三角形的定义性质

合集下载

三角形的概念与性质

三角形的概念与性质

三角形的概念与性质三角形是几何学中重要的概念,它具有独特的性质和特点。

在本文中,我们将探讨三角形的定义、分类以及一些基本性质。

一、三角形的定义三角形是由三个线段组成的图形,这三个线段称为它的边。

三个边的交点称为三角形的顶点。

三角形的边可以是任意长度,但需要满足以下条件:1. 任意两边之和大于第三边;2. 任意两边之差小于第三边。

二、三角形的分类根据三角形的边长和角度,我们可以将三角形分为以下几类:1. 等边三角形等边三角形的三条边均相等,三个内角也均相等,每个角度都为60度。

2. 等腰三角形等腰三角形有两条边相等,两个对应角度也相等。

等腰三角形的顶角是两个底角的对边,两个底角的度数相等。

3. 直角三角形直角三角形有一个内角为90度,我们将斜边定义为最长的一条边,而与直角相邻的两边称为直角腿。

直角三角形的两个直角腿的长度可以相等,也可以不等。

4. 锐角三角形锐角三角形的三个内角均小于90度。

5. 钝角三角形钝角三角形有一个内角大于90度。

三、三角形的性质三角形具有多种性质,下面我们将介绍其中一些重要的性质。

1. 内角和性质三角形的三个内角的和为180度。

无论三角形的形状如何,无论是锐角、直角还是钝角三角形,它们的内角和都是固定的。

2. 外角性质以三角形的一个顶点为中心,作另外两边所在直线的延长线,与该顶点不相邻的两个外角的和等于第三个外角。

3. 边与角的关系三角形的任意两边之间的夹角大小与它们的边长有关,可以通过三角函数进行计算。

三角函数有正弦、余弦和正切等。

4. 相似三角形性质如果两个三角形的对应角相等,那么它们被称为相似三角形。

相似三角形的对应边的长度比例相等。

5. 三角形的面积三角形的面积可以通过海伦公式或底边高公式来计算,其中海伦公式适用于已知三边长的情况,而底边高公式适用于已知底边及高的情况。

结论三角形作为几何学中的基本图形之一,具有丰富的性质和特点。

通过理解三角形的概念和性质,我们可以更好地应用几何学知识解决实际问题。

三角形的性质及特殊线段

三角形的性质及特殊线段

三角形的性质及特殊线段三角形是几何学中最基本的形状之一,它具有许多重要的性质和特殊线段。

本文将对三角形的性质进行探讨,并介绍一些重要的特殊线段。

一、三角形的性质1. 三角形的定义:三角形是由三条边和三个顶点组成的多边形。

其中,每两条边之间形成一个角,三个角之和为180度。

2. 三角形的内角和:三角形的内角和总是等于180度。

这一性质可以用以下公式表示:∠A + ∠B + ∠C = 180°3. 三角形的外角和:三角形的外角和总是等于360度。

外角是指一个内角的补角,用以下公式表示:∠A' + ∠B' + ∠C' = 360°4. 三角形的边长关系:三角形的两边之和大于第三边。

这一性质被称为三角形的三边不等式。

即:AB + AC > BC, BC + AC > AB, AB + BC > AC二、特殊线段1. 中线:三角形中的中线是连接三角形两边中点的线段。

对于任意三角形ABC,其三条中线交于一个点,称为三角形的重心G。

重心G将三角形划分为六个小三角形,每个小三角形的面积都相等。

2. 高线:三角形的高线是从一个顶点画到对边上的垂线。

对于任意三角形ABC,它的三条高线交于一个点,称为三角形的垂心H。

垂心H到三条边的距离都相等,即AH = BH = CH。

3. 角平分线:三角形的角平分线是从一个顶点将对角线平分的线段。

对于任意三角形ABC,它的三条角平分线交于一个点,称为三角形的内心I。

内心I到三条边的距离都相等,即AI = BI = CI。

4. 垂直平分线:三角形的垂直平分线是连接一条边的中点与对边垂直平分线的线段。

对于任意三角形ABC,它的三条垂直平分线交于一个点,称为三角形的外心O。

外心O到三个顶点的距离都相等,即OA = OB = OC。

5. 中位线:三角形的中位线是连接一个顶点与对边中点的线段。

对于任意三角形ABC,它的三条中位线交于一个点,称为三角形的重心G。

三角形的性质与定理

三角形的性质与定理

三角形的性质与定理在几何学中,三角形是一个基本的形状。

它由三条线段组成,它们相交于三个顶点。

本文将探讨三角形的性质与定理,通过了解这些定理,可以更好地理解和解决与三角形相关的问题。

1. 三角形的定义三角形是由三条线段组成的图形,这三条线段的两两组成三个顶点,且其两边之和大于第三边。

2. 三角形的种类根据三角形的边长和角度,可以将三角形分为以下几种类型:(1) 等边三角形:三条边的长度相等,三个角的大小均为60度。

(2) 等腰三角形:两条边的长度相等,两个角的大小也相等。

(3) 直角三角形:其中一个角是90度。

(4) 锐角三角形:三个角都小于90度。

(5) 钝角三角形:其中一个角大于90度。

3. 三角形的性质了解三角形的性质对于解决相关问题至关重要,以下是一些三角形的基本性质:(1) 三角形内角和定理:任意三角形的三个内角之和等于180度。

(2) 外角定理:三角形的一个外角等于不相邻的两个内角之和。

(3) 对称性:三角形的每条边都有对称边。

(4) 三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

(5) 直角三角形的性质:直角三角形的两个直角边的平方和等于斜边的平方,即勾股定理。

4. 三角形的定理除了基本性质外,还有许多关于三角形的定理值得了解,这些定理可以帮助我们更好地理解和解决相关问题:(1) 正弦定理:在任意三角形ABC中,有a/sin(A) = b/sin(B) =c/sin(C),其中a、b、c分别代表三角形的边长,A、B、C分别代表三角形的角度。

