2018年北京市昌平区中考二模数学试题含答案

合集下载

〖中考零距离-新课标〗2018年北京市昌平区中考数学第二次模拟试题及答案解析

〖中考零距离-新课标〗2018年北京市昌平区中考数学第二次模拟试题及答案解析

昌平区2018年初三年级第二次统一模拟练习数 学 试 卷学校 姓名 考试编号试编号考生须知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回. 一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米,是当今世界上最大的城市广场. 将440 000用科学记数法表示应为应为A. 54.410´ B. 44.410´ C. 44410´D. 60.4410´ 2.在函数y =2x -中,自变量x 的取值范围是A. x >2B. x ≠2C. x <2D. x ≤2 3.在下列简笔画图案中,是轴对称图形的为A B CD 4. 在一个不透明的袋子里装有3个白球和m 个黄球,这些球除颜色外其余都相同.色外其余都相同.若若从这个袋子里任意摸出1个球,该球是黄球的概率为14,则m 等于A .1B . 2C . 3D . 4 5.如右图,AB ∥CD ,BC 平分∠ABD ,若∠C=40°,则∠D 的度数为数为A. 90°B. 100°C. 110°D. 120°A BCD6.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是A .∠BCA =45°B .BD 的长度变小C .AC =BDD .AC ⊥BDA BCDDCBA→7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.651.70 1.75 1.80 人 数124332这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,4 8. 如右图,是雷达探测器测得的结果,图中显示在点A ,B ,C ,D ,E ,F 处有目标出现,目标的表示方法为(r ,α),其中,r 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度. 例如,点A ,D 的位置表示为A (5,30°),D (4,240°). 用这种方法表示点B ,C ,E ,F 的位置,其中正确的是 A .B (2,90°) B .C (2,120°) C .E (3,120°) D .F (4,210°) 9.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售.方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;东543330°2300°1240°120°60°30°0°90°180°270°A BC FD E210°150°方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四 10. 如图1,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AB =2厘米,∠BAD =60°.P ,Q 两点同时从点O 出发,以1厘米/秒的速度在菱形的对角线及边上运动. 设运动的时间为x 秒,P ,Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,则P ,Q 的运动路线可能为1123234厘米秒图1图2Oy /x /DOCB AA. 点P : O —A —D —C ,点Q : O —C —D —OB. 点P : O —A —D —O ,点Q : O —C —B —OC. 点P : O —A —B —C ,点Q : O —C —D —OD. 点P : O —A —D —O ,点Q : O —C —D —O二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:2363m m -+=. 12.如下图,小慧与小聪玩跷跷板,跷跷板支架EF 的高为0.4米,E 是AB 的中点,那么小慧能将小聪翘起的最大高度BC 等于 米.13.如右图,⊙O 的直径AB ⊥弦CD ,垂足为点E ,连接AC ,若CD =23,∠A =30º,则⊙O 的半径为径为. 14.如右图,已知四个扇形的半径均为1,那么图中阴影部分面积的和是. CFB E ADABCE O15.市运会举行射击比赛,射击队从甲、乙、丙、丁四人中选拔一人参赛. 在选拔赛中,每人射击10次,计算他们10次成绩(单位:环)的平均数及方差如下表. 根据表中提供的信息,你认为最合适的人选是 ,理由是. 甲 乙 丙 丁 平均数8.38.18.08.2方差 2.1 1.8 1.6 1.416. 已知:如图,在平面直角坐标系xOy 中,点B 1,C 1的坐标分别为(1 ,0),(1,1).将△OB 1C 1绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;将△OB 2C2绕原点O 逆时针旋转90°,再将其各边都扩大为原来的m倍,使OB 3=OC 2,得到△OB 3C 3.如此下去,得到△OB n C n . (1)m 的值为__________;(2)在△OB 2016C 2016中,点C 2016的纵坐标为_____________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:()10118π20166sin 452-æö+-+-°ç÷èø. B 2C 223-4234-2-34-1-1-4-3-2C 1B 1yxO18.解不等式组()()202130x x x -ìïí---ïî≤,>, 并写出它的整数解.19.先化简,再求值:269(3)26x x x x -+×+-,其中30x -=.20. 已知:如图,∠B =∠C ,AB =DC .求证:∠EAD =∠EDA .21. 已知关于x 的一元二次方程2220x x k ++-=有两个不相等的实数根.(1)求k 的取值范围; (2)若k 为大于1的整数,求方程的根.22. 为保障北京2022 年冬季奥运会赛场间的交通服务,北京将建设连接北京城区-延庆区-崇礼县三地的高速铁路和高速公路. 在高速公路方面,目前主要的交通方式是通过京藏高速公路(G6),其路程为220公里为将崇礼县纳入北京一小时交通圈,有望新建一条高速公路,将北京城区到崇礼的道路长度缩短到100公里. 如果行驶的平均速度每小时比原来快22公里,那么从新建高速行驶全程所需时间与从原高速行驶全程所需时间比为4:11.求从新建高速公路行驶全程需要多少小时?23.在△OAB 中,∠OAB =90°,∠AOB =30°,OB =4.以OB 为边,在△OAB 外作等边△OBC ,E 是OC 上的一点.(1)如图1,当点E 是OC 的中点时,求证:四边形ABCE 是平行四边形; (2)如图2,点F 是BC 上的一点,将四边形ABCO 折叠,使点C 与点A 重合,折痕为EF ,求OE 的长.A BEDC图2FE 图1AOBCEC BOA24.阅读下列材料:根据北京市统计局、国家统计局北京调查总队及《北京市统计年鉴》数据,2004年本市常住人口总量约为1493万人,2013年增至2115万人,10年间本市常住人口增加了622万人. 如果按照数据平均计算,本市常住人口每天增加1704人. 我们还能在网上获取以下数据:2010年北京常住人口约1962万人,2011年北京常住人口约2019万人,2014年北京常住人口为2152万人, 2015年北京常住人口约2171万人.北京市近几年常住人口平稳增长,而增长的速度有所放缓. 其中,2011年比上一年增加2.91%,2012年比上一年增加2.53%,2013年比上一年增加2.19%,2014年比上一年增加1.75%. 相关人士认为,常住人口出现增速连续放缓的原因,主要与经济增速放缓相关. 2011年开始,随着GDP 增速放缓,人口增速也随之放缓. 还有一个原因是就业结构发生变化,劳动密集型行业就业人员在2013年出现下降,住宿、餐饮业、居民服务业、制造业的就业人数下降.根据以上材料解答下列问题:(部分数据列出算式即可) (1)2011年北京市常住人口约为约为 万人; (2)2012年北京市常住人口约为约为万人; (3)利用统计表或.统计图将2013 — 2015年北京市常住人口总量及比上一年增速百分比表示出来.25. 如图,以△ABC 的边AB 为直径作⊙O ,与BC 交于点D ,点E 是弧BD 的中点,连接AE 交BC 于点F ,2ACB BAE Ð=Ð. (1)求证:AC 是⊙O 的切线; (2)若2sin 3B =,BD=5,求BF 的长.26. 我们学习了锐角三角函数的相关知识,知道锐角三角函数定量地描述了在直角三角形中边角之间的联系. 在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长的比与角的大小之间可以相互转化. 如图1,在Rt △ABC 中,∠C =90°. 若∠A =30°,则cos A 32A ACAB 的邻边斜边=Ð==.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对. 如图2,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时,sad A =BC AB 底边腰=. 容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对的定义,解答下列问题: (1)直接写出sad60°的值为值为; (2)若0°<∠A <180°,则∠A 的正对值sad A 的取值范围是 ;(3)如图2,已知tan A =34,其中∠A 为锐角,求sad A 的值;(4)直接写出sad36°的值为值为. O E DFCBA图2C BA 图1备用图CBAA BC27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A .(1)求直线y=kx +b 的表达式;(2) 将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点. 若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E 两点,当3252DE ≤≤时,结合函数的图象,直接写出m 的取值范围.12Ox-2-3-4-1-14-3-2431-432y28. 在等边△ABC 中,AB =2,点E 是BC 边上一点,∠DEF =60°,且∠DEF 的两边分别与△ABC 的边AB ,AC 交于点P ,Q (点P 不与点A ,B 重合). (1)若点E 为BC 中点.①当点Q 与点A 重合,请在图1中补全图形;②在图2中,将∠DEF 绕着点E 旋转,设BP 的长为x ,CQ 的长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)如图3,当点P 为AB 的中点时,点M ,N 分别为BC ,AC 的中点,在EF 上截取EP ¢=EP ,连接NP ¢. 请你判断线段NP ¢与ME 的数量关系,并说明理由.N M P'DFQ EABC图3图1PE CBAABE C图2D PQF29. 已知四边形ABCD ,顶点A ,B 的坐标分别为(m ,0),(n ,0),当顶点C 落在反比例函数的图象上,我们称这样的四边形为“轴曲四边形ABCD ”,顶点C 称为“轴曲顶点”. 小明对此问题非常感兴趣,对反比例函数为y =2x时进行了相关探究.(1)若轴曲四边形ABCD 为正方形时,小明发现不论m 取何值,符合上述条件的轴曲正方形只有..两个,且一个正方形的顶点C 在第一象限,另一个正方形的顶点C 1在第三象限.①如图1所示,点A 的坐标为(1,0),图中已画出符合条件的一个轴曲正方形ABCD ,易知轴曲顶点C 的坐标为(2,1),请你画出另一个轴曲正方形AB 1C 1D 1,并写出轴曲顶点C 1的坐标为标为; ②小明通过改变点A 的坐标,对直线CC 1的解析式y ﹦kx +b 进行了探究,可得 k ﹦ ,b (用含m 的式子表示)﹦; (2)若轴曲四边形ABCD 为矩形,且两邻边的比为1∶2,点A 的坐标为(2,0),求出轴曲顶点C 的坐标.1214-34-1-4-3-2O -55-55备用图x-1-23-432yy3-34-1-4-3-2AxO BD 图15-55-5C -1-2431-42数学参考答案及评分标准一、选择题(共10道小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADBABCCADB二、填空题(共6道小题,每小题3分,共18分) 题号1112 13 14 15 16答案 ()231m -0.82π丁,最稳定; 甲,平均环数高.2;()20152-三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解: ()10118π20166sin 452-æö+-+-°ç÷èø3622122++-´=………………………………………………………… 4分 =3 .………………………………………………………………… 5分 18.解:()()202130x x x ----ìíî≤,①>,②由①得:x ≤2. ……………………………………………………………………… 1分 由②得:2x – 2–x + 3>0................................................................... 2分 x >- 1. (3)分 ∴原不等式组的解集为:-1<x ≤2. ………………………………………………………… 4分∴原不等式组的整数解为0,1,2.……………………………………………… 5分19.解:原式=2(3)(3)2(3)x x x -×+-……………………………………………………………2分=292x -.……………………………………………………………………3分∵ 30x -=,∴3x =.……………………………………………………………………………4分∴原式=2(3)93.2-=-…………………………………………………………5分20.证明:在△AEB 和△DEC 中,∵AEB DEC B C AB DC Ð=ÐÐ=Ð=ìïíïî,,,∴△AEB ≌△DEC .……………………………………3分 ∴AE =DE .…………………………………………………………………………4分 ∴∠EAD =∠EDA .…………………………………………………………………5分 21.解:(1)由题意得:△=224(2)0k -->………………………………………………………………………2分解得:3.k <…………………………………………………………………………3分(2)∵k 为大于1的整数, ∴ 2.k =……………………………………………………………………………4分∴原方程为:220.x x +=解得:10x =,2 2.x =- (5)分22.解:设选择从新建高速公路行驶全程所需的时间为4x 小时.………………………………1分 由题意得:10022022.411x x -=………………………………………………………………2分解得:5.22x =……………………………………………………………………………3分 A BEDC经检验522x =是原方程的解,且符合题意. ………………………………………………4分∴104.11x =答:从新建高速公路行驶所需时间为1011小时.…………………………………………5分 23.(1)证明:如图1,∵△OBC 为等边三角形,∴OC =OB ,∠COB =60° . ∵点E 是OC 的中点,∴EC =21OC =21OB . ……………………1分在△OAB 中,∠OAB =90°, ∵∠AOB =30°, ∴AB =21OB , ∠COA =90°. ∴CE =AB ,∠COA +∠OAB =180°. ∴CE ∥AB .∴四边形ABCE 是平行四边形. (2)分(2)解:如图2,∵四边形ABCO 折叠,点C 与点A 重合,折痕为EF ,∴△CEF ≌△AEF , ∴EC =EA . ∵OB =4,∴OC =BC =4. ………………………………3分 在△OAB 中,∠OAB =90°, ∵∠AOB =30°,∴OA =23. ……………………………………………………4分 在Rt △OAE 中,由(1)知:∠EOA =90°, 设OE =x , ∵OE 2+OA 2=AE 2 ,∴x 2+()223 =(4-x ) 2,图2FE AOBCE图1OCEC BOA解得,x =21.∴OE =21.………………………………………………………………………………5分 24.解:(1)2019. ………………………………………………………………………… 1分(2)2019(1 + 2.53%)= 2070. ……………………………………………… 2分(3)2013 — 2015年北京市常住人口总量及比上一年增速百分比统计表2013年 2014年 2015年 常住人口总量(万人) 2115 2152 2171比上一年增速百分比(%)2.191.75217110021521æö-´ç÷èø…………………………………………………………………5分 25.(1)证明:连接AD .∵E 是弧BD 的中点, ∴弧BE = 弧ED , ∴∠1=∠2. ∴∠BAD= 2∠1.∵∠ACB= 2∠1,∴∠C=∠BAD .……………………………………………………………1分∵AB 为⊙O 直径,∴∠ADB =∠ADC =90°. ∴∠DAC +∠C =90°.∵∠C=∠BAD ,∴∠DAC +∠BAD =90°. ∴∠BAC =90°.21G O E DFCBA即AB ⊥AC .又∵AC 过半径外端, ∴AC 是⊙O 的切线.……………………………………………………………2分 (2)解:过点F 作FG ⊥AB 于点G .在Rt △ABD 中,∠ADB =90°,2sin 3AD B AB==, 设AD =2m ,则AB =3m ,利用勾股定理求得BD =5m .∵BD=5, ∴m =5. ∴AD =25 ,AB =35 . …………………………………………………………3分∵∠1=∠2,∠ADB =90°, ∴FG =FD . ……………………………………………………………4分 设BF = x , 则FG = FD =5- x. 在Rt △BGF 中,∠BGF =90°,2sin 3B =, ∴523x x-=.解得,x =3.∴BF =3. ……………………………………………5分26.解:(1)1. ……………………………………………………… 1分(2)0<sad A <2.…………………………………………… 2分(3)如图2,过点B 作BD ⊥AC 于点D .∴∠ADB =∠CDB =90°. 在Rt △ADB 中, tan A =34,∴设BD=3k ,则AD =4k . ∴ AB =225BD AD k +=.…………………………… 3分 ∵AB =AC ,∴CD =k . D CBA图2BA(Q)BCE 图1PFD∴在Rt △CDB 中, 利用勾股定理得,BC=10k .在等腰△ABC 中,sad A=551010BC kABk==.……………………………… 4分 (4)251-.…………………………………………………………………………… 5分 27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=ìí-+=î ………………………………………………………………1分解得:1,1.k b =-ìí=î∴直线y=kx +b 的表达式为:1.y x =-+…………………………………………2分(2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =. …………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分 由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤< ……………5分②40.m -≤≤ ………………………………………………………………………………7分 28.解:(1)①如图1.……………………………1分 ②∵等边△ABC ,∴∠B=∠C=∠DEF =60°,AB =BC =AC =2. ∴∠1+∠2=∠1+∠3=120°. ∴∠2=∠3.∴△PBE ∽△ECQ .…………………………2分231F Q P D 图2CE BA∴BP BE EC CQ=. ∵点E 为BC 的中点, ∴BE=EC=1.∵BP 的长为x ,CQ 的长为y ,∴11xy=. 即1x y =.………………………………………………………………3分 自变量x 的取值范围是:122x ≤< . (4)分(2)如图3,答:N P ¢=ME ............................................... .......................... 5分 证明:连接PM ,PN ,PP ¢. ∵P ,M ,N 分别是AB ,BC ,AC 的中点,∴PN //BC ,PN =12BC ,PM //AC ,PM =12AC.∴四边形PMCN 为平行四边形. ...............................................6分∵△ABC 是等边三角形,∴BC =AC ,∠C =60°. ∴PM =PN ,∠NPM =∠C =60°. ∵EP=EP ¢,∠PEP ¢=60°, ∴△P EP ¢是等边三角形. ∴∠E PP ¢=60°,PE =PP ¢. ∴∠E PP ¢=∠NPM . ∴∠EPM =∠N PP ¢. ∴△EPM ≌△N PP ¢. ∴N P ¢=ME . ............................................................................. 7分29.解:(1)①如图1 . ……………………………1分1(1,2)C --.…………………………2分 B 1C 1D 1y3-34-1-4-3-2A xOBD 图15-55-5C -2431-42N M P'D FQEABC图3P②1k =. ……………………………3分 b m =-.……………………………4分(2)①当AB =2BC 时,∵点A 的坐标为(2,0),∴点C 的坐标为2(,)2n n -或2,2n n -æöç÷èø. ∴222n n -´=或222n n -´=.解得:15n =±或无实根.∴点C 的坐标为5115,2æö-+ç÷ç÷èø或5115,2æö---ç÷ç÷èø. ………………6分②当BC =2AB 时, 点C 的坐标为(,24)n n -或(,42)n n -. ∴(24)2n n -=或(42)2n n -=.解得:12n =±或 1.n =∴点C 的坐标为()12,222+-或()12,222---或()1,2……………8分。

