理论力学第三章刚体力学

合集下载

理论力学刚体运动

理论力学刚体运动

Ek ( t ) Ek ( t0 ) A外
§6.2 作用在刚体上的力系 一、力系
1、定义:同时作用在一个刚体的一组力称为力系。
2、分类: ①共面力系:所有的力位于同一平面内。 a) 共点力系(汇交力系):所有力的作用线交 于一点的力系。 b) 平行力系:所有力互相平行或反平行。 ②异面力系:力的作用线不在一个平面内。
二、力系等效
1、等效力系的定义 如果在两个力系作用下,刚体的运动相同,则这 两个力系互为等效力系。
2、力系的等效条件:
F1i F2 j
r1i F1i r1 j F1 j
i j
i
j
3、零力系:力系力的矢量和为零,对固定参考点 的力矩和为零的力系。 说明:①所有的零力系都等效 ②任何力系加上零力系后与原力系等效 ③最简单的零力系是一对平衡力组成的力系
2
角动量定理: dL dt
M外
2、平衡条件: Fi 0,
i
且 Mi 0
i
(对任一定点成立)
例 质量为 m ,长为 a 的匀质杆 AB 由系于两端长是 a 的线悬于 O 点,在 B 端挂质量为 m 的重物。求平衡 时杆与水平方向的夹角θ及每根线中的张力 TA 和 TB 。
2、异面力系: 等效于一个单力与一个力偶
z -F3 A F1
F F3
O
x
B F2
y
§6.3 刚体的平衡
刚体运动 平动: 直线平动、曲线平动
转动: 定轴转动、一般转动 平动:运动过程中刚体任一直线的方向保持不变。
转动:刚体上一直线相对参考系的角度发生变化。
O
刚体的一般运动(n=6)
O

理论力学第三章刚体力学 ppt课件

理论力学第三章刚体力学  ppt课件

正常转动,赝张量的变换多出一个负号。
对于张量,可定义如下运算:
1)相等。
设A和B为两个同阶张量,如果它们的所有分量相等,

A ... B ... ,则称它们相等,记为A = B.
2)加法。
两个同阶张量A和B的和定义为 C ...=A ...+B ... 它仍为一个张量,记为 C=A+B

L
a

L
a AL L )(a L
a L
a

B L
L

)

a L aa L a AL L BL L (a a )
a L aa L a ( AL L BL L )
nr nr nr nr
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运动 §3.8 刚体绕固定点的运动 §3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
§3.1 刚体运动的分析
1. 描写刚体位置的独立变量
将两个矢量Av和Bv按顺序并在一起,不作任何运算
得到的量称为并矢,记为
vv AB

A
B ev ev

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

理论力学题库第3章

理论力学题库第3章

理论力学题库——第三章一、填空题1.刚体作定轴转动时有个独立变量,作平面平行运动时有个独立变量。

2.作用在刚体上的力可沿其作用线移动而(“改变”或“不改变”)作用效果,故在刚体力学中,力被称为矢量。

3.作用在刚体上的两个力,若大小相等、方向相反,不作用在同一条直线上,则称为。

4.刚体以一定角速度作平面平行运动时,在任一时刻刚体上恒有一点速度为零,这点称为。

5.刚体作定点转动时,用于确定转动轴在空间的取向及刚体绕该轴线所转过的角度的三个独立变化的角度称为,其中ϕ称为角,ψ称为角,θ称为角。

6.描述刚体的转动惯量与回转半径关系的表达式是。

7.刚体作平面平行运动时,任一瞬间速度为零的点称为,它在刚体上的轨迹称为,在固定平面上的轨迹称为。

8.平面任意力系向作用面内任意一点简化的结果可以归结为两个基本物理量,主矢和主矩。

9.用钢楔劈物,接触面间的摩擦角为ϕf。

劈入后欲使楔不滑出,则钢楔两侧面的夹角θ需满足的条件为θ≦2ϕf。

10.刚体绕OZ轴转动,在垂直于转动轴的某平面上有A,B两点,已知OZ A=2OZB,某瞬时aA=10m/s2,方向如图所示。

则此时B点加速度的大小为5m/s2;与O z B成60度角。

11.如图,杆AB绕A轴以ϕ=5t(ϕ以rad计,t以s计)的规律转动,上一小环M将杆AB和半径为R(以m计)的固定大圆环连在一起,若以O1为原点,逆时针为正向,则用自然法表示的点M的运动方程为s=πR/2+10Rt 。