(2) 余弦定理:在任意三角形ABC中,c^2 = a^2 + b^2 - 2abcos(C)。

(3) 角平分线定理:三角形内任意一条角平分线将对边分成相似的部分。

(4) 中线定理:三角形内任意一条中线的长度等于对边长度的一半。

(5) 高线定理:三角形内任意一条高线将底边分成两段,其长度与对应的角的正弦值成正比例。

这些性质和定理仅仅是三角形研究的冰山一角,深入掌握这些定理,将能够为我们进一步理解和解决几何学中与三角形相关的问题提供强有力的基础。

三角形的基本概念和性质

三角形的基本概念和性质

三角形的基本概念和性质三角形是几何学中最基本的图形之一,它由三条线段相连而成。

本文将介绍三角形的基本概念和性质,帮助读者更好地理解和应用三角形。

一、基本概念1. 三角形定义:三角形是由三条线段组成的图形,三条线段分别称为三角形的边。

三个顶点将边相连,形成三个内角和三个外角。

2. 顶点:三角形的顶点是三个不共线的点,它们确定了三角形的形状和大小。

3. 边:三角形的边是连接顶点的线段,它们是三角形的基本构成元素。

4. 内角:三角形的内角是由两条边相交所形成的角,共有三个内角。

5. 外角:三角形的外角是由一条边和延长线所形成的角,共有三个外角。

二、性质1. 内角和:三角形的内角和等于180度,即∠A + ∠B + ∠C = 180°。

2. 外角和:三角形的外角和等于360度,即∠D + ∠E + ∠F = 360°。

3. 两边之和大于第三边:三角形的任意两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。

4. 等边三角形:如果一个三角形的三条边长度相等,则该三角形是等边三角形。

等边三角形的三个内角也相等,都是60度。

5. 等腰三角形:如果一个三角形的两条边长度相等,则该三角形是等腰三角形。

等腰三角形的两个底角也相等。

6. 直角三角形:如果一个三角形拥有一个直角(90度),则该三角形是直角三角形。

直角三角形的两条边平方和等于斜边平方,即a² + b² = c²。

7. 锐角三角形:如果一个三角形的三个内角都小于90度,则该三角形是锐角三角形。

8. 钝角三角形:如果一个三角形中有一个内角大于90度,则该三角形是钝角三角形。

三、应用三角形的基本概念和性质在几何学和实际生活中有广泛的应用。

1. 测量:三角形的性质使得它成为测量地理距离、高度以及倾斜角度的重要工具。

2. 工程设计:在建筑和工程设计中,三角形的性质用于计算角度、边长和面积,保证结构的稳定和准确。

八年级三角形性质

八年级三角形性质

八年级三角形性质一、三角形的基本概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三个顶点、三条边和三个角。

例如,三角形ABC,顶点为A、B、C,边为AB、BC、AC,角为∠A、∠B、∠C。

2. 三角形的表示方法。

- 用符号“△”表示三角形。

如上述三角形可表示为△ABC。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角(即小于90°)的三角形。

- 直角三角形:有一个角是直角(等于90°)的三角形。

直角三角形中,夹直角的两条边叫做直角边,直角所对的边叫做斜边。

- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。

2. 按边分类。

- 不等边三角形:三条边都不相等的三角形。

- 等腰三角形:有两条边相等的三角形。

相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

- 等边三角形:三条边都相等的三角形。

等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。

三、三角形的性质。

1. 三角形三边关系。

- 三角形两边之和大于第三边。

例如,在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。

- 三角形两边之差小于第三边。

如在△ABC中,AB - BC<AC,AB - AC<BC,BC - AC<AB。

2. 三角形的内角和定理。

- 三角形的内角和等于180°。

即∠A+∠B +∠C = 180°。

- 直角三角形的两个锐角互余。

在Rt△ABC(∠C = 90°)中,∠A+∠B=90°。

3. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角之和。

例如在△ABC中,∠ACD是∠ACB的外角,则∠ACD =∠A+∠B。

- 三角形的一个外角大于任何一个与它不相邻的内角。

简单介绍三角形的基本概念与性质

简单介绍三角形的基本概念与性质

简单介绍三角形的基本概念与性质三角形是几何学中的基本图形之一,具有丰富的概念和性质。

本文将简单介绍三角形的基本概念和性质。

1. 三角形的定义三角形是由三条线段组成的闭合图形,其中每两条线段相交于一个顶点,并且不共线。

它是平面上最简单的多边形之一。

2. 三角形的分类根据边长的不同,三角形可以分为以下三种类型:(1) 等边三角形:三条边的长度相等。

(2) 等腰三角形:两条边的长度相等。

(3) 普通三角形:三条边的长度各不相等。

根据角度的不同,三角形可以分为以下三种类型:(1) 直角三角形:其中一个角是直角(90度)。

(2) 钝角三角形:其中一个角大于90度。

(3) 锐角三角形:其中三个角都小于90度。

3. 三角形的性质(1) 三角形的内角和等于180度:三角形的三个内角相加等于180度。

即∠A + ∠B + ∠C = 180°。

(2) 三角形的外角和等于360度:三角形的每个外角都等于其对应内角的补角。

即∠D = 180° - ∠A。

(3) 三角形的两边之和大于第三边:对于任意一个三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。

(4) 等边三角形的性质:等边三角形的三个内角均为60度,且三条边互相相等。

(5) 等腰三角形的性质:等腰三角形的两个底角相等。

(6) 直角三角形的性质:直角三角形的两个锐角之和为90度。

(7) 锐角三角形的性质:锐角三角形的三个内角都小于90度。

4. 三角形的重要定理(1) 余弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有c^2 = a^2 + b^2 - 2ab·cos∠C。