2018年北京市昌平区初三二模数学试卷及答案

2018年北京市昌平区初三二模数学试卷及答案

昌平区2018年初三年级第二次统一练习数学试卷(120分钟 满分120分)2018.5考生须知一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2018年10月12日至15日,第二届中国“互联网+”大学生创新创业全国总决赛上,ofo 共享单车从全国约119000个创业项目中脱颖而出,最终获得金奖. 将119000用科学计数法表示应为A .41.1910⨯ B . 60.11910⨯ C .51.1910⨯ D . 错误!未找到引用源。

2.如图,点A 、B 在数轴上表示的数的绝对值相等,且AB =4,那么点A 表示的数是BA . 3-错误!未找到引用源。

B . 2-错误!未找到引用源。

C . 错误!未找到引用源。

D . 错误!未找到引用源。

3.在下面的四个几何体中,主视图是三角形的是ABCD4.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是1. 答题前,考生务必将自己的学校名称、姓名、考试编号在答题卡上填写清楚。

2. 请认真核准条形码上的姓名、考试编号,将其粘贴在答题卡的指定位置。

3. 请不要在试卷上作答。

答题卡中的选择题请用2B 铅笔作答,其他试题用黑色字迹的签字笔作答。

4. 修改答题卡选择题答案时,请用橡皮擦干净后重新填涂。

请保持答题卡清洁,不要折叠、弄破。

5. 请按照答题卡题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不给分。

6. 考试结束后,请交回答题卡和试卷。

A B C D5.如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD的度数为A.15°B.25°C.35°D.45°6.若0322=--aa,代数式)2(1-aa的值是A.31-B.31C.-3 D.37.初三(1)班体育委员统计本班30名同学体育中考成绩数据如下表所示:A.29,30 B.29,28 C.28,30 D.28,288.如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,-1),雍和宫站的坐标为(0,4),则西单站的坐标为A.(0,5)B.(5,0)C.(0,-5)D.(-5,0)8题9题9.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组⎩⎨⎧+=+=2211bxkybxky的解为DC BAx2x+b2A .⎩⎨⎧==42y xB .⎩⎨⎧==24y x C .⎩⎨⎧=-=04y xD .⎩⎨⎧==03y x10.如图,点A 是反比例函数1y x=(0)x >上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB=2OA ,连接AB ,当点A 在反比函数图象上移动时,点B 也在某一反比例函数图象ky x=上移动,k 的值为A . 2B . -2C .4D . -4 二、填空题(共6道小题,每小题3分,共18分)11.如图,正方形ABCD ,根据图形写出一个正确的等式: _____ _ .11题 12题 14题 12.如图,四边形 ABCD 的顶点均在⊙O 上,∠A =70°,则∠C =___________°. 13.《孙子算经》是中国古代重要的数学著作,《孙子算经》共有三卷.第三卷里有一题:“今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足.问:禽、兽各几何?” 译文:“现在有一种野兽,长有六头四足;有一种鸟,长有四头两足,把它们放一起,共有76头,46足.问野兽、鸟各有多少只?”设野兽x 只,鸟y 只,可列方程组为__________________.14.如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,已知亮区DE到窗口下的墙角距离CE =5米,窗口高AB =2米,那么窗口底边离地面的高BC =__________ 米.15.如图,已知钝角△ABC ,老师按照如下步骤尺规作图:步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ;步骤3:连接AD ,交BC 延长线于点H . 小明说:图中的BH ⊥AD 且平分AD . 小丽说:图中AC 平分∠BAD .xDCaaab bb b a D CBA ABCDH小强说:图中点C 为BH 的中点.他们的说法中正确的是___________.他的依据是_____________________.16.已知二次函数x m x y )12(2-+=,当0<x 时,y 随x 的增大而减小,则m 的取值范围是__________.三、解答题(共6道小题,每小题5分,共30分) 17.计算:101tan 602()(2)3π-︒+-+18. 解不等式组:⎪⎩⎪⎨⎧>++≤-x x x x 23105)2(319. 如图,在等边△ABC 中,点D 为边BC 的中点,以AD 为边作等边△ADE ,连接BE .求证:BE=BD20. 关于x 的一元二次方程0)12(2=++-m x m x (1)求证:方程总有两个不相等的实数根; (2)写出一个m 的值,并求此时方程的根.21. 如图,在平行四边形ABCD 中,点E 为BC 的中点,AE 与对角线BD 交于点F . (1)求证:DF =2BF ; (2)当∠AFB =90°且tan ∠ABD =21时, 若CD =5,求AD 长. FEDCBABCAED22. 2018年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2018年底, “ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”, “ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2018年“摩拜单车”的投放数量约为多少万台?四、解答题(共4道小题,每小题5分,共20分) 23. 一次函数1+2y x b =-(b 为常数)的图象与x 轴交于点A (2,0),与y 轴交于点B ,与反比例函数xky =的图象交于点C (-2,m ). (1)求点C 的坐标及反比例函数的表达式;(2)过点C 的直线与y 轴交于点D ,且1:2:=BO C CBD S S △△,求点D 的坐标.24. 近几年,中国在线旅游产业发展迅猛,在线旅游产业是依托互联网,以满足旅游消费者信息查询、产品预订及服务评价为核心目的,囊括了包括航空公司、酒店、景区、租车公司、海内外旅游服务供应商及搜索引擎、OTA 、电信运营商、旅游资讯及社区网站等在线旅游平台的新产业.据数据统计:2018年中国在线旅游市场交易金额约为2219亿元,2018年中国在线旅游市场交易金额约为3015亿元,2018年中国在线旅游市场交易金额相比2018年增加了1117亿元,2018年中国在线旅游市场交易金额约为5424亿元,2018年中国在线旅游市场交易金额为6622亿元,在人们对休闲旅游观念的不断加强之下,未来两年中国在线旅游市场交易规模会持续上涨.(1)请用折线统计图或条形统计图将2018—2018年中国在线旅游市场交易金额的数据描述出来,并在图中标明相应数据;(2)根据绘制的统计图中提供的信息,预估2018年中国在线旅游市场交易金额约为___________亿元,你的预估理由是_______________________________________.25. 如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA26.有这样一个问题:探究函数2)2(1-=x y 的图象与性质,小静根据学习函数的经验,对函数2)2(1-=x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整:(1)函数2)2(1-=x y 的自变量x 的取值范围是__________;(2)下表是y 与x 的几组对应值.(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:______________________________.五、解答题(共3道小题,第27,28小题各7分,第29小题8分,共22分)27. 在平面直角坐标系xOy 中,抛物线)0(42≠-=m mx mx y 与x 轴交于A ,B 两点(点A在点B 的左侧).(1)求点A ,B 的坐标及抛物线的对称轴;(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式; (3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42≠-=m mx mx y 的图象上,PQ=2a且21x x >, 求26221+-+a ax x 的值.28. 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE 绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE备用图ABCD29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P 关于⊙C的“视角”.(1)如图,⊙O的半径为1,○1已知点A(0,2),画出点A关于⊙O的“视角”;若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数;○2在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;○3若点P在直线2y x=+上,且点P关于⊙O的“视角”大于60°,求点P的横坐标Px的取值范围.(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标Cx的取值范围.xxx昌平区2018-2019学年度第二学期初三年级第二次模拟测试数学参考答案及评分标准 2018. 5一、选择题(共10道小题,每小题3分,共30分)二、填空题(共6道小题,每小题3分,共18分)三、解答题(共6道小题,每小题5分,共30分)17.解: 101tan 602()(2)3π-︒+-+21=- …………………………………………………………… 4分4= . (5)分18.解: 3(2)51023x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①,得14x ≥.………………………………………………………………2分解不等式②,得2x < . ……………………………………………………………4分 ∴ 原不等式组的解集为124x ≤<.………………………… 5分错误!未找到引用源。

2018年北京市初三数学二模分类汇编-第6讲:圆及答案

2018年北京市初三数学二模分类汇编-第6讲:圆及答案

第6讲 圆一、选填题【2018·昌平二模】1.如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .【2018·朝阳二模】2.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,弧BD =弧CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = .【答案】2【2018·房山二模】3. 如图,AB 为⊙O 的直径,弦CD AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = .【答案】2 ;【2018·海淀二模】4.如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是 A . GH B. EF C.CD D. ABCB【答案】A【2018·石景山二模】5.如图,⊙O 的半径为2,切线AB的长为点P 是⊙O 上的动点,则AP 的长的取值范围是__________.【答案】26AP ≤≤.【2018·西城二模】6. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.【答案】54【2018·东城二模】7. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.【答案】2E D【2018·海淀二模】8.如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .【答案】6π【2018·西城二模】9. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .【答案】π34【2018·朝阳二模】10.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )6 【答案】D【2018·东城二模】11. 在平面直角坐标系xOy 中,若点()3,4P 在O e 内,则O e 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >5 【答案】D 二、解答题【2018·昌平二模】1. 如图,AB 是⊙O 的直径,弦CD AB ⊥ 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是⊙O 的切线;(2)连接BC ,若BCF ∠=30°,2BF =,求CD 的长.BA【答案】(1)证明:连接OD ∵CF 是⊙O 的切线∴∠OCF=90°………………………………………1分 ∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD 错误!未定义书签。

