函数与方程、不等式(2)一次函数与二元一次方程组

24
知识点三:二元一次方程组与一次函数的关系
学以致用
3.已知坐标平面上有两直线相交于一点(2,a),且两直线的方
程式分别为2x+3y=7,3x-2y=b,其中a,b为两数,求a+b之值
为何?( C)A.1 B.-1 C.5 D.-5
4.若一次函数y=k1x+b1与y=k2x+b2的图象没有交点,则关于x
∴OA=3,OB=1,∴AB=4.∴S△ABC=
1 2
×4×1=2.
27
知识点四:一次函数与方程(组)与几何图形的综合问题
典例讲评
解:(3)能,理由如下:设点P的横坐标为x, y

S△APB=
1 2
×4×|x|=6,
A C
解得x=±3.
O
x
B
把x=3代入y=-2x-1,得y=-7;
把x=-3代入y=-2x-1,得y=5;
情景引入
大家观察一次函数的解析式y=x+1,是否有过这样的 疑问:为什么一次函数的解析式与二元一次方程非常相似呢? 是的,你没有猜错,如果我们将一次函数的解析式看作为 一个元一次方程,那么,一次函数y=x+1上的每一个点坐 标就对应二元一次方程x-y+1=0上的一个解.一次函数图象 上有无数个点,二元一次方程也有无数个解.本节课,我们 就来看看一次函数与二元一次方程的关系.
y y=kx-1
A
O Bx C
31
知识点四:一次函数与方程(组)与几何图形的综合问题
学以致用
2.(3)①当点A运动到什么位置时, △AOB的面积是 ? ②在①成立的情况下,在两条坐标轴上是
否存在一定P,使△POA是等腰直角三角 形?若存在,请写出满足条件的所有点P 的坐标;若不存在,请说明理由.

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。

4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)当x=2.5时, y=3×2.5 - 9= -1.5.
课堂检测
能力提升题
我国现行个人工资、薪金所得税征收办法规定:月收入低于
5000元的部分不收税;月收入超过5000元但低于8000元的部分 征收3%的所得税……如某人月收入5360元,他应缴个人工资、 薪金所得税为:(5360-5000)×3%=10.8元. (1)当月收入大于5000元而又小于8000元时,写出应缴所得税
连接中考
根据记录,从地面向上11km以内,每升高1km,气温降低6℃; 又知在距离地面11km以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x(km)处的气温为y(℃) (1)写出距地面的高度在11km以内的y与x之间的函数表达式; (2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻, 她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时, 飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;
答:画正比例函数y=kx(k≠0)的图像,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
素养目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1. 会画一次函数的图象,能根据一次函数的图 象理解一次函数的增减性 .

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组

x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb

的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.

八年级数学下册17.3一次函数17.3.4求一次函数的关系式初中八年级下册数学

八年级数学下册17.3一次函数17.3.4求一次函数的关系式初中八年级下册数学
(2)把这两摞碗整齐地摆成一摞时,碗的高度(gāodù)是多少?
11cm
第十二页,共二十页。
14c m
2.在弹性限度(xiàndù)内,弹簧的长度 y(厘米)是 所挂物体质量 x(千克)的一次函数。一根弹
簧不挂物体时长14.5厘米;当所挂物体的质量为
3千克时,弹簧长16厘米。请写出 y 与x之间的
t (时 间) 0 1 2 3 …
y(耗油 10 84 68 52 … 2. 小量明根) 据(gēnjù)某0个一次函数关系式填写了下表:
x -2 -1 0 1
y3
10
其中有一格不慎被墨汁遮住了,想想看,该空格
(kōnɡ ɡé)里原来填的数是多少?解释你的理由。
第十页,共二十页。
导学:观察表格,你能得到那些信 息
1
什么?
解:图像是经过原点的直线(zhíxiàn),因此是正比例函数, 设解析式为y=kx,把(1,2)代入,得k=2,所以解析式为
y=2x.
第四页,共二十页。
问题(wèntí)2、如图所示, y
已知直线AB和x轴交于 5
点B,和y轴交于点A
4
导学:①写出AB两点
的坐标
②求直线AB的 表达式
3
2A
某物体沿一个斜坡下 滑,它的速度(sùdù) v (米/秒)与其下滑时间 t (秒)的关系如右图 所示:请写出 v 与 t 的关系式;
V/(米/秒)
导学:利用(lìyòng)待定系数法求解关系式
导做:独立完成,组内订对
导思:有解析式到以及由图像到解析式体 O
现了什么数学思想
t/秒
第七页,共二十页。
从数到形
式.
问题2.已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.