(2) 正弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有a/sin∠A = b/sin∠B =c/sin∠C = 2R(其中R为三角形外接圆半径)。

三角形的定义及性质

三角形的定义及性质

三角形的定义及性质三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段之间的交点称为顶点,两条线段之间的边称为边。

本文将探讨三角形的定义以及其常见的性质。

一、三角形的定义在几何学中,三角形可以定义为一个有三条边的图形。

每一条边都连接两个顶点,而每两条边之间的交点也是一个顶点。

三角形的三个顶点分别用A、B、C表示,三条边分别用a、b、c表示。

根据边长的关系,三角形可以分为以下三种类型:1. 等边三角形:如果三条边的长度都相等,即a=b=c,那么这个三角形就是等边三角形。

2. 等腰三角形:如果两条边的长度相等,即a=b或b=c或a=c,那么这个三角形就是等腰三角形。

3. 不等边三角形:如果三条边的长度都不相等,即a≠b≠c,那么这个三角形就是不等边三角形。

二、三角形的性质三角形有许多有趣的性质,下面将介绍其中一些常见的性质:1. 三角形的内角和为180度:对于任意三角形ABC,其内角A、B、C的度数之和等于180度。

这是因为在平面几何中,三角形的内角和总是固定的。

2. 外角等于两个不相邻内角之和:三角形的每个内角都有一个对应的外角,它是与内角不相邻的另外一条边所在的角。

对于三角形ABC来说,外角A等于内角B和C的度数之和,外角B等于内角A和C的度数之和,外角C等于内角A和B的度数之和。

3. 三边关系:在三角形ABC中,两边之和大于第三边,任意两边之差小于第三边。

换句话说,对于三角形ABC来说,a+b>c,a+c>b,b+c>a。

这个性质被成为三边关系定理,它是判断三条线段能否组成三角形的重要条件。

4. 直角三角形:如果三角形中有一个内角等于90度,那么这个三角形就是直角三角形。

根据勾股定理,直角三角形的两条直角边的平方之和等于斜边的平方,即a²+b²=c²。

5. 等腰三角形的性质:对于等腰三角形ABC来说,它有以下一些独特的性质:- 两个底角(即底边对应的内角)是相等的;- 等腰三角形的高(即从顶点到底边的垂直距离)是中线、中位线、角平分线和高线;- 等腰三角形可以划分为两个全等的直角三角形。

三角形的基本概念与性质

三角形的基本概念与性质

三角形的基本概念与性质三角形是几何学中的基本图形之一,它由三条边和三个角组成。

在三角形中,有许多重要的概念和性质,本文将详细介绍这些内容。

一、概念1. 边:三角形有三条边,分别连接三个顶点。

2. 顶点:三角形有三个顶点,每个顶点是两条边的交点。

3. 角:三角形有三个角,分别由两条边组成,角的大小可以通过度数或弧度来表示。

4. 顶角:三角形的顶点所对应的角叫做顶角。

5. 底边:底边是三角形的一个边,另外两边的起点和终点都在底边上。

二、性质1. 内角和:三角形的内角和等于180度。

即三个内角的度数之和等于180度。

2. 外角和:三角形的外角和等于360度。

即三个外角的度数之和等于360度。

3. 等边三角形:如果一个三角形的三条边长度相等,则这个三角形是等边三角形。

等边三角形的三个内角都是60度。

4. 等腰三角形:如果一个三角形的两条边的长度相等,则这个三角形是等腰三角形。

等腰三角形的两个底角相等。

5. 直角三角形:如果一个三角形的一个角是90度,则这个三角形是直角三角形。

直角三角形中一边的长度可以通过勾股定理计算。

6. 锐角三角形:如果一个三角形的三个内角都小于90度,则这个三角形是锐角三角形。

7. 钝角三角形:如果一个三角形的一个内角大于90度,则这个三角形是钝角三角形。

8. 等腰直角三角形:如果一个三角形的一个角是90度,并且另外两条边的长度相等,则这个三角形是等腰直角三角形。

9. 角平分线:三角形的内角平分线将一个角分为两个相等的角。

每个内角都有一个对应的内角平分线。

10. 中线:三角形的三条中线将三角形分为三个相等的小三角形。

每条中线都通过三角形的一个顶点和对边的中点。

11. 高线:三角形的三条高线分别从一个顶点垂直向对边,与对边相交于一个点。

三角形的三条高线交于一点,这个点叫做三角形的垂心。

12. 外心:外接圆是一个三角形的三条边的延长线所确定的唯一圆。

这个圆的圆心叫做三角形的外心。

13. 内心:内切圆是一个三角形的三条边的内部所确定的唯一圆。

三角形的定义是什么

三角形的定义是什么

三角形的定义是什么
三角形是平面几何中的一个基本图形,具有独特的性质和特点。

在数学中,三
角形是由三条边和它们所夹角所确定的形状。

其定义如下:
三角形的定义
三角形是平面几何中由三条线段所围成的图形。

这三条线段被称为三角形的边,它们之间的交点被称为顶点。

三角形是一个简单闭合图形,由三边和三个内角共同构成。

三角形的特点在于:
1.三边之间的关系:三角形的任意两条边之和大于第三条边。

也就是
说,三角形的任意两边之和大于第三边的长度,这个性质被称为三角形的三角不等式。

2.三个内角的性质:三角形的三个内角的和总是180度。

即 $\\angle
A + \\angle
B + \\angle
C = 180^{\\circ}$。

3.内角的关系:根据角对顶原理,三角形的相对边对应的内角相等。

这意味着如果两个三角形的内角相等,那么这两个三角形相似。

三角形根据其中内角的大小和边长的关系,可以被分为不同类型,例如:•等边三角形:三条边长度相等,三个内角都是60度。

•等腰三角形:两条边长度相等,两个内角相等。

•直角三角形:其中一个角是90度。

•钝角三角形:有一个角大于90度。

•锐角三角形:所有角均小于90度。

三角形在几何学中有着重要的地位,它是其他多边形的基础,也是计算学和物
理学等领域中常见的模型形状。

三角形的性质和定理被广泛应用于各个领域,包括计算机图形学、建筑设计、地理测量等.
综上所述,三角形是由三条边和它们所夹角所构成的基本图形,具有独特的性
质和特点,是几何学中不可或缺的重要概念。