中考数学试题-2018年北京市昌平区二统数学试题和答案

中考数学试题-2018年北京市昌平区二统数学试题和答案

昌平区2018—2018学年初三年级第二次统一练习数学试卷(120分钟)2018.5第Ⅰ卷(机读卷共32分)一、选择题(共8个小题,每小题4分,共32分.)在下列各题的四个备选答案中,只有一个是正确的.请将正确答案填入题后的答题表中. 1.4的算术平方根是A.16 B.2 C.-2 D.±22.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不.可以是A.正三角形B.矩形C.正六边形D.正八边形3.已知:如图,A、B、C是⊙O上的三个点,∠AOC=100°,则∠ABC的度数为A.30° B.45° C.50° D. 60°4.如果反比例函数kyx=的图象经过点(12)-,,那么k的值是A.2-B.2C.12-D.125.下列事件中,是必然事件的是A.我市夏季的平均气温比冬季的平均气温高.B.掷一枚均匀硬币,正面一定朝上.C.打开电视机,正在播放动画片.D.每周的星期日一定是晴天.6.已知3是关于x的方程x2-3a+1=0 的一个根,则1-3a的值是A. -10B. - 9C. -3D. -11CB AO7.已知在ABC ∆中,A ∠、B ∠都是锐角,21sin cos 02A B ⎛+-= ⎝⎭,则C ∠的度数是 A.30° B.45° C.60° D.90°8.如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形. 已知∠ACB=α, ∠A 1CB 1=1α,…,∠A 5CB 5=5α. 则54211tan tan tan tan tan tan αααααα⋅++⋅+⋅ 的值为A. 1B.5C.45D. 56第一大题答题表:二、填空题(共4个小题,每小题4分,共16分.)9.如图,ABC △中,DE BC ∥, 若13AD AB =, 则:ADE ABC S S ∆∆ = .10. 甲、乙两名同班同学的5次数学测验成绩(满分120分)如下: 甲:97,118,95,110,95 乙:90,110,95,115,90经计算,它们的平均分甲x =100,乙x =100;方差是2S 甲=33.6,2S 乙 =110,则这两名同学在这5次数学测验中成绩比较稳定的是 同学.11.在下面等式的 内填数,O 内填运算符号,使等式成立(两个算式中的运算符号不能相同): .;12.如图:六边形ABCDEF 中,AB 平行且等于ED 、AF 平行且等于 CD 、BC 平行且等于FE ,对角线FD ⊥BD. 已知FD=4cm ,BD=3cm.则六边形ABCDEF 的面积是 cm 2.FEDCBAA B CDEA 2B 2B 5A 5B 4B 3A 4A 3A 1B 1DC BA三、解答题(共4个小题,13、16题5分,14题4分,15题6分,共20分.) 13.计算:()012007+-+解:14.化简:()()234226123x x xx-+-÷解:15. 已知:如图,梯形ABCD 中,A D ∥BC ,BD 平分∠ABC ,∠A=120°,BD=BC= (1)求证:AB=AD ;(2)求△BCD 的面积.16.有这样一道题:“先化简,再求值:22241244x x x x x -⎛⎫+÷⎪+--⎝⎭,其中x =”小玲做题时把“x =x =,但她的计算结果也是正确的,请你解释这是怎么回事? 解:CA BD四、解答题(共3个小题,17题8分,18、19题各5分,共18分.)17. 小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是185□9456(□表示忘记的数字).(1)若小刚从0至9的自然数中随机选取一个数放在□位置,求他拨对小东电话号码的概率;(2)若□位置的数字是不等式组2110142x x x ->⎧⎪⎨+⎪⎩,≤的整数解,求□可能表示的数字. (3) 在(2)的条件下,若规定小东八位电话号码的奇数位是奇数,偶数位是偶数,则小刚拨对小东电话号码的概率是多少? (注:小刚知道(2)中不等式组的整数解.) 解:18.某数学兴趣小组的同学在一次数学活动中,为了测量一棵银杏树AB 的高,他们来到与银杏树在同一平地且相距18米的建筑物CD 上的C 处观察,测得银杏树顶部A 的仰角为30°、底部B 的俯角为45°. 求银杏树AB 的高(精确到1米).(可供选用的数据:7.13,4.12≈≈).解:MD CBA19. 在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S(次/分)是这个人年龄n(岁)的一次函数. 已知在正常情况下,年龄15岁和45岁的人在运动时所能承受的最高心跳次数分别为164次/分和144次/分.(1)根据以上信息,求在正常情况下,S关于n的函数关系式;(2)若一位63岁的人在跑步,医生在途中给他测得10秒心跳为26次,问:他是否有危险?为什么?解:五、解答题(共2个小题,20题4分,21题6分,共10分.)20.将网格中的图形以点O为位似中心放大为原来的2倍,画出一个放大后的图形即可.解:E ABPCD21.五一期间,某区一中、二中组织100名优秀教师去某景区旅游,(其中一中教师多于二中教师),景区门票价格规定如下表:若两校都以校为单位一次性购票,则两校一共需付4725元,求两校各有多少名优秀教师参加这次旅游?若两校联合起来,作为一个团体购票,能节约多少钱?六、解答题(本题满分8分.)22.如图,梯形ABCD 中,AD ∥BC ,∠ABC=90°,AD=9,BC=12,AB=a ,在线段BC 上取一点P ,连结DP ,作射线PE ⊥DP ,PE 与直线..AB 交于点E. (1)试确定CP=3时,点E 的位置;(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的 函数关系式;(3)若在线段BC 上只找到唯一一点P ,使上述作法得到的点E 与点A 重合,试求出此时a 的值. 解:七、解答题(本题满分7分.)23. 抛物线()02≠++=a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为直线x = -1,B(1,0),C(0,-3).(1)求抛物线的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到A 、C 两点 距离之差最大?若存在,求出点P 坐标;若不存在,请说明理由. 解:(1) (2)八、解答题(本题满分9分.)24.△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 的中点,把一个三角板的直角顶点放在点D 处,将三角板绕点D 旋转且使两条直角边分别交AB 、AC 于E 、F .(1)如图1,观察旋转过程,猜想线段AF 与BE 的数量关系并证明你的结论; (2)如图2,若连接EF ,请探索线段BE 、EF 、FC 之间的关系;(3)如图3,若将“AB=AC ,点D 是BC 的中点”改为:“∠B=30°,AD ⊥BC 于点D ”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF 、BE 的比值. 解:E FDCBAE FDCBAEF CBAB 2018-2018学年第二次统练参考答案 18.5二、填空题(本题共16分,每小题4分.)三、解答题(共4个小题,13、16题5分,14题4分,15题6分,共20分.) 13.解:原式21-……………………4分 = 1 ……………………5分 14.解:原式=22424x x x +-……………………3分 =2x ……………………4分 15.(1)证明:∵ AD ∥BC ∴ ∠1 = ∠2 又∵BD 平分∠ABC∴ ∠2=∠3 ∴ ∠1=∠3∴ AB=AD ……………………3分(2)解:过点D 作DE ⊥BC 于E ………………………4分 ∵120A ∠=,AD ∥BC ∴∠ABC=60o∵BD 平分∠ABC ∴o ABC 30212=∠=∠在BDE Rt ∆中∴12DE BD ==5分∴1232342121=⨯⨯=⋅=∆DE BC S BCD ……………………6分16.解:解:22241244x x x x x -⎛⎫+÷⎪+--⎝⎭ 222444(4)4x x x x x -++=⨯--……………………………………………3分54321M ABCD 24x =+ ……………………4分因为x =x =2x 的值均为3,原式的计算结果都为7.所以把“x =“x =,计算结果也是正确的.……………………5分四、解答题(共3个小题,17题8分,18、19题各5分,共18分.) 17.解:(1)画出树状图或列表正确给4分,(图略)所以,他拨对小东电话号码的概率是110……………………2分 (2)解不等式(1)得x >112……………………3分 解不等式(2)得x ≤8……………………4分 ∴ 解不等式组的解集是:112<x ≤8 ……………………5分 ∴ 整数解是6,7,8∴□表示的数字可能是 6,7,8……………………6分 (3)他拨对小东电话号码的概率是21……………………8分18.解:由题意得:130,245,4590ABD CDB ∠=∠=∠=∠=∠=∠=BD=18,……………………1分∴∠DCB=∠DBC=45o∴CD =BD =18∴四边形CDBM 是正方形∴CD=BM=CM=18……………………2分 在Rt ACM 中tan 1AMCM∠=∴tan 3018AM CM ===3分 ∴18AB AM BM =+=+4分28AB ∴≈(米)……………………5分答:银杏树高约28米.19.解:(1)设S kn b =+.……………………1分由题设得 {⎩⎨⎧∴-===+=+321741641514445k b b k b k所以,S 关于n 的函数关系式为2174.3S n =-+……………………3分 (2)当63n =时,2631741323S =-⨯+= , ∴每分钟心跳的最高次数为132次.因为这位63岁的人10秒心跳为26次,所以,每分钟心跳为156次, 因此,他有危险,不适合从事如此剧烈的运动.……………………5分五、解答题(共2个小题,20题4分,21题6分,共10分.) 20.解: ,注: 正确给4分,此题只有0分或4分。

2 2018年北京中考二模作图题汇(答案版)

2 2018年北京中考二模作图题汇(答案版)

2018昌平二模1.“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图,已知∠AOB .判断∠AOB 是否为直角(仅限用直尺和圆规).李老师说小丽的作法正确,请你写出她作图的依据: . 2018朝阳二模2.下面是“作三角形一边上的高”的尺规作图过程.请回答:该尺规作图的依据是 . 2018东城二模 3. 阅读下列材料:已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图, (1)分别以点B 和点C 为圆心,BA,CA 为半径 作弧,两弧相交于点E ;(2)作直线AE 交BC 边于点D. 所以线段AD 就是所求作的高.数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 . 2018房山二模 4.阅读下面材料:老师说:“小亮的作法正确”请回答:小亮的作图依据是.丰台二模5.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线.C晓龙同学的画图步骤如下: (1)延长OD 交»BC于点M ; (2)连接AM 交BC 于点N.所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是 .2018海淀二模请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 .2018平谷二模7.在数学课上,老师提出一个问题“用直尺和圆规作以AB 为底的等腰直角三角形ABC ”. 小美的作法如下:○1分别以点A ,B 为圆心,大于12AB 作弧,交于点M ,N ; ○2作直线MN ,交AB 于点O ; ○3以点O 为圆心,OA 为半径,作半圆,交直线MN 于点C ; ○4连结AC ,BC . OQB所以,△ABC 即为所求作的等腰直角三角形. 请根据小美的作法,用直尺和圆规作以AB 为底的等腰直角三角形ABC ,并保留作图痕迹.这种作法的依据是 .2018石景山二模8.已知:在四边形ABCD 中,∠ABC =∠ADC =90º,M 、N 分别是CD 和BC 上的点. 求作:点M 、N ,使△AMN 的周长最小. 作法:如图,(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.请回答:这种作法的依据是_____________.2018怀柔二模9. 下面是“已知线段AB ,求作在线段AB 上方作等腰Rt △ABC .”的尺规作图的过程. 已知:线段AB .求作:在线段AB 上方作等腰Rt △ABC . 作法:如图(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于E ,F 两点; (2)作直线EF ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O ,在AB 上方交EF 于点C ; (4)连接线段AC ,BC .△ABC 为所求的等腰Rt △ABC .请回答:该尺规作图的依据是____________________________. 2018顺义二模ABA ''A 'N MDCBA ABCD AB10.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.根据实验,你认为这一型号的瓶盖盖面朝上的概率为 ,理由是: . 2018门头沟二模11. 以下是通过折叠正方形纸片得到等边三角形的步骤问题:在折叠过程中,可以得到PB=PC ;依据是________________________.参考答案:1.两条边相等的三角形为等腰三角形,等腰三角形的三线合一2.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义.3.三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.4. 两点确定一条直线;同圆或等圆中半径相等;5. 垂径定理,等弧所对的圆周角相等.6.①直径所对的圆周角为直角②线段垂直平分线上的点与这条线段两个端点的距离相等7. 线段垂直平分线上的点到线段两个端点的距离相等;直径所对的圆周角是直角;到线段两个端点的距离相等的点在线段的垂直平分线上.8①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.9.到线段两端距离相等的点在线段的垂直平分线上;线段的垂直平分线上的点到线段两端距离相等;两点确定一条直线;圆的定义;直径所对的圆周角为90°.10. 0.532 ,在用频率估计概率时,试验次数越多越接近,所以取1-8组的频率值.11. 线段垂直平分线上的点到线段两端的距离相等。

北京市各区2018年初三数学中考二模《代几综合题》汇编.docx

北京市各区2018年初三数学中考二模《代几综合题》汇编.docx

北京市各区2018 年初三下学期数学二模试题分类汇编2018 昌平二模28.在平面直角坐标系xOy 中,对于任意三点A、B、 C我们给出如下定义:“横长” a:三点中横坐标的最大值与最小值的差,“纵长”b:三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点 .例如:点 A ( 2 ,0),点 B (1,1),点 C( 1, 2 ),则A、B、C 三点的“横长”a=|1 (2)|= 3 ,A、B、C三点的“纵长”b = |1 ( 2) |=3. 因为a = b ,所以A、B、C三点为正方点 .(1)在点R (3,5), S (3,2),T (4, 3 )中,与点A、B为正方点的是;(2)点 P (0,t) 为y轴上一动点,若A,B,P三点为正方点,t 的值为y432B1Ax –4–3–2–1O1 2 3 4–1C–2–3–4;(3)已知点D (1 ,0) .①平面直角坐标系中的点 E 满足以下条件:点 A ,D, E 三点为正方点,在图中画出所有符合条件的点 E 组成的图形;1m 上存在点N,使得 A ,D,N三点为正方点,直接写出m 的取②若直线 l :yx2值范围.y y55443322A 1A1DxDx–5–4–3–2–1 O 1 2 3 4 5–5–4–3–2–1 O 1 2 3 4 5–1–1–2–2–3–3–4–4–5–52018 朝阳二模28. 对于平面直角坐标系xOy 中的点 P 和直线 m,给出如下定义:若存在一点P,使得点 P 到直线 m 的距离等于,则称P为直线m的平行点.(1)当直线m 的表达式为y=x 时,①在点 P1(1, 1), P2( 0, 2 ),P3(2,2)中,直线m的平行点是;22②⊙ O 的半径为10 ,点Q在⊙O上,若点Q为直线m的平行点,求点Q 的坐标 .(2)点 A 的坐标为( n, 0),⊙ A 半径等于1,若⊙ A 上存在直线y3x 的平行点,直接写出 n 的取值范围.2018 东城二模28. 研究发现,抛物线 y1x 2 上的点到点 F(0,1)的距离与到直线 l : y1的距离相等 .4如图 1 所示,若点 P 是抛物线 y1 x2 上任意一点, PH ⊥ l 于点 H ,则 PFPH .4基于上述发现, 对于平面直角坐标系 x O y 中的点 M ,记点 M 到点 P 的距离与点 P 到点 F的距离之和的最小值为d 称 d 为点 M 关于抛物线y1 2 ,x 的关联距离; 当 2≤ d ≤4 时,4称点 M 为抛物线 y1x 2 的关联点 .4( 1 )在点 M 1 (2,0) , M 2 (12), , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关联点是4______ ;(2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 C (t 13),①若 t=4,点 M 在矩形 ABCD 上,求点 M 关于抛物线 y1 x2 的关联距离 d 的取值范4围;②若矩形 ABCD 上的所有点都是抛物线y1 x2 的关联点,则 t 的取值范围是4__________.2018 房山二模28. 已知点 P,Q 为平面直角坐标系xOy 中不重合的两点,以点 P 为圆心且经过点Q 作⊙ P,则称点 Q 为⊙ P 的“关联点” ,⊙ P 为点 Q 的“关联圆” .(1)已知⊙O的半径为1,在点E F13( 1, 1),(-2,2),M( 0,- 1)中,⊙ O 的“关联点”为;(2)若点P2, 0),点Q n Q为点P的“关联圆” ,且⊙Q的半径为 5 ,求n (( 3,),⊙的值;3)已知点D0 2H m2),⊙D是点H的“关联圆” ,直线 y4((,),点(,x 4与 x3轴, y 轴分别交于点A, B. 若线段 AB 上存在⊙ D 的“关联点” ,求 m 的取值范围 .2018 丰台二模28.在平面直角坐标系 xOy 中,将任意两点 P x 1 , y 1 与 Q x 2, y 2 之间的“直距” 定义为:D PQ x 1 x 2y 1 y 2 .MN1 32 ( 5) 5例如:点 M ( 1,), 点 N ( 3,5),则2D.已知点 A(1, 0)、点 B(- 1,4).(1)则 D AO_______ , D BO _______;( 2)如果直线 AB 上存在点 C ,使得 D CO 为 2,请你求出点 C 的坐标;( 3)如果⊙ B 的半径为 3,点 E 为⊙ B 上一点,请你直接写出 D EO 的取值范围 .yy6 6 5 5 4 4 3 3 2 2 117 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O 1 2 3 4 5 6 x1 12 23 34 45 56 67 7 882018 海淀二模28.对某一个函数给出如下定义:若存在实数 k ,对于函数图象上横坐标之差为 1 的任意两点 (a,b1) , (a 1,b2 ) ,b2 b1k 都成立,则称这个函数是限减函数,在所有满足条件的 k 中,其最大值称为这个函数的限减系数.例如,函数y x 2 ,当x取值a和 a1时,函数值分别为 b1a 2 , b2a1,故 b2 b11k ,因此函数 y x 2 是限减函数,它的限减系数为 1 .(1)写出函数y2x1的限减系数;(2)m 0,已知y 1x m, x0 )是限减函数,且限减系数k 4 ,求m的取( 1x值范围.(3)已知函数y x2的图象上一点P ,过点 P 作直线l垂直于 y 轴,将函数y x2的图象在点 P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数k 1 ,直接写出P点横坐标n的取值范围.y y665544332211 7 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O1 2 3 4 5 6 x11 22 33 44 55 66 77 882018 平谷二模28.对于平面直角坐标系xOy 中的点 P 和⊙M,给出如下定义:若⊙M 上存在两个点A,B,使 AB=2PM,则称点 P 为⊙M的“美好点”.(1)当⊙M半径为 2,点 M 和点 O 重合时,○P 2,0P 11,P 2,2中,⊙ O 的“美好点”是;1点1,2,3○2点 P 为直线 y=x+b 上一动点,点P 为⊙O的“美好点”,求 b 的取值范围;(2)点 M 为直线 y=x 上一动点,以 2 为半径作⊙M,点 P 为直线 y=4 上一动点,点P 为⊙ M 的“美好点”,求点M 的横坐标 m 的取值范围.2018 石景山二模28.在平面直角坐标系 xOy 中,对于任意点 P ,给出如下定义:若⊙ P 的半径为 1,则称⊙ P 为点 P 的“伴随圆” .(1)已知,点 P 1,0 ,①点 A1,3 22在点 P 的“伴随圆” (填“上”或“内”或“外”);②点 B 1,0 在点 P 的“伴随圆”(填“上”或“内”或“外” );(2)若点 P 在 x 轴上,且点 P 的“伴随圆”与直线 y3x 相切,求点 P 的坐标;(3)已知直线 y x 2 与 x 、 y 轴分别交于点3x 2 与 x 、 y 轴分别交于点 A ,B ,直线 yC ,D ,点 P 在四边形 ABCD 的边上并沿 AB BCCDDA 的方向移动,直接写出点 P 的“伴随圆”经过的平面区域的面积.2018 西城二模28. 对于平面直角坐标系xOy 中的点Q( x, y)( x≠0),将它的纵坐标 y 与横坐标 x 的比y称x为点 Q 的“理想值” ,记作L Q .如Q(21,2) 的“理想值” L Q 2 .1(1)①若点Q(1,a)在直线y x 4上,则点 Q 的“理想值”L Q等于_________;②如图, C( 3,1) ,⊙C的半径为 1.若点Q在⊙C上,则点Q的“理想值”L Q的取值范围是.(2)点 D 在直线y 3x+3 上,⊙D的半径为1,点Q在⊙D上运动时都有0≤ LQ≤ 3 ,3求点 D 的横坐标x D的取值范围;(3)M (2, m)( m> 0),Q 是以 r 为半径的⊙ M 上任意一点,当0≤ L Q≤2 2 时,画出满足条件的最大圆,并直接写出相应的半径r 的值 .(要求画图位置准确,但不必尺规作图)2018 怀柔二模1AP28. A 为⊙ C 上一点,过点 A 作弦 AB,取弦 AB 上一点 P,若满足1,则称P3AB为点 A 关于⊙ C 的黄金点.已知⊙ C 的半径为 3,点 A 的坐标为( 1, 0).(1)当点 C 的坐标为( 4,0)时,①在点 D( 3, 0), E(4, 1), F( 7, 0)中,点 A 关于⊙ C 的黄金点是;②直线 y33x上存在点 A 关于⊙ C 的黄金点 P,求点 P 的横坐标的取值范围;33(2) 若 y 轴上存在点 A 关于⊙ C 的黄金点,直接写出点 C 横坐标的取值范围...。