12. 两全同的三棱柱,倾角为θ,静止地置于光滑的水平地面上,将质量相等的圆盘与滑块分别置于两三棱柱斜面上的A处,皆从静止释放,且圆盘为纯滚动,都由三棱柱的A处运动到B处,则此两种情况下两个三棱柱的水平位移_相等_(填写相等或不相等),因为两个系统在水平方向质心位置守恒。

13.二力构件是指其所受两个力大小相等、方向相反,并且作用在一条直线上是最简单的平衡力系。

14. 若刚体在三个力作用下平衡,其中两个力的作用线汇交于一点,则第三个力的作用线必过此点 ,且 三力共面 。

理论力学第三章

理论力学第三章

M
F'
F
二、空间力偶等效定理
空间力偶的等效条件是:作用在同一刚体上的两个力偶, 如果力偶矩矢相等,则两力偶等效。
理论力学 中南大学土木工程学院 24
理论力学
中南大学土木工程学院
25
理论力学
中南大学土木工程学院
26
三、空间力偶系的合成与平衡
1、合成
力偶作用面不在同一平面内的力偶系称为空间力偶系。 空间力偶系合成的最后结果为一个合力偶,合力偶 矩矢等于各分力偶矩矢的矢量和。即:
8
[例]图示起重机吊起重物。起重杆的A端用球铰链固定在地面上,B端用 绳CB和DB拉住,两绳分别系在墙上的C点和D点,连线CD平行于x轴。 已知CE=EB=DE,角a =30o ,CDB平面与水平面间的夹角∠EBF= 30o, 重物G=10kN。如不计起重杆的重量,求起重杆所受的力和绳子的拉力。 解:1、取杆AB与重物为研究 对象,受力分析如图。
空间力系向点O简化得到一空间汇交力系和一空间 力偶系,如图。
z O
F1 y F2 z M2 z F'1 Mn F'2 y
Fn x

M1 x
O F'n

MO
F'R
O y
x
( i 1,, 2 ,n )
Fi Fi M i M O ( Fi ) ri Fi
M M cos( M,k ) z M
27
理论力学
中南大学土木工程学院
[例]工件如图所示,它的四个面上同时钻五个孔,每个孔所受的切削力偶 矩均为80N· m。求工件所受合力偶的矩在x,y,z轴上的投影Mx,My,Mz, 并求合力偶矩矢的大小和方向。

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

理论力学(周衍柏 第二版)第3章习题解答

理论力学(周衍柏  第二版)第3章习题解答

∑F ∑F
∑M
到最小时,
y
x
= N 2 − f1 = 0 ①
= f 2 + N1 − G1 − G2 = 0 ②
且梯子沿过 A 点平行于 z 轴的合力矩为零。即:
i
= G2 l cos θ + G1
l cos θ − f 2 l cos θ − N 2 l sin θ = 0 ③ 2
又因梯子是一个刚体。当一端滑动时,另一端也滑动,所以当梯与地面的倾角达
对于 C 球,它相对于过 D 点与 z 轴平行的轴的合力矩等于零。即:
= Tr sin(β − α ) − Gr sin β = 0 ②
tan β = 3 tan α
3.5 解 如题 3.5.1 图。
y A
o
f2
N2
N1
G2 G 1
f1 B x
题3.5.1图
梯子受到地面和墙的弹力分别为 N1 , N 2 ,受地面和墙的摩擦力分别为 f1 , f 2 。 梯子和人的重力分别为 G1 ,G2 且 G2 = 3G1 。设梯长为 l ,与地面夹角为 θ 。由于 梯子处于平衡,所以
2
=1
可求该切面的面积
⎛ y2 ⎞ ⎟ S ( y ) = πac⎜ − 1 ⎜ b2 ⎟ ⎝ ⎠
故积分
b b ⎛ y2 ⎞ 4 2 2 2 ⎜ ⎟ ρdy = πρab3c y dm y S dy y ac 1 = ⋅ ρ = π − 2 ⎟ ∫ ∫−b ( y ) ∫−b ⎜ b ⎠ 15 ⎝
同理可求
o
αα
y
T
B Tα
β β
β −α c
A r
题3.4.1图
Ox 轴竖直向下,相同的球 A 、 B 、 C 互切, B 、 C 切于 D 点。设球的重力大小