三角形的基本概念与性质

三角形的基本概念与性质

三角形的基本概念与性质三角形是几何学中最基本的图形之一,具有广泛的应用和重要的性质。

在本文中,我们将探讨三角形的基本概念和一些常见的性质,以加深我们对三角形的理解。

一、基本概念三角形是由三条边和三个角组成的图形。

根据边的长度,我们可以将三角形分为三类:等边三角形、等腰三角形和一般三角形。

1.等边三角形:假设三条边的长度都相等,那么这个三角形就是等边三角形。

等边三角形的三个角都是60度。

2.等腰三角形:假设三角形的两条边的长度相等,那么这个三角形就是等腰三角形。

等腰三角形的两个角也是相等的。

3.一般三角形:如果三角形的三条边的长度都不相等,那么这个三角形就是一般三角形。

除了边的长度外,三角形还可以根据角的大小来进行分类。

根据角的大小,我们可以将三角形分为三类:锐角三角形、直角三角形和钝角三角形。

1.锐角三角形:三个角都是锐角的三角形称为锐角三角形。

2.直角三角形:拥有一个90度角的三角形称为直角三角形。

直角三角形的两边相互垂直。

3.钝角三角形:拥有一个大于90度角的三角形称为钝角三角形。

二、性质除了基本的分类外,三角形还具有一些重要的性质。

1.三角形的内角和性质:三角形的三个内角的和总是等于180度。

这个性质被称为三角形的内角和定理。

2.直角三角形的性质:直角三角形是三角形中最特殊的一种。

如果一个三角形有一个90度角,那么它的另外两个角的和总是等于90度。

此外,直角三角形的两条直角边的平方和等于斜边的平方。

这个性质被称为毕达哥拉斯定理。

3.等腰三角形的性质:等腰三角形的两边相等,并且其底边的中线也是高和中线。

此外,等腰三角形的顶角的平分线也是高和中线。

4.等边三角形的性质:等边三角形的三边都相等,三个角也都是60度。

此外,等边三角形的高、中线、中位线、角平分线和垂直平分线都是同一条线。

5.海伦公式:对于一般的三角形,我们可以使用海伦公式来计算其面积。

海伦公式如下:设三角形的三边长度分别为a、b、c,半周长为s,则三角形的面积S可以计算如下:S = √(s(s-a)(s-b)(s-c))。

三角形(新课标)

三角形(新课标)

三角形(新课标)新课标中对三角形的定义和性质进行了详细的说明。

下面将通过几个方面的讨论来介绍三角形的定义、分类以及相关的性质。

一、三角形的定义三角形是由三条线段组成的图形,其中每两条线段之间连接而成的角称为三角形的内角。

三角形有三个顶点、三条边和三个内角。

二、三角形的分类根据三角形的边长和角度大小,可以将三角形分为以下几种类型:1. 根据边长分类:(1) 等边三角形:三条边的长度相等。

(2) 等腰三角形:两条边的长度相等。

(3) 普通三角形:三条边的长度各不相等。

2. 根据角度大小分类:(1) 钝角三角形:一个内角大于90度。

(2) 直角三角形:一个内角等于90度。

(3) 锐角三角形:三个内角均小于90度。

三、三角形的重要性质三角形有许多重要的性质,下面将介绍其中几个主要的性质:1. 三角形的内角和定理:三角形的三个内角的和等于180度。

即:∠A + ∠B + ∠C = 180度。

2. 三角形的外角和定理:三角形的一个内角的外角等于其他两个内角的和。

即:∠A' =∠B + ∠C。

3. 三角形的边长关系:(1) 三角形的任意两边之和大于第三边。

(2) 三角形的任意两边之差小于第三边。

4. 三角形的角度关系:(1) 三角形的三个内角的关系:锐角三角形的三个内角之和小于180度,直角三角形的两个锐角之和等于90度,钝角三角形的三个内角之和大于180度。