2018年北京市昌平区中考二模数学试题及答案 精品

2018年北京市昌平区中考二模数学试题及答案 精品

昌平区2018年初三年级第二次统一练习2014.6铅笔作答,其他试题一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.5-的相反数是A.5B.15C.15-D.5-2.植树造林可以净化空气、美化环境. 据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为A.319610⨯ B.419.610⨯ C.51.9610⨯D.60.19610⨯3.若右图是某几何体的三视图,则这个几何体是A.三菱锥 B.圆柱 C.球D.圆锥俯视图 主视图 左视图4.六边形的内角和为A .360︒B .540︒C .720︒D .1080︒5.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,随机转盘停止后,指针指向蓝色区域的概率是A .16 B .13 C .12 D .236.如图,把一块直角三角板的直角顶点放在直尺的一边上,1=35°,那么∠2的度数为 A .35°B .45°C .55°D .65°7.10名同学分成A 、B 两队进行篮球比赛,他们的身高(单位:cm )如下表所示:AO DC 183设A 、B 两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则下列关系中完全正确的是A .AB x x =,22A B S S>B .A B x x =,22A B S S<C .A B x x >,22A B S S > D .A B x x <,22A B S S<8.如图1,已知点E 、F 、G 、H 是矩形ABCD 各边的中点,AB=6,AD=8.动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x ,点M 到矩形的某一个顶点的距离为y , 如果y 关于x 的函数图象如图2所示,则矩形的这个顶点是H GFED A图1 图2A .点A B. 点B C. 点C D. 点D二、填空题(共4道小题,每小题4分,共16分)9.函数y x 的取值范围是 .10.如图,⊙O 的直径CD ⊥弦AB ,∠AOC =50°,则∠CDB 的大小为 .11.如图,李大爷要借助院墙围成一个矩形菜园ABCD ,用篱笆围成的另外三边总长为24m ,设BC 的长为x m ,矩形的面积为y m 2,则y 与x 之间的函数表达式为 .12.如图,在平面直角坐标系中,已知点()()3,00,4A B -,,对△AOB 连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是 ;第 个三角形的直角顶点的坐标是 .三、解答题(共6道小题,每小题5分,共30分) 13.计算:013sin60(-1)2π-︒+-.14. 解不等式组:34,554 2.x x x x +>⎧⎨-<-⎩菜园DC BA墙1715. 如图,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,且BF =AC .求证:DF =DC .A BCFE16.已知3=y x ,求22222()x y x y xy xy y --÷-的值.17.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.18.如图,已知□ABCD ,E ,F 是对角线BD 上的两点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)当AE 垂直平分BC 且四边形AECF 为菱形时,直接写出AE ∶AB 的值.E BA四、解答题(共4道小题,每小题5分,共20分)19.如图,定义:若双曲线(0)k y k x=>与直线y =x 相交于A 、B 两点,则线段AB 的长度为双曲线(0)k y k x=>的对径.(1)求双曲线1y x =的对径;(2)若双曲线(0)ky k x=>的对径是,求k 的值.20.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:(1)这50个样本数据的众数是 ,中位数是 ;(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数;(3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概率.21.如图,已知BC为⊙O的直径, EC是⊙O的切线,C是切点,EP 交⊙O于点A,D,交CB延长线于点P. 连接CD,CA,AB.(1)求证:∠ECD=∠EAC;(2)若PB=OB=2,CD=3,求PA的长.22.如右图,把边长为a=2的正方形剪成四个全等的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形(要求全部用上,互不重叠,互不留隙).(1)矩形(非正方形);(2)菱形(非正方形);(3)四边形(非平行四边形).(2)(1)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8分,共22分)23.已知抛物线2(31)2(1)(0)y ax a x a a=-+++≠.(1)求证:无论a为任何非零实数,该抛物线与x轴都有交点;(2)若抛物线2(31)2(1)=-+++与x轴交于A(m,0)、B(n,0)y ax a x a两点,m、n、a均为整数,一次函数y=kx+b(k≠0)的图象经过点P(n -l,n+l)、Q(0,a),求一次函数的表达式.24.【探究】如图1,在△ABC中, D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF. 则DE,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBECMFAD BCMF MABCDF图3图2图125.如图,已知点A (1,0),B (0,3),C (-3,0),动点P (x ,y )在线段AB 上,CP 交y 轴于点D ,设BD 的长为t . (1)求t 关于动点P 的横坐标x 的函数表达式;(2)若S △BCD :S △AOB =2:1,求点P 的坐标,并判断线段CD 与线段AB 的数量及位置关系,说明理由;(3)在(2)的条件下,若M 为x 轴上的点,且∠BMD 最大,请直接写出点M 的坐标.昌平区2013—2014学年初三第二次统一练习数学试卷参考答案及评分标准2014.6一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=1312- …………………………………………………………………… 4分12+. ……………………………………………………………………………… 5分14.解:34,554 2.x x x x +>⎧⎨-<-⎩①②由①得,2x >-. ………………………………………………………………………… 2分由②得,3x <. …………………………………………………………………………… 4分∴原不等式组的解集为:23x -<<. (5)分15.证明:∵AD ⊥BC 于D ,BE ⊥AC 于E , ∴90.BDF ADC BEC ∠=∠=∠=︒ 在Rt BEC ∆和Rt ADC ∆中,∠C =∠C ,∴.B A ∠=∠ (1)分在△BDF 和△ADC 中,,,.BDF ADC B A BF AC ∠=∠∠=∠=⎧⎪⎨⎪⎩………………………… 3分 ∴△BDF≌△ADC . ……………………………………………………………………4分∴DF =DC . ……………………………………………………………………………… 5分A BCFE16.解:原式=()()2()()2y x y x y x y xy x y -+-⋅- …………………………………………………………………2分=2x y x+. …………………………………………………………………………………3分 ∵ 3xy =,∴3x y =. …………………………………………………………………………………4分 ∴原式=32233y y y +=⨯. …………………………………………………………… 5分17.解:∵关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, ∴164(1)0m ∆=--=. ……………………………………………………………1分 ∴5m =. …………………………………………………………………………………2分 ∴方程可化为2440x x -+=. ……………………………………………………………3分∴2(2)0x -=.∴122x x ==. (5)分注:正确求出一个根,扣1分.18. (1)证明:连接对角线AC 交对角线BD 于点O . ∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD . …………………………… 2分 ∵点E ,F 是对角线BD 上的两点,且BE =DF ,∴.OB BE OD DF -=-即OE =OF . …………………………… 3分 ∴四边形AECF 是平行四边形. ………………………………………………… 4分 (2)…………………………………………………………………………………………… 5分四、解答题(共4道小题,每小题5分,共20分) 19. 解:(1) ∵1y x=与 y =x 相交于A 、B 两点,∴A (1,1),B (-1,-1). ……………………………………………………OABCDEF……………… 2分∴AB =……………………………………………………………………………3分(2) ∵双曲线(0)k y k x=>的对径是∴AB =.则OA = (4)分设(,)A m m ,OA == ∴m =5. ∴k =25. ……………………………………………………………………………5分20.解:(1)众数为3,中位数为2. …………………………………………………………………2分(2)在50名学生中,读书多于2本的学生有20名,所以,300×=120.………………………………………………………………………3分答:该校八年级300名学生在本次活动中读书多于2册的约有120名.(3)设读书最少的人为A ,读书最多的人为B 1,B 2,B 3.B 2 ……………………………………………………………………………4分被采访的两人恰好都是读书册数最多的学生的情况如下:(B 1,B 2)、(B 1,B 3)、(B 2,B 1)、(B 2,B 3)、(B 3,B 1)、(B 3,B 2),共6种,所以,被采访的两人恰好都是读书册数最多的学生的概率为P==.…………………5分 21. (1)证明:连接BD .∵BC 为⊙O 的直径, ∴90.CDB ∠=︒…………………………………………1分∵EC 与⊙O 相切, ∴90.ECP ∠=︒∵90,90,ECD DCB ECB DBC DCB ∠+∠=∠=︒∠+∠=︒ ∴.ECD CBD ∠=∠ ………………………………2分∵,EAC CBD ∠=∠ ∴∠ECD =∠EAC . ………………………………………………………………………3分(2)作DF ⊥BC 于点F . 在Rt△CDB 中,BD =37CD BD DF BC ==在Rt △CDF 中,9.4CF ==∴15.4PF PC CF =-=在Rt △DFP中,DP ==∵,,PAB PCD P P ∠=∠∠=∠∴PAB ∆∽.PCD ∆.PBPD==. ∴PA = ……………………………………………………………………………5分 22.解:如图,(1) …………………………………………………………………………………… 1分(2)………………………………………………………………………………………… 3分(3)……………………………………………………………………………………… 5分(1)(2)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8,共22分)23.解:(1)证明:∵△=[]2a a a-+-⨯+……………………………………………………(31)42(1)1分=221a a-+=2a-≥(1)0∴无论a为任何非零实数,该抛物线与x轴都有交点.……………………………… 2分(2)解:∵抛物线2(31)2(1)=-+++与x轴交于A(m,0)、y ax a x aB(n,0)两点,(3)∴1a≠.令2(31)2(1)(0)y ax a x a a =-+++≠中y =0, 有:2(31)2(1)0ax a x a -+++=.解得:x =2,11.x a=+…………………………………………………………………3分∵m 、n 、a 均为整数, ∴a =-1,m =0,n =2或m =2,n =0. ……………………………………………………… 5分∵一次函数y =kx +b (k ≠0) 的图象经过点P (n -l ,n +l )、Q (0,a ),∴当a =-1,n =2时,有P (1,3)、Q (0,-1),解得:4 1.y x =- ……………………………………………………………6分当a =-1,n =0时,有P (-1,1)、Q (0,-1),解得:2 1.y x =-- ……………………………………………………… 7分24.【探究】DE =DF . …………………………………………………………………………………1分【拓展】如图2,连接CD .∵在△ A B C 中 ,C B = C A ,F MD A∴∠CAB =∠CBA . ∵∠MBC =∠MAC ,∴∠MAB =∠MBA . …………………………… 2分 ∴AM =BM .∵点 D 是 边 AB 的 中点 ,∴点M 在CD上. ……………………………………………………………………… 3分∴CM 平分∠FCE . ∴∠FCD =∠ECD .∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF =ME . 又∵CM =CM , ∴△CMF ≌△CME . ∴CF =CE . ∵CD =CD ,∴△CFD ≌△CED . ∴DE =DF . ……………………………………………………………………………… 4分【推广】 DE =DF .如图3,作AM 的中点G ,BM 的中点H .GFDA∵点 D 是 边 AB 的 中点 , ∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM =∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH ==∴DG =HE . ………………………………………………………………………………… 5分同理可得:.DH FG = ∵DG //BM ,DH //GM ,∴四边形DHMG 是平行四边形. ∴∠DGM =∠DH M .∵∠MGF =2∠MAC , ∠MHE =2∠MBC , 又∵∠MBC =∠MAC , ∴∠MGF =∠MHE .∴∠DGM +∠MGF =∠DHM +∠MHE . ∴∠DGF =∠DHE . ………………………………………………………………………6分∴△DHE ≌△FGD . ∴DE =DF . ………………………………………………………………………………… 7分25.解:(1)如图,∵点A (1,0),B (0,3),∴直线AB 的解析式为:3 3.y x =-+ ∵OB =3,BD =t , ∴OD =3-t .设P (x ,-3x +3), 作PE ⊥AC 于E ,则OE =x ,PE =-3x +3.∵PE //y 轴, ∴△COD ∽△CEP . ∴OD OC PE CE=∴33.333t x x -=-++∴12(01).3xt x x =≤≤+ …………………………………………………………………… 3分(2)如图,CD =AB ,CD ⊥AB .∵1313,22AOB S ∆=⨯⨯= S △BCD :S △AOB =2:1,∴ 3.BCD S ∆= ∴BD =2. ∴12 2.3xx =+解得:35x =. ∴36,.55P ⎛⎫ ⎪⎝⎭………………………………………………… 4分∵OD =OA =1,OC =OB =3,∠COD =∠BOA =90°, ∴△COD ≌△BOA .∴CD=AB. …………………………………………………………………………… 5分∵△COD≌△BOA,∴∠OCD=∠ABO.又∵∠CDO=∠BDP,∴∠BPD=∠COD=90°.∴CD⊥AB. …………………………………………………………………………………… 6分,(3)MM(. …………………………………………………………………… 8分。