论力学第三章课件

论力学第三章课件
Fq
FAx
MA
FAy
解:取ABD为对象,受力图如图示。 其中Fq=1/2×q×3l=30kN
∑X=0: FAx+Fq–Fsin600=0
∑Y=0: FAy–P–Fcos600=0
MA–M–Fql+Fcos600l+Fsin6003l=0
解得:FAx=316.4kN; FAy=300kN MA=–1188kN.m (与图示转向相反)
静力学/第三章:平面任意力系
■ 平衡方程的其它形式
1 二矩式: X = 0
B
A
x
C
A
A、B 连线不垂直 于x 轴
A、B、C 三点不 在同一条直线上
附加条件:
附加条件:
B
2 三矩式:
静力学/第三章:平面任意力系
■二矩式的证明:
必要性

力系平衡
二矩式成立
由力系平衡→
F1
F2
F3
Fn
二、 平面任意力系向一点简化,主矢和主矩
1、 简化 思路:用力的平移定理将各力移至同一点,然后再合成。
将每个力向简化中心O平移
任选一个 简化中心O
其中:
O
因此:
平面任意力系
平面汇交力系
+ 平面力偶系
O
F1’
M1
F2’
M2
F3’
M3
Fn’
Mn
静力学/第三章:平面任意力系
向O点简化
F1
静力学/第三章:平面任意力系
几点讨论: 根据题意选择研究对象 分析研究对象的受力情况,正确地画出其受力图 研究对象与其他物体相互连接处的约束,按约束的性质表示约束反力 正确地运用二力杆的性质和三力平衡定理来确定约束反力的方位

理论力学复习要点整理

理论力学复习要点整理

理论⼒学复习要点整理第⼀章静⼒学公理和物体的受⼒分析1.静⼒学是研究物体在⼒系作⽤下的平衡条件的科学。

2.静⼒学公理公理1 ⼆⼒平衡公理:作⽤于刚体上的两个⼒,使刚体保持平衡的必要和充分条件是:这两个⼒⼤⼩相等、⽅向相反且作⽤于同⼀直线上。

F=-F’⼯程上常遇到只受两个⼒作⽤⽽平衡的构件,称为⼆⼒构件或⼆⼒杆。

公理2 加减平衡⼒系公理:在作⽤于刚体的任意⼒系上添加或取去任意平衡⼒系,不改变原⼒系对刚体的效应。

推论⼒的可传递性原理:作⽤于刚体上某点的⼒,可沿其作⽤线移⾄刚体内任意⼀点,⽽不改变该⼒对刚体的作⽤。

公理3 ⼒的平⾏四边形法则:作⽤于物体上某点的两个⼒的合⼒,也作⽤于同⼀点上,其⼤⼩和⽅向可由这两个⼒所组成的平⾏四边形的对⾓线来表⽰。

推论三⼒平衡汇交定理:作⽤于刚体上三个相互平衡的⼒,若其中两个⼒的作⽤线汇交于⼀点,则此三个⼒必在同⼀平⾯内,且第三个⼒的作⽤线通过汇交点。

公理4 作⽤与反作⽤定律:两物体间相互作⽤的⼒总是同时存在,且其⼤⼩相等、⽅向相反,沿着同⼀直线,分别作⽤在两个物体上。

公理5 钢化原理:变形体在某⼀⼒系作⽤下平衡,若将它钢化成刚体,其平衡状态保持不变。

对处于平衡状态的变形体,总可以把它视为刚体来研究。

3.约束和约束⼒限制⾮⾃由体某些位移的周围物体,称为约束。

约束对⾮⾃由体施加的⼒称为约束⼒。

约束⼒的⽅向与该约束所能阻碍的位移⽅向相反。

1.柔性体约束2.光滑接触⾯约束3.光滑铰链约束4.物体的受⼒分析和受⼒图画物体受⼒图时,⾸先要明确研究对象(即取分离体)。

物体受的⼒分为主动⼒和约束⼒。

要注意分清内⼒与外⼒,在受⼒图上⼀般只画研究对象所受的外⼒;还要注意作⽤⼒和反作⽤⼒之间的相互关系。

常见问题问题⼀画受⼒图时,严格按约束性质画,不要凭主观想象与臆测。

第⼆章平⾯⼒系本章总结1. 平⾯汇交⼒系的合⼒( 1 )⼏何法:根据⼒多边形法则,合⼒⽮为合⼒作⽤线通过汇交点。

( 2 )解析法:合⼒的解析表达式为2. 平⾯汇交⼒系的平衡条件( 1 )平衡的必要和充分条件:( 2 )平衡的⼏何条件:平⾯汇交⼒系的⼒多边形⾃⾏封闭。

理论力学习题答案第三章

理论力学习题答案第三章

第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。

3.2 答物体上各质点所受重力的合力作用点即为物体的重心。

当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。

事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。

答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。

3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。

分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。

理论力学第三章 任意力系的简化与平衡条件

理论力学第三章 任意力系的简化与平衡条件

例3-2 已知:涡轮发动机叶片轴向力F=2kN,力偶矩
M=1kN.M, 斜齿的压力角=20 ,螺旋角 。 =10 ,齿轮节圆半径 r=10cm。不计发动 机自重。 O1O2=L1=50cm, O2A=L2=10cm. 求: FN, O1,O2处的约束力。