(2) 三角形内角的大小关系:在三角形中,较长的边所对的角较大,较短的边所对的角较小。

五、特殊的三角形除了根据边长和角度分类外,还有一些特殊的三角形值得关注:1. 等腰直角三角形:一个内角为90度,两条直角边长度相等的三角形。

2. 等边直角三角形:一个内角为90度,三条边的长度都相等的三角形。

3. 等腰钝角三角形:一个内角大于90度,两条边的长度相等的三角形。

以上是对新课标中三角形的定义、分类和性质的介绍。

了解三角形的特点和性质对于几何学的学习非常重要。

三角形的概念与性质

三角形的概念与性质

三角形的概念与性质三角形是平面几何中最基本的图形之一,它由三条线段组成,这三条线段相互相交于端点,形成三个顶点。

本文将介绍三角形的概念和一些重要性质。

概念三角形是由三条线段组成的简单几何图形,每条线段被称为三角形的边,相邻两边的端点被称为三角形的顶点。

根据边的长度,我们可以将三角形分为等边三角形、等腰三角形和普通三角形。

等边三角形的三条边长度相等,等腰三角形的两条边长度相等,而普通三角形的三条边长度都不相等。

性质一:内角和定理一个三角形有三个内角,它的内角和等于180度。

这是三角形的一个基本性质,也被称为内角和定理。

例如,在一个普通三角形中,三个内角的和是180度。

如果一个三角形中的一个内角是90度,那么我们称这个三角形为直角三角形。

性质二:外角和定理三角形的每个内角都有一个对应的外角。

对于任意一个三角形,它的外角和等于360度。

这是三角形的另一个重要性质,也被称为外角和定理。

在一个普通三角形中,三个外角的和是360度。

性质三:等腰三角形的性质等腰三角形是一种特殊的三角形,它具有一些独特的性质。

首先,等腰三角形的两个底角(顶点所对的角)是相等的。

其次,等腰三角形的两条边是相等的。

这些性质使得等腰三角形在解决一些几何问题中非常有用。

性质四:直角三角形的性质直角三角形是一种特殊的三角形,其中一个内角是90度。

直角三角形有一些独特的性质。

首先,直角三角形的两个直角边(与直角相邻的两条边)满足勾股定理。

即直角三角形的两个直角边的平方和等于斜边的平方。

其次,直角三角形可以由一个45度的等腰直角三角形与一个角是30度的等腰直角三角形组成。

性质五:三角形的三边关系三角形的三边之间有一些关系。

其中之一是三角不等式定理,它表明任意两边之和大于第三边。

另一个是海伦公式,它用于计算三角形的面积。

根据海伦公式,已知三角形的三边长度时,可以计算出三角形的面积。

总结三角形是平面几何中基本的图形之一,它的概念和性质对于理解和解决几何问题非常重要。

(完整版)三角形的性质及判定归纳

(完整版)三角形的性质及判定归纳

(完整版)三角形的性质及判定归纳1. 三角形的定义三角形是由三条线段连接而成的图形,其中每条线段称为三角形的边,相邻的两条边之间的交点称为三角形的顶点。

根据三角形的边的长度,可以将三角形分为等边三角形、等腰三角形和普通三角形。

2. 三角形的性质2.1. 三角形的内角和对于任意一个三角形,三个内角的和始终为180度。

根据角度的大小,可以将三角形分为钝角三角形、直角三角形和锐角三角形。

2.2. 等边三角形等边三角形是指三条边的长度相等的三角形。

等边三角形的三个内角的度数都为60度。

由于边长相等,所以等边三角形的三条高度、三条中线和三条角平分线也相等。

2.3. 等腰三角形等腰三角形是指两条边的长度相等的三角形。

等腰三角形的两个底角(非顶角)的度数相等。

等腰三角形的两条高度、两条中线和两条角平分线相等。

2.4. 直角三角形直角三角形是指其中一个内角为90度的三角形。

直角三角形的边的长度满足勾股定理:a^2 + b^2 = c^2,其中a、b为两条边的长度,c为斜边的长度。

2.5. 锐角三角形和钝角三角形除了等边三角形、等腰三角形和直角三角形之外,剩下的三角形都属于锐角三角形和钝角三角形。

锐角三角形指的是三个内角的度数都小于90度的三角形,钝角三角形指的是至少有一个内角大于90度的三角形。

3. 三角形的判定3.1. 等边三角形的判定当三个边的长度都相等时,该三角形为等边三角形。

3.2. 等腰三角形的判定当两个边的长度相等或两个底角(非顶角)的度数相等时,该三角形为等腰三角形。

3.3. 直角三角形的判定当三条边的长度满足勾股定理时,该三角形为直角三角形。

3.4. 锐角三角形和钝角三角形的判定当三个内角的度数都小于90度时,该三角形为锐角三角形;当至少有一个内角的度数大于90度时,该三角形为钝角三角形。

结论通过对三角形的性质及判定的归纳,我们可以更好地理解和解决三角形相关的问题,而且可以辅助我们进行三角形的分类和运用。

初中数学知识归纳三角形的性质与定理

初中数学知识归纳三角形的性质与定理

初中数学知识归纳三角形的性质与定理三角形是初中数学中非常重要的一个概念,它具有丰富的性质与定理。

在本文中,我们将对初中数学中与三角形有关的性质与定理进行归纳总结。

一、三角形的基本性质1. 三角形的定义:一个平面内由三条不在同一直线上的线段所组成的图形叫做三角形。

2. 三角形的元素:三角形有三个顶点、三条边和三个内角。

3. 三角形的两个重要角度和角度和:三角形的角度和等于180度,即∠A + ∠B + ∠C = 180°。

4. 三角形的边对应角:三角形的边与其对应角有对应关系,即边a对应∠A,边b对应∠B,边c对应∠C。

二、三角形的分类1. 三角形的按边长分类:a. 等边三角形:三条边的长度相等,如三边长都是5cm的三角形。

b. 等腰三角形:两条边的长度相等,如底边长度为4cm,两腰边长度都是3cm的三角形。

c. 普通三角形:三条边的长度都不相等。

2. 三角形的按角度分类:b. 直角三角形:一个内角是90度的三角形。

c. 钝角三角形:一个内角是钝角的三角形。

三、三角形的诱导性质与定理1. 等腰三角形的性质与定理:a. 等腰三角形的底边上的两个角相等。

b. 等腰三角形的两条腰相等。

c. 等腰三角形的两条腰上的两个角相等。

d. 等腰三角形的底角和顶角互补,即底角 + 顶角 = 180°。

2. 直角三角形的性质与定理:a. 直角三角形中,直角的两条直角边相等。

b. 直角三角形中,斜边的平方等于两直角边平方和,即c² = a² + b²。

c. 两个边长相等的直角三角形,两个锐角也相等。

3. 等边三角形的性质与定理:a. 等边三角形的三个角都是60度。

b. 等边三角形的三条边都相等。

4. 锐角三角形的性质与定理:b. 锐角三角形中,最长的一边是斜边,最长的一边的对角是最大的角。

5. 外角定理:三角形的一个外角等于其它两个内角的和。

6. 三角形内角和定理:三角形的内角和等于180度。

三角形的基本概念

三角形的基本概念

三角形的基本概念三角形是几何学中最基本的图形之一,由三条边和三个顶点组成。

它是平面上的一个闭合图形,具有许多独特的性质和特征。

在本文中,我们将讨论三角形的基本概念,包括三角形的定义、分类、性质以及相关定理。

一、三角形的定义三角形是由三条线段所组成的图形,这三条线段相互连接并形成一个封闭的图形。

其中,每个线段被称为三角形的边,而线段之间的交点被称为三角形的顶点。

二、三角形的分类根据三角形的边的长短和角的大小,三角形可以分为以下几类:1.等边三角形:三条边的长度相等。

2.等腰三角形:两条边的长度相等。

3.直角三角形:其中一个角度为直角(90度)。

4.锐角三角形:三个角度都小于90度。

5.钝角三角形:其中一个角度大于90度。

三、三角形的性质三角形具有以下基本性质:1.三角形的内角和等于180度。

2.任意两边之和大于第三边,即边长满足三角不等式。

3.等边三角形的三个角度均为60度,等腰直角三角形的两个角度为45度。

4.直角三角形的两条直角边的平方和等于斜边的平方,这是著名的勾股定理。

四、三角形的相关定理三角形有许多重要的定理与之相关,这些定理帮助我们理解三角形的性质和关系:1.角平分线定理:如果一条线段从一个角的顶点出发并平分该角,那么该线段将把对边分成两个相等的线段部分。