北京市2018年中考数学二模试题汇编代几综合题

北京市2018年中考数学二模试题汇编代几综合题

代几综合题2018昌平二模28.在平面直角坐标系中,对于任意三点A 、B 、C 我们给出如xOy 下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点 (,0) ,点 (1,1) ,点 (, ),则、A 2-BC 1-2-A 、三点的 “横长”=||=3,、、三点的“纵B C a 1(2)--A B C 长”=||=3. 因为=,所以、、三点为正方点.b 1(2)--a b A B C (1)在点 (3,5) ,(3,) , (,)中,与点、R S 2-T 4-3-A 为正方点的是 ;B (2)点P (0,t )为轴上一动点,若,,三点为正方点,的值为 ;y A B P t (3)已知点 (1,0).D ①平面直角坐标系中的点满足以下条件:点,,三点为正方点,在图中画出所有符合条件的E A D E 点组成的图形;E ②若直线:上存在点,使得,,三点为正方点,直接写出m 的取值范围. l 12y x m =+N A D N 2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称1P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,),P 3(,)中,直线m 的平行点是 ;222-22②⊙O 的半径为,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.10y xxyyx(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线的平行点,直接写出n 的x y 3=取值范围.2018东城二模28. 研究发现,抛物线上的点到点F (0,1)的距离与到直线l :的距离相等.如图1所214y x =1y =-示,若点P 是抛物线上任意一点,PH ⊥l 于点H ,则PH PF =.214y x =基于上述发现,对于平面直角坐标系x O y 中的点M ,记点到点的距离与点到点的距离之M P P F 和的最小值为d ,称d 为点M 关于抛物线的关联距离;当时,称点M 为抛物线214y x =24d ≤≤的关联点.214y x=(1)在点,,,中,抛物线的关联点是______ ;1(20)M ,2(12)M ,3(45)M ,4(04)M -,214y x =(2)如图2,在矩形ABCD 中,点,点(1)A t ,(13)C t +,①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线的关联距离d 的取值范围;214y x =②若矩形ABCD 上的所有点都是抛物线的关联点,则t 的取值范围是__________.214y x =2018房山二模28. 已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (,),M (0,-1)中,⊙O 的“关联点”为-1232;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为,求n 的值;5(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线与x 轴,y 轴分别443y x =-+交于点A ,B . 若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点与之间的“直距”定义为:()11,y x P ()22y x Q ,.2121y y x x D PQ -+-=例如:点M (1,),点N (3,),则.2-5-132(5)5MN D =-+---=已知点A (1,0)、点B (-1,4).(1)则,;_______=AO D _______=BO D (2)如果直线AB 上存在点C ,使得为2,请你求出点C 的坐标;CO D (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出的取值范围.EO D2018海淀二模28.对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点,k 1(,)a b ,都成立,则称这个函数是限减函数,在所有满足条件的中,其最大值称为这2(1,)a b +21b b k -≥k 个函数的限减系数.例如,函数,当取值和时,函数值分别为,2y x =-+x a 1a +12b a =-+,故,因此函数是限减函数,它的限减系数为.21b a =-+211b b k -=-≥2y x =-+1-(1)写出函数的限减系数;21y x =-(2),已知()是限减函数,且限减系数,求的取值范围.0m >1y x=1,0x m x -≤≤≠4k =m (3)已知函数的图象上一点,过点作直线垂直于轴,将函数的图象在点2y x =-P P l y 2y x =-右侧的部分关于直线翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减P l 函数,且限减系数,直接写出点横坐标的取值范围.1k ≥-P n2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙,给出如下定义:若⊙上存在两个点A ,B ,使M M AB =2PM ,则称点P 为⊙的“美好点”. M (1)当⊙半径为2,点M 和点O 重合时, M 点 ,,中,⊙的“美好点”是 ;○1()120P -,()211P ,()322P ,O 点P 为直线y=x+b 上一动点,点P 为⊙○2的“美O 好点”,求b 的取值范围;(2)点M 为直线y=x 上一动点,以2为半径作⊙,M 点P 为直线y =4上一动点,点P 为⊙的M “美好点”,求点M 的横坐标m 的取值范围.442018石景山二模28.在平面直角坐标系中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的xOy “伴随圆”.(1)已知,点,()1,0P ①点在点P 的“伴随圆” (填“上”或“内”或“外”);13,2A ⎛⎝②点在点P 的“伴随圆” (填“上”或“内”或“外”);()1,0B -(2)若点P 在轴上,且点P 的“伴随圆”与直线相切,求点P 的坐标;x x y 33=(3)已知直线与、轴分别交于点A ,B ,直线与、轴分别交于点C ,D ,点2+=x y x y 2-=x y x y P 在四边形的边上并沿的方向移动,直接写出点P 的“伴随圆”经ABCD DA CD BC AB →→→过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(x ≠0),将它的纵坐标y 与横坐标x 的比 称为点Q (,)Q x y yx的“理想值”,记作.如的“理想值”.Q L (1,2)Q -221Q L ==--(1)①若点在直线上,则点Q 的“理想值”等于_________;(1,)Q a 4y x =-Q L ②如图,,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”的取值范围是 .(3,1)C Q L (2)点D 在直线上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的3+3y x =3横坐标的取值范围;D x (3)(m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤(2,)M m 22圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足,则称P 为点A 关于131<≤ABAP⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0).(1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ;②直线上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围;3333-=x y (2)若y 轴上存在点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫做“弦中距”,用符号“”表示.d 中以为圆心,半径为2的圆上.(3,0)W -(1)已知弦MN 长度为2.①如图1:当MN ∥x 轴时,直接写出到原点O 的的长度;d 中 ②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的的取值范围.d 中(2)已知点,点N 为⊙W 上的一动点,有直线,求到直线的(5,0)M -2y x =-2y x =-d 中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出xyWO如下定义:如果≤,则称点P 为正方形ABCD 的“关联点”.a PQ 在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在,,中,正方形ABCD 的“关联点”有;11(,0)2-P 21(2P 3P (2)已知点E 的横坐标是m,若点E 在直线上,并且E 是正方形ABCD 的“关联点”,求m 的=y 取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线与x 轴、1=+y y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.y xO。

2018年北京市各区中考数学二模试卷分类汇编8【统计与概率类题】含解析

2018年北京市各区中考数学二模试卷分类汇编8【统计与概率类题】含解析

2018年各区中考数学二模试卷分类汇编8【统计与概率类题】一、选填题【2018·东城二模】1.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误..的是A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大【答案】D【2018·昌平二模】2.某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是()A.六年级40名男生身高的中位数在第153~158cm组B.可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC.九年级40名男生身高的中位数在第168~173cm组D.可以估计该校九年级身高不低于158cm但低于163cm的男生所占的比例大约是5%【答案】A【2018·丰台二模】3.为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩.甲、乙两位同学的练习成绩统计结果如图所示:甲同学的练习成绩统计图乙同学的练习成绩统计图下列说法正确的是(A)甲同学的练习成绩的中位数是38分(B)乙同学的练习成绩的众数是15分(C)甲同学的练习成绩比乙同学的练习成绩更稳定(D)甲同学的练习总成绩比乙同学的练习总成绩低【答案】A【2018·房山二模】4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A.30,28B.26,26C.31,30D.26,22【答案】B【2018·石景山二模】5.某商场一名业务员12个月的销售额(单位:万元)如下表:月份(月)123456789101112销售额(万元) 6.29.89.87.87.2 6.49.8879.8107.5则这组数据的众数和中位数分别是(A)10,8(B)9.8,9.8(C)9.8,7.9(D)9.8,8.1【答案】C【2018·西城二模】6.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min )129136140145146148154158165175由此所得的以下推断不正确...的是A .这组样本数据的平均数超过130B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142min 的选手,会比一半以上的选手成绩要好【答案】C【2018·朝阳二模】7.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有51的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是(A )①②(B )②③(C )③④(D )④【答案】B【2018·东城二模】8.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为;若该社区有10000人,估计爱吃鲜肉粽的人数约为.【答案】120;3000【2018·朝阳二模】9.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.【答案】答案不唯一,理由须支撑推断的合理性.【2018·昌平二模】10.近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:(第12题)根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为万量,你的预估理由是.【答案】答案不唯一(只要理由合理均可给分)【2018·房山二模】11.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如下表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用;依据是.【答案】答案不唯一,理由支撑选项即可;【2018·石景山二模】12.任意掷一枚骰子,下列情况出现的可能性比较大的是(A)面朝上的点数是6(B)面朝上的点数是偶数(C)面朝上的点数大于2(D)面朝上的点数小于2【答案】C【2018·丰台二模】13.一个盒子里装有除颜色外都相同的10个球,其中有a个红球,b个黄球,c个白球.从盒子里随意摸出1个球,摸出黄球的概率是12,那么a=,b=,c=.(写出一种情况即可)【答案】2,5,3(答案不唯一);【2018·海淀二模】14.袋子中有20个除颜色外完全相同的小球.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__________.【答案】4【2018·房山二模】15.某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是__________.球类篮球排球足球数量354【答案】13【2018·朝阳二模】16.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,其中合理的有(只填写序号).【答案】②③【2018·西城二模】17.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【答案】83【2018·房山二模】18.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.【答案】17;二、解答题;【2018·石景山二模】1.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【答案】解:(1)1000;(2)………………4分(3)50180009001000⨯=.………………6分答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【2018·西城二模】2.阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.年度20132014201520162017参观人数(人次)74500007630000729000075500008060000年增长率(%)38.7 2.4-4.5 3.6 6.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观.国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.”尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.【答案】解:(1)补全统计图如图3.…………………………………………………………………4分(2)答案不唯一,预估理由合理,支撑预估数据即可.………………………6分【2018·海淀二模】3.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.图3(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.59乙8.5(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.【答案】(1)补充表格:运动员平均数中位数众数甲8.599乙8.58.57和10(2)答案不唯一,可参考的答案如下:甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.【2018·丰台二模】4.某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A,C,D,D,G,G,F,E,B,G,C,C,G,D,B,A,G,F,F,A,G,B,F,G,E,G,A,B,G,G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图课程领域人数A4B4C3D3E2FG合计30分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.【答案】收集数据抽样调查对象选择合理的是③.………………………1分整理、描述数据如下:………………………4分某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论G ,60.………………………6分【2018·房山二模】5.某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.29.69.67.89.34 6.58.59.99.6乙 5.89.79.7 6.89.9 6.98.2 6.78.69.7课程领域人数F 4G 10根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x ≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.甲101215乙(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7结论(1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)【答案】解:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.x 人员数量销售额x 人员数量销售额乙013024……………………………………………………………………………………2′(1)6;………………………………………………………………………………………4′(2)答案不唯一,理由结合数据支撑选项即可…………………………………………6′【2018·东城二模】6.十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率表2北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).【答案】解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分【2018·朝阳二模】7.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):112323233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.【答案】解:(1)①②3.4,3…………………………………………………4分(2)70………………………………………5分【2018·昌平二模】8.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级7886748175768770759075798170748086698377九年级9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人x 4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤数部门八年级001111九年级1007(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.377.57533.6九年级7880.552.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).【答案】解:成绩4049x ≤≤5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤90100x ≤≤2018年北京市各区中考数学二模试卷分类汇编8【统计与概率类题】含解析21人x数部门八年级0011171九年级1007102(1)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.377.57533.6九年级7880.58152.1…………………………………………2分(2)108;…………………………………3分(3)答案不唯一,理由需支撑推断结论…………………………6分。

北京市各区2018年初三数学中考二模《统计综合题》汇编

北京市各区2018年初三数学中考二模《统计综合题》汇编

23. 某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78867481757687707590 75798170748086698377九年级93738881728194837783 80817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70 ~79分为体质健康良好,60 ~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为 _______________ ;(2)可以推断出______ 年级学生的体质健康情况更好一些,理由为_____________________ •(至少从两个不同的角度说明推断的合理性)24•“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 1 2323233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整抽样调査小区30户蛊庭2018年4月份义务植树数呈统计图② ______________________________________________________ 这30户家庭2018年4月份义务植树数量的平均数是______________________________________________ ,众数是 ______ ;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户•24. 十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现•森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键•截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:请根据以上信息解答下列问题:(1)__________ 从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;⑶第八次清查的全国森林面积20768.73 (万公顷)记为a,全国森林覆盖率21.63%记为b,至U 2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到__________ 万公顷(用含a和b的式子表示).24.某商场甲、乙两名业务员10个月的销售额(单位:万元)如下甲7.2 9.6 9.6 7.89.3 4 6. 5 8.59.9 9.6乙5.8 9.7 9.7 6.89.9 6.9 8.2 6.78.6 9.7(说明:月销售额在万元及以上可以获得奖金,万元为良好,万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:结论(1)估计乙业务员能获得奖金的月份有_______________________ 个;(2)可以推断出______ 业务员的销售业绩好,理由为______________________________ •(至少从两个不同的角度说明推断的合理性)23.某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习•学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C•结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是_____________ ;(填序号)①选择七年级1班、2班各15名学生作为调查对象②选择机器人社团的30名学生作为调查对象③选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A, C, D, D, G, G, F, E, B, G,C, C, G, D, B, A, G, F, F,A,G, B, F, G, E, G, A, B, G, G整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图名学生喜欢这个课程领域.24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由23.为了解2018年某校九年级数学质量监控情况,随机抽取40名学生的数学成绩进行分析.成绩统计如下•93928455858266758867 8787376186617757727568667992868761869083 90187067527986716189 2018年某校九年级数学质量监控部分学生成绩统计表:请根据所给信息,解答下列问题:(1 )补全统计表中的数据;(2) 用统计图将2018年某校九年级数学质量监控部分学生成绩表示出来;(3) 根据以上信息,提出合理的复习建议.23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.部分同学用餐剩余情况统计图(1 )这次被调查的同学共有_____ 人;(2 )补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐•据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.22•阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票, 2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比 77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务 •实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划, 获得更美好的文化空间和参观体验•材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表•年度2013 2014 2015 2016 2017参观人数(人次) 7 450 000 7 630 000 7 290 000 7 550 000 8 060 000年增长率(%38.7 2.4 -4.5 3.66.8他还注意到了如下的一则新闻: 年月日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观 •国博正在建设智慧国家博物馆,同时馆方工望带给观众一个更完美的体验方式 根据以上信息解决下列问题: (1) 补全以下两个统计图;作人员担心的是:虽然有故宫免(纸 质)票的经验在前,但对于国博来说 这项工作仍有新的挑战•参观故宫需 要观众网上付费购买门票, 他遵守预 约的程度是不一样的•但(国博)免 费就有可能约了不来, 挤占资源,所 以难度其实不一样• ”尽管如此,国 博仍将积极采取技术和服务升级,希中国国家博物馆参观票U P . *$E*a j !:SAttSSfl5»?■知卑FT*.杲*只0匕.JFE*a tin* AJO?- ■- iS+S ft fl! Bi s ft.10020U-M门年北射坏r网峪博为占比()(*)eB0 60 40 20 01 1'1441{1_鸽11M H 1012 2^13 2014 M15 2U16 2017 时冏(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由2018怀柔二模21.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果•常用的阅读方法有A圈点批注法;B•摘记法;C•反思法;D•撰写读后感法;E.其他方法•我区某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:阅读方法频数频率圈点批注法a0.40摘记法200.25反思法b c撰写读后感法160.20其他方法40.05(1) 请你补全表格中的a,b, c数据:a= ______ ,b= ____ ,c= _____ ;(2) 若该校共有中学生960名,估计该校使用反思法”读书的学生有人;(3) 小明从以上抽样调查所得结果估计全区6000名中学生中有1200人采用撰写读后感法岸雇Jft北京市各区2018年初三下学期数学二模试题分类汇编读书,你同意小明的观点吗?请说明你的理由11。