第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
3
F2 F3
1
F'
F1
1 O 200 1
x
2
1 3 1 FRy F1 F2 F3 = -161.6(N) 2 10 5
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
解:(1)先将力系向O点简化,求主矢和主矩。 FRx FRy =466.5(N) 2 2 FR
Xi 0 F x F2x Fr 0 1
F y F2y F 0 1
Zi 0
F z Fa F 0 1
第三章 力系的简化与平衡条件
§3-5 力系的平衡条件
例3-2 解: 3、列平衡方程
Mx (F) 0
F2 y L1 F (L1 L2 ) 0
y
100 1
F
80
3
Байду номын сангаас
F2 F3
1
F'
F1
1 O 200 1
x
2
第三章 任意力系的简化与平衡条件
§3-4 力系简化计算
例3-1 (1)先将力系向O点简 解: 化,求主矢和主矩。 1 1 F2 FRx F1 10 2 2 F3 5 = -437 .6(N)
y
100 1
F

2023大学_理论力学教程第三版(周衍柏著)课后答案下载

2023大学_理论力学教程第三版(周衍柏著)课后答案下载

2023理论力学教程第三版(周衍柏著)课后答案下载理论力学教程第三版内容简介绪论第一章质点力学1.1 运动的描述方法1.2 速度、加速度的分量表示式1.3 平动参考系1.4 质点运动定律1.5 质点运动微分方程1.6 非惯性系动力学(一)1.7 功与能1.8 质点动力学的基本定理与基本守恒定律1.9 有心力小结补充例题思考题习题第二章质点组力学2.1 质点组2.2 动量定理与动量守恒定律2.3 动量矩定理与动量矩守恒定律 2.4 动能定理与机械能守恒定律 2.5 两体问题2.6 质心坐标系与实验室坐标系 2.7 变质量物体的运动2.8 位力定理小结补充例题思考题习题第三章刚体力学3.1 刚体运动的分析3.2 角速度矢量3.3 欧拉角3.4 刚体运动方程与平衡方程3.5 转动惯量3.6 刚体的平动与绕固定轴的.转动 3.7 刚体的平面平行运动3.8 刚体绕固定点的转动__3.9 重刚体绕固定点转动的解__3.10 拉莫尔进动小结补充例题思考题习题第四章转动参考系4.1 平面转动参考系4.2 空间转动参考系4.3 非惯性系动力学(二)__4.5 傅科摆小结补充例题思考题习题第五章分析力学5.1 约束与广义坐标5.2 虚功原理5.3 拉格朗日方程5.4 小振动5.5 哈密顿正则方程5.6 泊松括号与泊松定理5.7 哈密顿原理5.8 正则变换__5.9 哈密顿-雅可比理论__5.10 相积分与角变数__5.11 刘维尔定理小结补充例题思考题习题附录主要参考书目理论力学教程第三版目录本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。