2.三角形中位线定理:三角形中位线的长度等于一半的底边的长度。

3.角邻接定理:在一个三角形中,两个角邻接对边的边长之比等于这两个角的正弦值或余弦值之比。

综上所述,三角形是一个基本的几何图形,具有丰富的性质和特点。

我们可以通过对三角形的定义、分类、性质以及相关定理的学习来更好地理解和应用几何学中的概念。

通过深入掌握三角形的基本概念,我们可以进一步探索三角形形成的原理,并应用到实际生活和其他几何学问题中。

三角形的性质与分类

三角形的性质与分类

三角形的性质与分类三角形是几何学中最基本的图形之一,具有各种有趣的性质和分类。

在本文中,将详细介绍三角形的性质以及如何分类不同类型的三角形。

1. 三角形的定义三角形是由三条边和三个顶点组成的多边形。

三角形的边可以是不等长的,但是每两条边的长度之和必须大于第三条边的长度。

三角形的顶点可以用大写字母A,B,C表示。

2. 三角形的性质2.1 三角形的内角和为180度对于任意一个三角形ABC来说,三个内角A,B,C的和始终等于180度。

这个性质被称为三角形的角和定理。

2.2 三角形的外角和为360度三角形的每个内角有一个对应的外角,两者相加等于360度。

这个性质是外角和定理的重要推论。

2.3 三角形的边长关系三角形的两边之和必须大于第三边的长度。

例如,对于三角形ABC 来说,AB + BC > AC, AB + AC > BC, BC + AC > AB。

如果有一条边的长度大于或等于其他两条边的长度之和,则无法构成三角形。

2.4 三角形的角度关系在任意三角形中,最大的内角对应最长的边,最小的内角对应最短的边。

这个性质被称为角边关系。

3. 三角形的分类根据三角形的边长或角度大小,可以将三角形分为不同的类型。

3.1 根据边长分类3.1.1 等边三角形等边三角形的三条边长相等。

每个内角都是60度。

例如,ABC的三条边长度分别为AB = AC = BC。

3.1.2 等腰三角形等腰三角形的两条边长度相等。

这意味着两个内角也相等。

例如,ABC的两条边长度分别为AB = AC, 内角A = 内角C。

3.1.3 直角三角形直角三角形有一个内角为90度。

直角三角形的最长边被称为斜边,两边分别被称为直角边。

例如,ABC中有一个内角为90度,两条直角边分别为AB和AC。

3.1.4 其他一般三角形一般三角形是指边长各不相等的三角形。

每个内角可以是任意大小。

3.2 根据角度分类3.2.1 锐角三角形锐角三角形的每个内角都小于90度。

三角形的概念

三角形的概念

三角形的概念三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段的两个端点相连形成三个角。

在本文中,将介绍三角形的定义、性质以及一些相关的概念。

一、三角形的定义在几何学中,三角形定义为由三条线段组成,并且每两条线段的两个端点相连形成三个角。

这意味着三角形可以用三个点或者三个直线段来描述,并且它是一个闭合的图形。

二、三角形的性质1. 三角形的角度和为180度:三角形的内角和等于180度。

这是因为对于任意一个三角形,三个角的和等于一个平角,而平角的度数是180度。

2. 三角形的边长关系:在一个三角形中,两边之和大于第三边。

这被称为三角形的三边不等式。

例如,如果一个三角形的两边长分别为a 和b,那么它们之和大于第三边c,即a + b > c。

3. 三角形的分类:三角形可以根据其边长和角度分类。

根据边长可以分为等边三角形、等腰三角形和普通三角形;根据角度可以分为直角三角形、锐角三角形和钝角三角形。

4. 三角形的面积:三角形的面积可以通过海伦公式或者高度乘底边长的一半来计算。

海伦公式是一种计算任意三角形面积的公式,它用到了三角形的三边长。

5. 相似三角形:如果两个三角形的对应角度相等,并且对应边的比例相等,那么这两个三角形是相似的。

相似三角形有相似比例和面积比关系,可以用于解决一些几何问题。

三、相关概念1. 直角三角形:直角三角形是其中一个角为90度的三角形。

直角三角形的两条边相互垂直,并且满足勾股定理的关系,即a^2 + b^2 =c^2。

2. 锐角三角形:锐角三角形是其中所有角度都小于90度的三角形。

它的三个角都是锐角。

3. 钝角三角形:钝角三角形是其中有一个角大于90度的三角形。

它的一个角是钝角。

4. 等边三角形:等边三角形是所有边长相等的三角形。

它的三个角度也相等,每个角度都是60度。

5. 等腰三角形:等腰三角形是其中两边的边长相等的三角形。

一个等腰三角形至少有两个角度相等。

总结:三角形是几何学中最基本的图形之一,由三条线段组成,并且每两条线段的两个端点相连形成三个角。

什么是三角形 三角形有哪些性质

什么是三角形 三角形有哪些性质

什么是三角形三角形有哪些性质三角形是一种由三条线段组成的多边形,其中每两条线段之间会形成一个角。

三角形是最简单的多边形之一,在数学和几何学中具有重要的地位。

下面将介绍三角形的定义和性质。

一、三角形的定义三角形是由三条线段组成的多边形,这三条线段被称为三角形的边,而其中相邻两边之间的交点被称为三角形的顶点。

三角形的边可以是任意长度,但两边之和必须大于第三边,也就是说任意两边之和大于第三边。