2018届北京市昌平区高三二模数学试题及答案(理科)

2018届北京市昌平区高三二模数学试题及答案(理科)

2018届北京市昌平区高三二模数学试题及答案(理科)昌平区2018年高三年级第二次统一练习数学试卷(理科)2018.5本试卷共5页,共150分.考试时长120分钟.考生务必将答案作答在答题卡上,在试卷上作答无效.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U R ,集合A ={x ∣x <1或x > 1},则UA =A .(,1)(1,)-∞-+∞ B .(,1][1,)-∞-+∞ C .(1,1)-D .[1,1]-2.若复数cos isin z θθ=+,当4=π3θ时,则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知等比数列{}na 中,143527,aa a a ,则7a =A .127 B.19C .13D .3 4.设0.212a ⎛⎫= ⎪⎝⎭,2log 3b =,0.32c -=,则A .b c a >>B .a b c >>C .b a c >>D .a c b >>5.若满足条件010x y x y y a -≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y 恰有12个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为A .3-B .2-C .1-D .06.设,x y ∈R ,则22+2x y≤“”是||1||1x y ≤≤“且”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,则该四棱锥的所有面中最大面的面积是332元,则他的当月工资、薪金所得介于A .5000~6000元B .6000~8000元C .8000~9000元D .9000~16000元第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在二项式61)x 的展开式中,第四项的系数是 .(用数字作答)10.在ABC∆中,3ABC S ∆=,3AB =,1AC =,则BC =.11.已知双曲线C :2221(0)x y a a-=>的渐近线方程为12y x=±,则双曲线C 的离心率是 .12.执行如图所示的程序框图,若输入 x 值满足24x -<≤,则输出y 值的取值范围是 .2log y x=2x <23y x =-是否x输入输结开13.向量a ,b 在边长为1的正方形网格中的位置如图所示, 则向量a ,b 所成角的余弦值是_________;向量a ,b 所张成的平行四边形的面积是__________.14.已知函数()22,1ln 1.x ax x f x a xx x ⎧-+<⎪=⎨≥⎪⎩‚‚① 当1x <时,若函数()f x 有且只有一个极值点,则实数a 的取值范围是 ;② 若函数()f x 的最大值为1,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)已知函数()2sin()cos()3sin 244f x x x x=--+ππ.(I )求函数()f x 的最小正周期;abB 地区(AQI)(201,248)(158,120)(153,145)(150,222)(120,115)(90,78)(97,144)(88,216)(60,42)(54,49)(53,65)(51,77)(40,77)(45,54)(40,38)(30,48)(29,30)(27,27)(25,25)(21,22)2502001501005025020015010050A 地区(AQI)O(II )求函数()f x 在区间[0,]2π上的最值及相应的x 值.16.(本小题13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A ,B 两地区一年的数据中随机抽取了相同20天的观测数据,得到A ,B两地区的空气质量指数(AQI )如下图所示:根据空气质量指数,将空气质量状况分为以下三个等级:空气质量指数AQI(0,100) [100,200) [200,300)空气质量状况优良 轻中度污染重度污染(Ⅰ)试估计A 地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件C :“A 地区空气质量等级优于B 地区空气质量等级”. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C 的概率. (Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A ,B 两地区哪个地区.(只需写出结论)17.(本小题14分)如图1,在边长为2的菱形ABCD 中,60BAD ∠=,DE AB⊥于点E ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D BE⊥,如图2.ABCD E 图A 1BCDE图(I )求证:1A E ⊥平面BCDE ;(II )求二面角1E A D B --的余弦值;(III )在线段BD 上是否存在点P ,使平面1A EP ⊥平面1A BD ?若存在,求出BP BD 的值;若不存在,说明理由.18.(本小题14分)已知椭圆()2222:10x y E a b a b+=>>经过点(0,1),且离心率2.(I )求椭圆E 的标准方程;(II )过右焦点F 的直线l (与x 轴不重合)与椭圆交于,A B 两点,线段AB 的垂直平分线交y 轴于点(0,)M m ,求实数m 的取值范围.19.(本小题13分)已知函数2()e x f x axax x =+-,1a >.(I )若曲线()f x 在点(0,(0))f 处的切线方程为y x =,求a 的值;(II) 证明:当0x <时,函数()f x 存在唯一的极小值点为0x ,且012x -<<.20.(本小题13分)已知正项数列{}na 中,若存在正实数p ,使得对数列{}n a 中的任意一项ka ,kpa 也是数列{}na 中的一项,称数列{}na 为“倒置数列”,p 是它的“倒置系数”.(I)若数列:1,4,9,(9)x x 是“倒置系数”为p的“倒置数列”,求x和p的值;(II)若等比数列{}n a的项数是m,数列{}n a所有项之积是T,求证:数列{}n a是“倒置数列”,并用m和T表示它的“倒置系数”p;(III)是否存在各项均为整数的递增数列a,使得它既是等差数列,又是“倒置数列”,如{}n果存在,请写出一个满足条件的数列,如果不存在,请说明理由.昌平区2018年高三年级第二次统一练习数学试卷(理科)参考答案一、选择题(共8小题,每小题5分,共40分) 题号 1 2 3 4 5 6 7 8 答案 D C A C B B B C二、填空题(共6小题,每小题5分,共30分) 9.20 10.1或711512.[3,2]- 13.45; 3 14.1a <;1-三、解答题(共6小题,共80分) 15.(共13分) 解:(I )π()sin(2)3sin 22f x x x=- cos23sin 2x x=+π2sin(2)6x =+所以()f x 的最小正周期是π.-------------------8分(II )因为 π02x ≤≤, 所以02πx ≤≤,所以ππ7π2666x ≤≤+,当π6x =时,max()2f x =.当π2x =时,m ()1in -f x =.--------------------13分16.(共13分)解:(Ⅰ)从A 地区选出的20天中随机选出一天,这一天空气质量状况为“优良”的频率为510.7520-=,估计A 地区当年(365天)的空气质量状况“优良”的频率为0.75,A 地区当年(365天)的空气质量状况“优良”的天数约为3650.75274⨯≈天. -----------4分(Ⅱ)记1A 表示事件:“A 地区空气质量等级为优良”;2A 表示事件:“A 地区空气质量等级为轻中度污染”;1B 表示事件:“B 地区空气质量等级为轻中度污染”;2B 表示事件:“B 地区空气质量等级为重度污染”,则1A 与1B 独立,2A 与2B 独立,1B 与2B 互斥,111222C A B A B A B =.所以111222()()P C P A BA B A B =111222()()()P A B P A B P A B =++111222()()()()()()P A P B P A P B P A P B =++.由所给数据得1A ,2A ,1B ,2B 发生的频率分别为34,15,15,320. 故13()4P A =,21()5P A =,11()5P B =,23()20P B =, 所以31313()()0.2925.4520520P C =⨯++⨯=--------------------10分(Ⅲ)从空气质量角度,建议选择A 地区居住 . --------------------13分 17.(共14分) 证明:(I )因为DE AB ⊥,所以BE DE ⊥.又因为1BE A D ⊥,1DEA D D=,所以BE ⊥平面1A DE .因为1A E ⊂平面1A DE ,所以1A E BE ⊥.又因为1A E DE ⊥,BEDE E=,所以1A E ⊥平面BCDE .--------------------5分 (II )因为1A E ⊥平面BCDE ,BE DE⊥,所以以E 为原点,分A1CD y z别以EB ,ED ,EA 1为x ,y ,z 轴,建立空间直角坐标系,则(1,0,0)B ,3,0)D ,1(0,0,1)A .所以1(1,0,1)BA =-,(3,0)BD =-. 设平面1A BD 的法向量(,,)x y z =n , 由1030BA x z BD x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩n n ,得3x zx y=⎧⎪⎨=⎪⎩令1y =,得(3,1,3)=n .因为BE ⊥平面1A DE ,所以平面1A DE 的法向量(1,0,0)EB =,所以321cos,77EB EB EB⋅===⋅n n n .因为所求二面角为锐角, 所以二面角1E A D B--的余弦值为217. -------------------10分(III )假设在线段BD 上存在一点P ,使得平面1A EP ⊥平面1A BD .设(,,)P x y z ,(01)BP BD λλ=≤≤,则(1,,)(3,0)x y z λ-=-.所以(13,0)P λλ-.所以1(0,0,1)EA =,(13,0)EP λλ=-.设平面1A EP 的法向量(,,)x y z =m , 由10(1)30EA z EP x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩m m ,得0(1)3z x yλλ=⎧⎪⎨-=-⎪⎩,令3x λ=,得(3,1,0)λλ=-m .因为平面1A EP ⊥平面1A BD , 所以310λλ⋅=+-=m n ,解得[]10,14λ=∈, 所以在线段BD 上存在点P ,使得平面1A EP ⊥平面1A BD ,且14BP BD =. -------------------14分18.(共14分) (Ⅰ)由题意,得22212b c e a a b c =⎧⎪⎪==⎨⎪⎪=+⎩, 解得21a b ⎧=⎪⎨=⎪⎩.所以椭圆E 的标准方程是2212x y +=. -------------------5分(II )(1)当直线x AB ⊥轴时,m = 0符合题意.(2)当直线AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,由22(1)220y k x x y =-⎧⎨+-=⎩,得()()2222124210k xk x k +-+-=,由2222(4)8(12)(1)0kk k ∆=--+->,得k ∈R .设()11,x y A ,()22,x y B ,则2212122242(1)1212k k x x x x k k -+=⋅=++,.所以121222(2)12ky y k x x k -+=+-=+,所以线段AB 中点C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭.由题意可知,0k ≠,故直线C M 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令x = 0,212ky k =+,即212km k =+当k > 0时,,得2120=11242k m k k k<=≤++,当且仅当22k =时“=”成立.同理,当 k < 0时,2120=11242k m k k k>=≥-++,当且仅当2k =时“=”成立.综上所述,实数m 的取值范围为2244⎡-⎢⎣⎦.--------------------14分19.(共13分) 解:(I )因为2()e xf x axax x =+-,得()2e e xxf x ax a x '=+--,所以(0)1f a '=-.因为曲线在点(0,(0))f 处的切线方程为y x =,所以(0)11f a '=-=,即2a =. --------------------5分(II)设()2e e x xh x ax a x =+--,则()22e e 2(2)e x x xh x a x a x '=--=-+.因为0x <,所以22x +<,e 1x<.又因为1,a >所以()0h x '>,故()(21)e (1)xh x a x x =+-+在(,0)-∞上为增函数. 又因(0)10h a =->,1211()e 022h --=-<,由零点存在性定理,存在唯一的01(,0)2x ∈-,有0()0h x =. 当0(,)x x ∈-∞时,()()0h x f x ='<,即()f x 在0(,)x -∞上为减函数,当0(,0)x x ∈时,()()0h x f x ='>,即()f x 在0(,)x -∞上为增函数,所以0x 为函数()f x 的极小值点. --------------------13分20.(共13分)解:(I )因为数列:1,4,9,(9)x x >是“倒置系数”为p 的“倒置数列”.所以,,,94p p p p x 也是该数列的项,且94p p p p x <<<.故1,49x ==,即36x p ==.--------------------3分(II )因为数列{}na 是项数为m 项的有穷正项等比数列,取1mp a a=⋅>,对数列{}na 中的任意一项(1)ia i m ≤≤,111m i m im i i i ia a a a p a a a a +-+-===也是数列{}na 中的一项,由“倒置数列”的定义可知,数列{}na 是“倒置数列”;又因为数列{}na 所有项之积是T ,所以21231211()()()m mm m m m m T a a a a a a a a a a p --===即2mp T =.--------------------9分(III )假设存在这样的等差数列{}na 为“倒置数列”,设它的公差为(0)d d >,“倒置系数”为p.因为数列{}na 为递增数列,所以123n a a a a <<<<<则123np p p p a a a a >>>>>又因为数列{}n a 为“倒置数列”,则正整数ip a 也是数列{}na 中的一项(1,2,i =),故数列{}na 必为有穷数列,不妨设项数为n 项,则1(11)in ip a ai n +-=⋅≤≤-则121nn a aa a -=,得11()()nn a aa d a d =+-,即2(2)0n d-=由3n ≥,故0d =,与0d >矛盾.所以,不存在满足条件的数列{}na ,使得它既是等差数列,又是“倒置数列”. -------------------13分。

北京昌平区中考数学二模试题及答案()

北京昌平区中考数学二模试题及答案()

北京昌平区—第二学期初三年级第二次统一练习数学 试 卷 .6考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在答题卡上准确填写学校名称、考试编号和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题或画图用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将答题卡交回。