数学八年级下册一次函数

数学八年级下册一次函数

数学八年级下册一次函数
摘要:
一、一次函数的定义与性质
1.一次函数的定义
2.一次函数的性质
二、一次函数的图像与解析式
1.一次函数的图像
2.一次函数的解析式
三、一次函数的应用
1.函数与实际问题的联系
2.一次函数在实际问题中的应用
四、一次函数的学习意义与方法
1.一次函数的学习意义
2.一次函数的学习方法
正文:
数学八年级下册一次函数是初中数学中非常重要的内容。

一次函数是初中学生接触到的第一个基本函数,也是以后学习其他函数的基础。

一次函数的定义是指形如y=kx+b(k≠0,k、b为常数)的函数,其中x叫做自变量,y叫做因变量。

自变量x的取值范围是全体实数,而因变量y的取值范围则是函数的值域。

一次函数的性质包括:函数图像是一条直线,函数的值随着自变量的增大而增大或减小;当x=0时,y=b,即函数图象与y轴的交点
为(0,b)。

一次函数的图像与解析式密切相关。

解析式是函数图像的数学表达式,而图像则是解析式的几何表示。

在数学中,我们可以通过解析式来绘制函数图像,也可以通过函数图像来推导解析式。

一次函数在实际问题中有广泛的应用。

例如,我们可以通过一次函数来描述物体的运动轨迹,也可以通过一次函数来预测未来的发展趋势。

在解决实际问题时,我们需要根据问题的具体情境,选择合适的一次函数模型,并通过计算或测量来确定函数的参数。

学习一次函数不仅可以帮助我们更好地理解数学知识,也可以提高我们的逻辑思维能力和问题解决能力。

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级下册一次函数
摘要:
1.一次函数的定义与概念
2.一次函数的性质与图像
3.一次函数的应用
正文:
一次函数是数学中非常基础且重要的内容,尤其在初中数学阶段,它是学生接触到的第一个函数类型。

本篇文章将为大家介绍一次函数的定义与概念、性质与图像以及应用。

首先,我们来了解一次函数的定义与概念。

一次函数指的是形如y=ax+b (a≠0,a、b 为常数)的函数,其中a 和b 是常数,x 是自变量,y 是因变量。

在这个函数中,a 被称为斜率,b 被称为截距。

斜率表示的是函数图像的倾斜程度,如果a>0,那么函数图像是从左到右上升的,反之则是从左到右下降的。

截距则表示的是函数图像与y 轴的交点,如果b>0,那么函数图像与y 轴的交点在y 轴的正半轴,反之则在y 轴的负半轴。

接下来,我们来了解一次函数的性质与图像。

一次函数的图像是一条直线,可以通过斜率和截距来确定这条直线的位置。

当a>0 时,直线是从左到右上升的,当a<0 时,直线是从左到右下降的。

而截距则决定了直线与y 轴的交点。

此外,一次函数的图像还有一些特殊的性质,比如它不会与x 轴有交点,也不会与y 轴平行。

最后,我们来看一下一次函数的应用。

一次函数可以用来描述各种实际问
题中的数量关系,比如速度与时间的关系、路程与时间的关系、物体的价格与数量的关系等。

通过一次函数,我们可以更直观地理解和解决这些问题。

总的来说,一次函数是我们学习函数的起点,也是理解现实世界中数量关系的重要工具。

相关文档
最新文档