如果这个条件不满足,则无法构成三角形。

二、三角形的性质1. 三角形的内角和为180°三角形的三个内角的度数之和始终为180°。

其中,一个角的度数大于0°但小于180°,其他两个角的度数也是如此。

这个性质被称为三角形的内角和定理,是三角形的基本性质之一。

2. 三角形的外角三角形每个内角对应着一个外角,它是与内角相邻但不共线的角。

三角形的每个外角等于其对应的内角之和。

也就是说,三角形的每一个外角的度数等于其他两个内角的度数之和。

3. 三角形的分类根据三角形的边的长短以及内角的大小,可以将三角形进行分类。

常见的分类包括:- 等边三角形:三条边的长度相等,每个内角都是60°。

- 等腰三角形:两条边的长度相等,两个对应的内角也相等。

- 直角三角形:一个内角是90°,被称为直角;其余两个内角的度数加起来为90°。

- 锐角三角形:三个内角都小于90°。

- 钝角三角形:至少一个内角大于90°。

4. 三角形的面积三角形的面积是指由三角形所形成的平面区域的大小。

常见的计算三角形面积的方法有海伦公式和高度公式。

海伦公式利用三角形的边长来计算面积,而高度公式则利用底边和对应的高度来计算面积。

5. 三角形的相似性如果两个三角形的对应角度相等,则这两个三角形被称为相似三角形。

相似三角形的边长比例相等,即它们的对应边的长度之比相等。

6. 三角形的勾股定理勾股定理是三角形中最为著名的定理之一,它描述了直角三角形的边之间的关系。

三角形的概念

三角形的概念

三角形的概念三角形是几何学中最基本的形状之一,它由三条线段组成,形成一个封闭的图形。

本文将介绍三角形的定义、性质和常见分类。

一、三角形的定义三角形是由三条线段组成的几何图形,其中每两条线段之间所夹的角称为三角形的内角。

三角形的内角和为180度。

二、三角形的性质1. 三边关系三角形的三条边可以有不同的关系。

若三边都相等,则该三角形为等边三角形;若只有两边相等,则称为等腰三角形;若三边都不相等,则为一般三角形。

2. 角关系三角形的三个内角也可以有不同的关系。

若有一个内角为直角(90度),则该三角形为直角三角形;若有一个内角大于90度,则为钝角三角形;若三个内角都小于90度,则为锐角三角形。

3. 角和边关系三角形的角和边之间有一定的关系。

根据三角形的正弦定理和余弦定理,可以计算出未知角度和边长。

这些定理在解决三角形问题时经常被使用。

三、三角形的分类根据边长和角度关系,三角形可以进一步分类。

1. 根据边长- 等边三角形:三条边都相等的三角形,每个内角均为60度。

- 等腰三角形:只有两条边相等的三角形,两个底角相等。

- 一般三角形:三条边都不相等的三角形。

2. 根据角度- 直角三角形:有一个角度为90度的三角形。

- 钝角三角形:有一个角度大于90度的三角形。

- 锐角三角形:三个内角都小于90度的三角形。

四、总结通过本文的介绍,我们了解了三角形的定义、性质和分类。

三角形作为几何学中最基本的形状之一,在实际生活和数学问题中都有广泛应用。

搞清楚三角形的概念和基本性质,有助于我们更好地理解和解决与三角形相关的问题。

三角形的定义性质

三角形的定义性质

定义由三条边首尾相接组成的内角和为180°(一定是180°,这个是个准确的数!)的封闭图形叫做三角形三角形的内角和三角形的内角和为180度;三角形的一个外角等于另外两个内角的和;三角形的一个外角大于其他两内角中的任一个角。

三角形分类(1)按角度分a.锐角三角形:三个角都小于90度。

并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。

b.直角三角形(简称Rt 三角形):⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.;⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反);c.钝角三角形:有一个角大于90度(锐角三角形,钝角三角形统称斜三角形)。

d.证明全等时可用HL方法(2)按角分a.锐角三角形:三个角都小于90度。

b.直角三角形:有一个角等于90度。

c.钝角三角形:有一个角大于90度。

(锐角三角形和钝角三角形可统称为斜三角形)(3)按边分不等腰三角形;等腰三角形(含等边三角形)。

解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5。

他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等三角形的性质1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。

2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。

直角三角形斜边的中线等于斜边的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义由三条边首尾相接组成的内角和为180°(一定是180°,这个是个准确的数!)的封闭图形叫做三角形三角形的内角和三角形的内角和为180度;三角形的一个外角等于另外两个内角的和;三角形的一个外角大于其他两内角中的任一个角。