一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是 A . 2 B .2- C .21 D .21- 2.下列图案中,是中心对称图形但不是轴对称图形的是A B CD3.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠ABC =70°,则∠BDC 的度数为 A .50° B .40° C .30° D .20°4.若22(1)0m n ++-=,则2m n +的值为 A .4-B .1-C .0D .45.下列四个几何体中,主视图是三角形的是6.如图,用一个交叉卡钳(两条尺长AC 和BD 相等,OC =OD )量零件的内孔直径AB .若OC ∶OA =1∶2,量得CD =10,则零件的内孔直径AB 长为 A .30 B .20 C .10 D .57. 在1,2,3三个数中任取两个,则这两个数之和是偶数的概率为 A .13B .12C .14D .168.下右图能折叠成的长方体是ODCBABCD二、填空题(共4道小题,每小题4分,共16分) 9.若分式241x x -+的值为0,则x 的值为 . 10.圆锥的母线长为3,底面半径为2,则它的侧面积为 .11.已知一个菱形的周长是20,两条对角线的长的比是4∶3,则这个菱形的面积是 . 12.如图的方格纸中,每个小方格都是边长为1的正方形,A 、B 两点是方格纸中的两个格点,在4×5的方格纸中,找出格点C ,使△ABC 的面积为1个平方单位,则满足条件的格点C 的个数是 .三、解答题(共6道小题,每小题5分,共30分) 13.计算:12sin 458(2012)-+︒--+-. 14.解方程:211x x x+=-. 15.已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.16.如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的点,且BD =CE .求证:DC =EA 17.如图,已知:反比例函数ky x=(x <0)的图象经过点A (-2,4)、 B (m ,2),过点A 作A F ⊥x 轴于点F , 过点B 作BE ⊥y 轴于点E ,交AF点C ,连结OA .(1)求反比例函数的解析式及m 的值;(2)若直线l 过点O 且平分△AFO 的面积,求直线l 的解析式. 18.列方程(组)解应用题:李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.四、解答题(共4道小题,每小题5分,共20分)19.在Rt △ABC 中,∠ACB =90°,BC =4.过点A 作A E ⊥AB 且AB =AE ,过点E 分别作E F ⊥AC ,ED ⊥BC ,分别交AC 和BC 的延长线与点F ,D .若FC =5,求四边形ABDE 的周长.20.如图,⊙O 的半径OA 与OB 互相垂直,P 是线段OB 延长线上的一点,连结AP 交⊙O于点D ,点E 在OP 上且DE =EP .B AA DC EBA B C D E F DA BCE FC y xO A B(1)求证:DE 是⊙O 的切线;(2)作DH ⊥OP 于点H ,若HE =6,DE =43,求⊙O 的半径的长.21. 某学校为了了解学生本学期参加社会实践的情况,随机抽查了该校部分学生参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图:各时间实践活动人数占抽样总人数百分比统计图抽样调查学生社会实践时间的人数统计图人数时间7天及以上20%4天15%3天10%%30%6天5天请你根据图中提供的信息,回答下列问题: (1)该校对多少名学生进行了抽样调查? (2)补全条形统计图和扇形统计图;(3)该校共有学生1000人,请你估计“活动时间不少于5天”的大约有多少人? 22.类比学习:有这样一个命题:设x 、y 、z 都是小于1的正数,求证:x (1-y )+ y (1-z )+ z (1-x )<1.小明同学是这样证明的:如图,作边长为1的正三角形ABC ,并分别在其边上截取AD =x ,BE =z ,CF =y ,设△ADF 、△CEF 和△BDE 的面积分别为1S 、2S 、3S , 则 112S x y =(1-)sin60, 212S y z =(1-)sin60,312S z x =(1-)sin60.由 1S +2S +3S <ABC S ∆,得 12x y (1-)sin60+12y z (1-)sin60+12z x (1-)sin603. 所以 x (1-y )+ y (1-z )+ z (1-x )<1.类比实践:已知正数a 、b 、c 、d ,x 、y 、z 、t 满足a x +=b y +=c z +=d t +=k . 求证:ay +bz +ct +dx <22k .五、解答题(共3道小题,第23小题6分,第24,25小题各8分,共22分)H 1-z1-y -xzyxS 3S 2S 1F DB A23.已知m 为整数,方程221x mx +-=0的两个根都大于-1且小于32,当方程的两个根均为有理数时,求m 的值.24.如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D (4,32). (1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M ,使得M 到D 、B 的距离之和最小,求出点M 的坐标; (3)如果点P 由点A 出发沿线段A B 以2cm/s 的速度向 点B 运动,同时点Q 由点B 出发沿线段BC 以1cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S =PQ 2(cm 2). ①求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S =54时,在抛物线上存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形, 求出点R 的坐标.25.如图,在Rt △ABC 中,∠ABC =90°,过点B 作BD ⊥AC 于D ,BE 平分∠DBC ,交AC 于E ,过点A 作AF ⊥BE 于G ,交BC 于F ,交BD 于H . (1)若∠BAC =45°,求证:①AF 平分∠BAC ;②FC =2HD . (2)若∠BAC =30°,请直接写出FC 与HD 的等量关系.昌平区—第二学期初三年级第二次统一练习数学试卷参考答案及评分标准 .6一、选择题(共8个小题,每小题4分,共32分)1 2 3 4 5 6 7 8 BCDCBBAD二、填空题(共4个小题,每小题4分,共16分)题 号 9 10 11 12 答 案26π24 6三、解答题(共6道小题,每小题5分,共30分)13.解:原式G AB DE F HC H G ED C F B A yB AO x1221-1-1C=1222122+-+ ……………………… 4分 =33222-. ……………………… 5分 14.解:22(1)(1)x x x x +-=-. ……………………… 1分∴ 2222x x x x +-=-. ………………………2分∴ 23x =. ……………………… 4分 经检验,23x =是原方程的根. ……………………… 5分15.解:原式=221444x x x ++--+ ……………………… 2分 =221x x -+ ……………………… 3分 =2(1)x -. ……………………… 4分∵ 31=-x ,∴原式=3 ……………………… 5分 16.证明:∵ △ABC 是等边三角形,∴ BC =AC ,∠1=∠2=60°. ……………………… 1分 ∴ ∠3=∠4=120°. ……………………… 2分 ∵ BD =CE , ……………………… 3分 ∴ △BDC ≌△CEA . ……………………… 4分 ∴DC =EA . ……………………… 5分17.解:∵ ky x=(x <0)的图象经过点A (-2,4)、B (m ,2), ∴ 8k =-. ……………………… 1分∴ 8y x=-. ……………………… 2分∴ 4m =-. ……………………… 3分∵ 直线l 过点O ,∴ 设直线l 的解析式为:y kx =,其中0k ≠.4321A DCEBl BA OxyC F E∵ 直线l 平分△AFO 的面积,∴ 直线l 过AF 的中点C (-2,2). ……………………… 4分 ∴ 1k =-.∴ 直线l 的解析式为:y x =-. ……………………… 5分18.解:设自行车路段为x 米, ……………………… 1分则500015600200x x -+=. ……………………… 3分 解之,得x = 3000. ……………………… 4分 ∴ 5000- x = 2000.答:自行车路段为3000米,长跑路段为2000米. (5)分四、解答题(共4道小题,每小题5分,共20分) 19.解:∵ ∠ACB =90°,A E ⊥AB ,∴ ∠1+∠B =∠1+∠2=90°. ∴ ∠B =∠2. …………… 1分 ∵ E F ⊥AC , ∴ ∠4=∠5 =90°. ∴ ∠3=∠4. ∵ AB =AE ,∴ △ABC ≌△EAF . ……………… 2分 ∴ BC =AF ,A C =EF . ∵ BC =4, ∴ AF =4. ∵ FC =5, ∴ AC =EF=9.在Rt △ABC 中,22AB BC AC +2249+97.…… 3分 ∴ AE 97.∵ ED ⊥BC ,∴ ∠7=∠6 =∠5= 90°. ∴ 四边形EFCD 是矩形. ∴ CD =EF =9,ED =FC =5. ……………………… 4分∴ 四边形ABDE 的周长=AB +BD +DE +EA 979797. …………… 5分 20.(1)证明:连结OD . ……………………… 1分∵ OA =OD , ∴ ∠A =∠1. ∵ DE =EP , ∴ ∠2=∠P .7651243E FDABC321BAH EDOP∵ OA ⊥OB 于O , ∴ ∠A +∠P =90°. ∴ ∠1+∠2=90°. ∴ ∠ODE =90°. 即 OD ⊥DE .∵ OD 是⊙O 的半径,∴ DE 是⊙O 的切线. …………………………… 3分(2)解:∵DH ⊥OP 于点H ,∴ ∠DHE =90°. ∴ cos ∠3=HE DH =346=23. ∴ ∠3=30°∵ 在Rt △ODE 中,tan ∠3=DEOD, ∴34OD =33. ∴ OD =4.即 ⊙O 的半径为4. ………… 5分21.解:(1)20÷10%=200(名)答:该校对200名学生进行了抽样调查. ………………………………… 1分 (2)…………………………………………………… 3分(3)(30%+25%+20%)×1000=750(名)答:“活动时间不少于5天”的大约有750人. ………………… 5分22.证明:如图,作边长为k 的正方形ABCD . …………………1分并分别在各边上截取: AE =a ,DH =b ,CG =c ,BF =d , ∵ ax b y c z d t k ,255天6天30% %10%3天15%4天20%7天及以上时间人数抽样调查学生社会实践时间的人数统计图各时间实践活动人数占抽样总人数百分比统计图y c b a S 4H x S 3S2S 1D AEz∴ BE =x ,AH =y ,DG =z ,CF =t . …………………2分 ∵ 90A B C D ,∴112S ay ,212S dx ,312S ct ,412S bz . …………………3分 ∵ 1234ABCD S S S S S 正方形,∴ 211112222ay dx ct bz k .∴22ay bz ctdxk . ……………………………………………………5分五、解答题(共3道小题,第23小题6分,第24,25小题各8分,共22分) 23.解: 设221y x mx =+-. ……………………………1分∵ 2210x mx +-=的两根都在1-和32之间, ∴ 当1x =-时,0y >,即:210m --> . ……………………2分 当32x =时,0y >,即:931022m +->. ……3分 ∴ 1213m -<<. ………………………4分 ∵ m 为整数,∴ 210m =--,,. ……………………………5分 ① 当2m =-时,方程222104812x x --=∆=+=,, ∴ 此时方程的根为无理数,不合题意.② 当1m =-时,方程212121012x x x x --==-=,,,符合题意. ③ 当0m =时,方程2210x -=,22x =±,不符合题意. 综合①②③可知,1m =-. …………… 6分24. 解:(1)据题意,A (0,2),B (2,2), C (2,0) .∵ 抛物线y =ax 2+bx +c 经过点A 、B 和D (4,32),∴ ⎪⎪⎩⎪⎪⎨⎧++=++==.,,24163222422b a b a c ,1-=a∴∴ 231612++-=x x y . ……………………… 2分 (2)点B 关于抛物线的对称轴x =1的对称点为A .连接AD ,与对称轴的交点即为M .∵ A (0,2)、 D (4,32),∴ 直线AD 的解析式为:231+-=x y . 当x =1时,35=y ,∴ M (1,35). ………………………… 4分(3) ① AP =2t, PB =2-2t, BQ =t .在Rt △PBQ 中,∠B =90°,∴ 222BQ PB PQ +=.∴ 2222t t S +-=)(. ∴ 4852+-=t t S ,(0≤t ≤1).②当时45=S ,485452+-=t t .∴ 21=t ,1011=t >1(舍).∴ P (1,2),Q (2,23).∴ PB = 1.根据分析,以点P 、B 、Q 、R 为顶点的平行四边形只能是□PQRB . ∴ R (3,23).此时,点R (3,23)在抛物线231612++-=x x y 上.……8分25.解:(1)①∵ BD ⊥AC ,AF ⊥BE , ∴ ∠ADH =∠HGB =90°. ∵ ∠BHG=∠AHD , ∴ ∠HBG =∠HAD . ∵ ∠ABC =∠FGB =90°, ∴ ∠BAF+∠AFB=90°, ∠GBF+∠AFB=90°.K GABD EHC∴ ∴yBAO x1221-1-1CMDyB AOx1221-1-1CQP R3∴ ∠GBF=∠BAF .∵ BE 平分∠DBC , ∴ ∠GBF=∠HBG . ∴ ∠HAD=∠BAF .即 AF 平分∠BAC . ………………………………2分 ②∵ 在Rt △ABC 中,∠ABC=90°,∠BAC=45°, ∴ ∠C=∠BAC = 45°, ∴ AB=BC . ∵ BD ⊥AC , ∴ AD=DC=21AC . 过点D 作KD ∥FC 交AF 于K , ∴21==AC AD FC KD . ∴ FC=2KD . ……………………4分 ∵ BE 平分∠DBC ,BE ⊥AF ,∴ ∠DBE =∠EBF ,∠HGB =∠FGB =90°. ∴ ∠BFH =∠BHF . ∴ ∠BHF =∠DHK . ∴ ∠BFH =∠DHK . ∵ KD ∥BC , ∴ ∠DKH =∠BFH . ∴ ∠DKH =∠DHK . ∴ KD =HD .∴ FC =2HD . …………………6分 (2)FC=34HD . …………………8分。

(答案)2018—2018学年初三二模

(答案)2018—2018学年初三二模

昌平区2018—2018学年第二学期初三年级第二次统一练习化学试卷答案及评分标准2018.5一、选择题(每小题1分,共25分。

)题号 1 2 3 4 5 6 7 8 9 10 答案 A B B C B D C A C A 题号11 12 13 14 15 16 17 18 19 20 答案 C D A B D C B D B C 题号21 22 23 24 25答案 A D C B C二、填空题(共5道小题,共30分。

)26.(6分,每空1分。

)(1)维生素 B(2)铁(3)乳化(4)二氧化碳(5)SiC27.(6分,每空1分。

)(1)肥皂水(2)B(3)吸附(4)蒸馏(5)D(6)N228.(5分,每空1分。

)(1)三,①③④,②。

一定条件(2)①2C2H2+5O2 4CO2+2H2O②12:1(或1:12)29.(7分,每空1分。

)(1)置换反应防止高温条件下镁和钛被氧化。

(2)分子在不断运动(3)CH4(4)ABD(2分,错选、漏选不给分)(5)发展公交(其他答案合理给分)30.(6分,每空1分。

)(1)生石灰(2)Ca(OH)2+Na2CO3CaCO3↓+2NaOH(3)NaOH+HCl NaCl+H 2O (其他答案合理给分)(4)C+O 2CO 2;CO 2+2NaOH Na 2CO 3+H 2O ;Na 2CO 3+2HCl 2NaCl+H 2O+ CO 2↑ (其他答案合理给分)三、实验题(共3道小题,共19分)31.(6分,每空l 分。

)(1) 2KMnO 4 K 2MnO 4+MnO 2+ O 2↑, A ,将带火星的木条放在集气瓶口,若木条复燃则已满。

(2) 防止CO 2溶于水,没有。

(3) A32. (5分,每空l 分。

)(1)Zn+2HCl ZnCl 2+H 2↑(或Zn+H 2SO 4 ZnSO 4+H 2↑) (2)①④③② (3)D (4)aba ×100% (5)偏小33.(8分,每空l 分,最后一问2分。