三角形分类(1)按角度分a。

锐角三角形:三个角都小于90度。

并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。

b.直角三角形(简称Rt 三角形):⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

;⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反);c。

钝角三角形:有一个角大于90度(锐角三角形,钝角三角形统称斜三角形).d.证明全等时可用HL方法(2)按角分a.锐角三角形:三个角都小于90度。

b.直角三角形:有一个角等于90度。

c。

钝角三角形:有一个角大于90度.(锐角三角形和钝角三角形可统称为斜三角形)(3)按边分不等腰三角形;等腰三角形(含等边三角形)。

解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等三角形的性质1。

三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。

2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4。

直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。

直角三角形斜边的中线等于斜边的一半.5.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。

6.一个三角形最少有2个锐角。

7.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

8.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。

9。

勾股定理逆定理:如果三角形的三边长a,b,c有下面关系(a^2+b^2=c^2。

)那么这个三角形就一定是直角三角形。

10。

三角形的外角和是360°.11。

等底等高的三角形面积相等。

12。

底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比.**13.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

**14.在△ABC中恒满足tanAtanBtanC=tanA+tanB+tanC.15.三角形的一个外角大于任何一个与它不相邻的内角。

16.全等三角形对应边相等,对应角相等。

17。

三角形的重心在三条中线的交点上。

**18在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度.(包括等边三角形)三角形的边角之间的关系(1)三角形三内角和等于180°(在球面上,三角形内角之和大于180°);(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形两边之和大于第三边,两边之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边。

(6)三角形中的四条特殊的线段:角平分线,中线,高,中位线.(注①:等腰三角形中,顶角平分线,中线,高三线互相重叠②:三角形的中位线是两边中点的连线,它平行于第三边且等于第三边的一半)**(7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.**(8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等.**(9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

(10)三角形的三条高的交点叫做三角形的垂心。

(11)三角形的中位线平行于第三边且等于第三边的1/2。

(12)三角形的一边与另一边延长线的夹角叫做三角形的外角。

特殊三角形1。

相似三角形(1)形状相同但大小不同的两个三角形叫做相似三角形(2)相似三角形性质相似三角形对应边成比例,对应角相等相似三角形对应边的比叫做相似比相似三角形的周长比等于相似比,面积比等于相似比的平方相似三角形对应线段(角平分线、中线、高)之比等于相似比若a、b、b、c成比例,即a:b=b:c,则称b是a和c的比例中项(3)相似三角形的判定【1】三边对应成比例则这两个三角形相似【2】两边对应成比例及其夹角相等,则两三角形相似【3】两角对应相等则两三角形相似2。

全等三角形(四)、全等三角形(1)能够完全重合的两个三角形叫做全等三角形。

(2)全等三角形的性质.全等三角形对应角(边)相等。

全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。

(3)全等三角形的判定① SAS ②ASA ③AAS ④SSS ⑤HL (RT三角形)】寻找全等三角形的对应角、对应边常用方法:3。

等腰三角形等腰三角形的性质:(1)两底角相等;(2) 两条腰相等;(3)顶角的角平分线、底边上的中线和底边上的高互相重合;等腰三角形的判定:(1)等角对等边;(2)两底角相等;4。

等边三角形等边三角形的性质:(1)顶角的角平分线、底边上的中线和底边上的高互相重合;(2)等边三角形的各角都相等,并且都等于60°.等边三角形的判定:(1)三个内角或三个对应位置的外角都相等的三角形是等边三角形;(2)有一个角等于60°的等腰三角形是等边三角形。

三角形的面积公式(1)S△=1/2ah (a是三角形的底,h是底所对应的高)(2)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)(3)S△=√[p(p-a)(p-b)(p-c)][p=1/2(a+b+c)](海伦-秦九韶公式)(4)S△=abc/(4R) (R是外接圆半径)(5)S△=1/2(a+b+c)r (r是内切圆半径)(6)。

....。

. | a b 1 |S△=1/2 | c d 1 |。

...。

..。

.。

| e f 1 |[| a b 1 | .。

.| c d 1 |。

.| e f 1 |为三阶行列式,此三角形ABC 在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小](7)S△=c^2sinAsinB/2sin(A+B)(8)S正△= [(√3)/4]a^2 (正三角形面积公式,a是三角形的边长) [海伦公式(3)特殊情况]三角形重要定理勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

几何语言:若△ABC满足∠ABC=90°,则AB&sup2;+BC&sup2;=AC&sup2;勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。

[3]正弦定理内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)余弦定理内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦几何语言:在△ABC中,a&sup2;=b&sup2;+c&sup2;-2bc×cosA此定理可以变形为:cosA=(b&sup2;+c&sup2;—a&sup2;)÷2bc生活中的三角形物品雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等.三角形全等的条件注意:只有三个角相等无法推出两个三角形全等,也不可以用“SSA"(1)三边对应相等的两个三角形全等,简写为“SSS"。

(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA"。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。

(4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。

(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL"。

全等三角形的性质全等三角形的对应角相等,对应边也相等,并且全等三角形能重合。

三角形中的线段中线:顶点与对边中点的连线,平分三角形的面积。

高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。

角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。

(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴) 中位线:任意两边中点的连线。

三角形相关定理中位线定理三角形的中位线平行于第三边且等于第三边的一半.三边关系定理三角形任意两边之和大于第三边,任意两边之差小于第三边.勾股定理(又称毕达哥拉斯定理)在Rt三角形ABC中,A=90度,则AB^2+AC^2=BC^2****梅涅劳斯定理梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1.证明:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。

三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。

利用这个逆定理,可以判断三点共线.*****塞瓦定理设O是△ABC内任意一点,AO、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴ CB/BD*DO/OA*AE/EC=1 ①而由△ABD被直线COF所截,∴ BC/CD*DO/OA*AF/BF=1②②÷①:即得:BD/DC*CE/EA*AF/FB=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/。

相关文档
最新文档