北京市2018年中考数学二模试题汇编代几综合题

北京市2018年中考数学二模试题汇编代几综合题

代几综合题2018 昌平二模28. 在平面直角坐标系 xOy 中,对于随意三点 A 、B 、 C 我们给出以下 y定义:“横长” :三点中横坐标的最大值与最小值的差,“纵长”a4 :三点中纵坐标的最大值与最小值的差, 若三点的横长与纵长相等,b3 我们称这三点为正方点 .2比如:点 A ( 2 ,0),点 B (1,1),点 C ( 1,2),则 A 、BA1xB 、C 三点的 “横长” a =| 1 ( 2) |=3 , A 、 B 、 C 三点的“纵–4–3–2–1 O1 2 3 4–1 长” b =| 1 ( 2) |=3. 由于 a = b ,所以 A 、 B 、 C 三点为正方点 . C–2 –3 ( 1)在点 R (3 ,5),S (3, 2),T ( 4, 3 )中,与点 A 、–4B 为正方点的是;( 2)点 P (0 , t ) 为 y 轴上一动点,若 A , B , P 三点为正方点, t 的值为;( 3)已知点 D (1 , 0). ①平面直角坐标系中的点 E 知足以下条件: 点 A , D , E 三点为正方点, 在图中画出全部切合条件的点 E构成的图形;1 m 上存在点 N ,使得 A , D , N 三点为正方点,直接写出m 的取值范围.②若直线 l : yx2y y 5 5 4 4 3 322 A 1A1DxDx–5–4–3–2–1 O 1 2 3 4 5–5–4–3–2–1 O 1 2 3 4 5–1–1 2018 旭日二 –2 –2 –3 –3 模 –4 –4 28. 对于平 –5–5面直角坐标系 xOy 中的点 P 和直线 m ,给出以下定义:若存在一点 P ,使得点 P 到直线 m 的距离等于 ,则称 P 为直线的平行点.m( 1)当直线 m 的表达式为 y =x 时,①在点 P 1( 1, 1), P 2( 0, 2 ), P 3(2,2)中,直线 m 的平行点是;22②⊙ O 的半径为10 ,点 Q 在⊙ O 上,若点 Q 为直线 m 的平行点,求点 Q 的坐标 .( 2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线y3x 的平行点,直接写出n 的取值范围.2018 东城二模28. 研究发现,抛物线y 1x2 上的点到点 F ,1)的距离与到直线 l :y 1的距离相等.如图1所示,4 (01若点 P 是抛物线y x2上随意一点,PH⊥l于点H,则 PF PH .4鉴于上述发现,对于平面直角坐标系xOy 中的点 M,记点M到点P的距离与点P到点F的距离之和的最小值为 d,称 d 为点 M对于抛物线y 1 x2的关系距离;当2≤d≤4 时,称点 M为抛物线y 1 x2的4 4关系点 .( 1)在点 M 1 (2,0) , M 2 (1,2) , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关系点是 ______ ;4( 2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 C (t 1,3)①若 t =4,点 M 在矩形 ABCD 上,求点 M 对于抛物线 y 1 x 2 的关系距离 d 的取值范围;4②若矩形 ABCD 上的全部点都是抛物线 y1x 2 的关系点,则 t 的取值范围是 __________.42018 房山二模28. 已知点为平面直角坐标系 中不重合的两点, 以点 P 为圆心且经过点Q 作⊙ ,则称点 为⊙P ,Q xOyP QP的“关系点” ,⊙ P 为点 Q 的“关系圆” .13( 1)已知⊙ O 的半径为 1,在点 E ( 1,1),F (- 2, 2 ),M (0,- 1)中,⊙ O 的“关系点” 为;( 2)若点 P (2, 0),点 Q ( 3,n ),⊙ Q 为点 P 的“关系圆” ,且⊙ Q 的半径为 5 ,求 n 的值;( 3)已知点 (0, 2),点 ( ,2),⊙ D 是点 H 的“关系圆” ,直线 y44 与 x 轴, y 轴分别交于DH mx3点 A , B . 若线段 AB 上存在⊙ D 的“关系点” ,求 m 的取值范围 .2018 丰台二模28 . 在 平 面 直 角 坐 标 系 xOy 中 , 将 任 意 两 点 P x 1 , y 1 与 Q x 2, y 2 之 间 的 “ 直 距 ” 定 义 为 :DPQx 1 x 2 y 1 y 2 .比如:点 (1, 2 ),点 (3, 5 ),则 DMN 132( 5) 5.M N已知点 (1 ,0) 、点 (-1 , 4).AB( 1)则 D AO _______ , D BO _______ ;( 2)假如直线 AB 上存在点 C ,使得 D CO 错误!未找到引用源。

2018届北京市中考数学二模试题汇编(Word版,20份)

2018届北京市中考数学二模试题汇编(Word版,20份)

代数综合题2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y . (1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018房山二模26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D . (1)当1h =-时,求点D 的坐标;(2)当x ≤≤11-≤≤时,求函数的最小值m . (用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D是抛物线223y ax ax a =--()0a >的顶点,抛物线与x 轴交于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.x2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.反比例综合题2018昌平二模22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ).(1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.x2018东城二模 22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.2018房山二模22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2y x=-相交于 点A (m ,2).(1)求直线y kx m =+的表达式;(2)直线y kx m =+与双曲线2y x=-的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标 .2018丰台二模22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数ky x=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.2018海淀二模22.已知直线l 过点(2,2)P ,且与函数(0)ky x x=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长; (3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x -2交于 点A (a ,1). (1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数()0ky k x=≠的图象于点N (x 1,y 2),结合函数的图象,直接写出12y y -的取值范围.NMFCBO2018石景山二模22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .2018西城二模23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8. (1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m xmy 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x=(k ≠0)的图象相交于点(2,2)M . (1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数k y x=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接写出a 的取值范围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数ky x=(x >0)的图象与直线21y x =+交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交函数ky x=(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数;②若k y x=(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).2018朝阳二模25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整: (1)画出几何图形,明确条件和探究对象;如图2,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,D 是线段AB 上一动点,射线DE ⊥BC 于点E ,∠EDF = °,射线DF 与射线AC 交于点F .设B ,E 两点间的距离为x cm ,E ,F 两点间的距离为y cm .(2)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;图1图2(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.2018东城二模25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x= 时,y有最小值.由此,小强确定篱笆长至少为米.2018房山二模25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值的值为 ;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质 .2018丰台二模25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:Array(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.2018海淀二模25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.下面是小明的探究过程,请补充完整:记一次运营出租车行驶的里程数为x(单位:公里),相应的实付车费为y(单位:元). (1)下表是y随x的变化情况(3)一次运营行驶x 公里(0x >)的平均单价记为w (单位:元/公里),其中yw x=. ①当3,3.4x =和3.5时,平均单价依次为123,,w w w ,则123,,w w w 的大小关系是____________;(用“<”连接)②若一次运营行驶x 公里的平均单价w 不大于行驶任意s (s x ≤)公里的平均单价s w ,则称这次行驶的里程数为幸运里程数.请在上图中x 轴上表示出34(不包括端点)之间的幸运里程数x 的取值范围.2018平谷二模25.如图,△ABC中,∠ACB=90°,∠A=30°,AB=6,点P是斜边AB上一点(点P不与点A,B重合),过点P作PQ⊥AB于P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y.小明根据学习函数的经验,对函数y随自变量xP的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、计算,得到了x 与y 的几组值,如下表:的值是 (保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合几何图形和函数图象直接写出,当QP =CQ 时,x 的值是 .2018石景山二模25.如图,在ABC △中,8cm AB ,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .2018西城二模 25.阅读下面材料:已知:如图,在正方形ABCD 中,边1AB a .按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题: (1)完成表格中的填空:① ;② ; ③ ;④ ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).2018怀柔二模25.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =6cm ,点D 是线段AB 上一动点,将线段CD 绕点C 逆时针旋转50°至CD ′,连接BD ′.设AD 为xcm ,BD ′为ycm .小夏根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.BCAD'下面是小夏的探究过程,请补充完整.(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD 的长度约为_________cm .2018门头沟二模25. 如图,55MAN ∠=︒,在射线AN 上取一点B ,使6AB cm =,过点B 作BC AM ⊥于点C ,点D 是线段AB 上的一个动点,E 是BC 边上一点,且30CDE ∠=︒,设AD=x cm ,BE=y cm ,探究函数y 随自变量x 的变化而变化的规律.(1)取指定点作图.根据下面表格预填结果,先通过作图确定AD=2cm 时,点E 的位置,测量BE 的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌平区2017 - 2018学年第二学期初三年级第二次模拟练习数学试卷2018.5一、选择题(共8道小题,每小题2分,共16分.在下列各题的四个备选答案中,只有一个是正确的.)1.将一副直角三角板如图放置,那么∠AOB的大小为()A.150°B.135°C.120°D.90°2.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a c>B.bc>C.0a d+>D.2b<-3.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,a∥b,以直线b上两点A和B为顶点的Rt△ABC(其中∠C=90°)与直线a相交,若∠1=30°,则∠ABC的度数为()A.30°B.60°C.120°D.150°5.第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为x轴、y轴建立平面直角坐标系,如果表示国际特色农产品馆的坐标为(-5,0),表示科技生活馆的点的坐标为(6,2),则表示多彩农业馆所在的点的坐CBA ba112345–1–2–3–4–50标为( )A .(3,5)B .(5,-4)C .(-2,5)D .(-3,3)6.某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( ) A .六年级40名男生身高的中位数在第153~158cm 组B .可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC .九年级40名男生身高的中位数在第168~173cm 组D .可以估计该校九年级身高不低于158cm 但低于5%7.某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是( ) A .舍B .我C .其D .谁8的距离y (千米)与行驶时间x (小时)的对应关系如图所示,下列叙述正确的是( ) A .甲乙两地相距1200千米 B .快车的速度是80千米∕小时 C .慢车的速度是60千米∕小时D .快车到达甲地时,慢车距离乙地100千米2/cm频数六年级九年级二、填空题(共8道小题,每小题2分,共16分)9.写出一个..a <<的整数a 的值为 . 10.如图,∠1是五边形ABCDE 的一个外角.若∠1=60°,则∠A +∠B +∠C +∠D 的度数为_________. (第10题) 11. 如果230a a +-=,那么代数式221()1a a a a a ++⋅+的值是 . 12.近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你的预估理由是 .13.《孙子算经》是中国古代重要的数学著作,共三卷.卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:“鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94条脚.问笼中各有多少只鸡和多少只兔?”,设有鸡x 只,兔子y 只,可列方程组为_____________.14. 为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角).数量(万辆)1525354555657585ABCDE115.“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图,已知∠AOB .判断∠AOB 是否为直角(仅限用直尺和圆规).出她作图的依16. 如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .三、解答题(本题共12道小题,共68分,第17-22题每小题5分,第23-26每小题6分,第27题、第28题每小题各7分)17.计算:06sin 4523)+°.18.本题给出解不等式组24543x x x ⎧-<⎪⎨≤+⎪⎩①②的过程,请结合题意填空,完成本题的解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来: (4)此不等式组的解集为 .19.解方程:23139x x x -=-- 20.已知关于x 的一元二次方程03)3(2=++-n x n x .(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n 值,写出这个方程并求出此时方程的根.DCBAC21.如图,已知△ACB 中,∠ACB =90°,CE 是△ACB 的中线,分别过点A 、点C 作CE 和AB 的平行线,交于点D .(1)求证:四边形ADCE 是菱形;(2)若CE=4,且∠DAE =60°,求△ACB 的面积.22.如图,在平面直角坐标系x O y 中,一次函数+(0)y a x b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ).(1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式 0ka xb x+-<的解集.23.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整. 收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 九年级93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格) 分析数据x两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整; 得出结论(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).24. 如图,AB 是⊙O 的直径,弦CD AB ⊥ 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF . (1)求证:DF 是⊙O 的切线;(2)连接BC ,若BCF ∠=30°,2BF =,求CD 的长.25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ;FA(5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式;②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.27.如图,在△ABC 中,AB =AC >BC ,BD 是AC 边上的高,点C 关于直线BD 的对称点为点E ,连接BE .(1) ①依题意补全图形;②若∠BAC =α,求∠DBE 的大小(用含α的式子表示); (2) 若DE =2AE ,点F 是BE 中点,连接AF ,BD =4,求AF 的长.(备用图)D CB A D CB A28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.(备用图)昌平区2017-2018学年度第二学期初三年级第二次模拟测试数学参考答案及评分标准 2018. 6xyyxyx一、选择题(共8道小题,每小题2分,共16分)二、填空题(共8道小题,每小题2分,共16分)三、解答题(共12道题,17—22每题5分,23---26每题6分,27、28每题7分,共68分)17.解:06sin4523)°2= (4)分3=. (5)分18.解:24543xx x⎧-<⎪⎨≤+⎪⎩①②解不等式①,得2x >-.………………………………………………………………1分解不等式②,得3x≤.……………………………………………………………2分∴原不等式组的解集为23x-<≤.………………………5分19.解:23139xx x-=--去分母得:2(3)39x x x+-=-………………………………………………………1分解得:2x=-………………………………………………………3分检验:把2x=-代入2950x-=-≠………………………………………………………4分所以:方程的解为2x=-………………………………………………………5分–1–2–31234520.(1)解:2(3)12n m ∆=+-2(3)n =-.……………………………………… 1分2(3)0n -≥∴方程有两个实数根 ………………………………… 2分(2)答案不唯一例如:方程有两个不相等的实根∴3n ≠0n =时,方程化为230x x -= ………………………………………… 3分因式分解为:(3)0x x -=∴10x =,23x = …………………………………………………………………… 5分21.(1)证明:∵AD //CE ,CD //AE∴四边形AECD 为平行四边形 ……………………… 1分 ∵∠ACB =90°,CE 是△ACB 的中线∴CE=AE ………………………………… 2分 ∴四边形ADCE 是菱形 (2)解:∵CE=4,AE= CE=EB ∴AB =8,AE=4∵四边形ADCE 是菱形,∠DAE =60°∴∠CAE =30°………………………………… 3分 ∵在Rt △ABC 中,∠ACB=90°,∠CAB =30°, AB =8cos AC CAB AB ∠==142CB AB == ∴AC= 4分∴12ABC S AC BC ∆=⋅= 5分D ECBA22.解:(1)把点A (4,1)代入ky x=,解得k =4. 把点B (-1,n )代入4y x=,解得4n =-.…………………………………… 1分 点A (4,1)和B (-1,-4)代入+(0)y ax b a =≠得414k b k b +=⎧⎨-+=-⎩解得13k b =⎧⎨=-⎩∴ 一次函数的表达式为3y x =-.………………………………………………………3分 (2)1x <-或04x <<…………………… 5分 23.解:(1)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:…………………………………………2分 (2)108;………………………………………………………………………………………………3分(3) 答案不唯一,理由需支撑推断结论………………………………………………………………6分 24(1)证明:连接OD ∵CF 是⊙O 的切线∴∠OCF=90°………………………………………1分 ∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD 错误!未找到引用源。

相关文档
最新文档