本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。

本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。

理论力学第3章刚体力学

理论力学第3章刚体力学

§3.2 角速度矢量
1 有限转动与无限小转动
▪在普通物理学中处理定轴转动时,曾直接把 角速度 作为一个矢量,这样处理在逻辑上 其实是不够严谨的。 ▪但在定轴转动中角速度方向始终不变,所以 它是不是矢量关系不大。
▪ 但在刚体绕固定点转动时,转动轴方向随 时改变,因而角速度的方向也随时改变, 所以必须首先证明角速度是一个矢量。 ▪ 并不是有量值有方向的量就一定是矢量。 它还必须遵守平行四边形加法所应遵守的 对易律,即:
§3.1 刚体运动的分析
1 什么是刚体?
▪刚体是一种理想化的特殊的质点组,质点组 中任意两点之间的距离保持不变。 ▪在处理实际问题时,当物体的大小和形状的 变化可以忽略不计时,可以把它当作刚体看 待。
2 确定刚体的空间位置需要几个独立变量?
▪在空间确定一个质点的位置需要三个独立变 量。那么由 n个质点组成的质点组需要 3n 个
亦即矢量
r
经 n 微小转动后的线位移为
r
现在来看两个微小转动n 和n 的合成是不是遵
守对易律?
▪ 转动前,P 的位矢:r ▪ 转动 n后: r n r ▪ 再转动 n 后:r n r n (r n r )
有限转动角位移不是矢量,因它不遵守 对易律
考查无限小转动时角位移是否是矢量?
▪ 如图可见,若r 为无限小量 则 r 必与包含 r 及n 的平面
垂直,且 r PM
▪ 但 PM r sin
▪ 因此 r r sin r n sin ▪ 即 r n r
▪ 定轴转动。 如果刚体运动时,其中有两个点始终不动, 因为两点可以决定一条直线,整个刚体就绕 着这条直线转动,叫定轴转动。只要知道刚 体绕这条轴线转了多少角度,就能确定刚体 的位置。因此刚体作定轴转动时只有一个独 立变量。

《理论力学》第三章点的合成运动(三)

《理论力学》第三章点的合成运动(三)
求:摆杆O1B角速度1
解:A-动点,O1B-动系,基座-静系。
绝对速度va = r
相对速度vr = ? 牵连速度ve = ?
由速度合成定理 va= vr+ ve
sin
r
r 2 l
2
,ve
va
sin

r 2
r2 l2
又ve
O1
A1
,1

ve O1 A

1 r 2 l2
A
cR

O

u
x

r 2
r 2 l2

r
r
2
2
l
2


[例] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。 求:从动杆AB的速度。
解:动点A,动系-圆盘, 静系-基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
例图示平面机构,已知:OA=r,0为常数,BC=DE, BD=CE=L,求:图示位置,杆BD的角速度和角加速度。
解: 动点:A点(OA杆)
动系:BC杆
va ve vr
D
E
大小: 方向:
??
B
600 A
vr
300 C
0 O
根据速度合成定理 va ve vr va
ve
做出速度平行四边形, 如图示
E
投至y轴:
0 O aa
aa ae
si
n (
300 ae n aa aen ) sin
sin 60 0
sin 30 0

理论力学第三章 刚体力学-3

理论力学第三章 刚体力学-3

3、求 a1 (转动加速度 ) d总 a1 r dt d总 d di 其中, (ctgi ) ctg
dt
h h 2 ctg cos 2k ctg sin 2i cos cos 2h (cos2k sin 2i ) sin
1
1 I mR 2 2
平行轴定理
I I c md
2
叙述:刚体对某一轴线的转动惯量,等于对通过质 心的平行轴的转动惯量加上刚体的质量与两 轴间垂直距离平方的乘积。
2、对定点转动惯性的大小,由于转轴的方向不断变 化,要用一个张量才能描述。 z
I xx 1 惯量张量: I yx I zx I xy I yy I zy I xz I yz I zz


N
O
y

x
§3.7 转动惯量
一、定点转动刚体的动量矩 动坐标系oxyz
z
i
设 Pi 为刚体上任一质点,该质点对定点 o的动量矩为

i
ri mii
整个刚体对同一点o的动量矩为
n J ri mii
i 1 n
o
x
ri
y
mi ri ri
2
h 2 h 2 2 大小: a1 ( ) [cos 2 sin 2 ] sin sin
2 2
2h 所以: a1 sin
3、求 a2(向轴加速度 )
a2 总 (总 r )
h h 其中,总 r ctgi ( cos 2i sin 2k ) cos cos h ctg sin 2j cos cos h 2 sin cosj sin cos 2h cosj a2 总 (总 r ) (ctgi ) (2h cosj ) 2 2 cos 2 h k sin 2 cos 2 所以: a2 a2 2 h sin

理论力学中的刚体运动规律解析

理论力学中的刚体运动规律解析

理论力学中的刚体运动规律解析理论力学是研究物体运动的规律和原理的学科,其中刚体运动是其重要的研究对象之一。

刚体是指形状不变的物体,它的运动规律是通过力学原理和数学分析来解析的。

本文将从刚体的定义、刚体的运动方程以及刚体的自由度等方面,对理论力学中的刚体运动规律进行解析。

首先,刚体是指形状不变的物体。

在理论力学中,刚体的定义是指物体内部各点之间的距离在运动过程中保持不变。

这意味着刚体在运动过程中不会发生形变,它的形状和大小始终保持不变。

这种性质使得刚体的运动规律相对简单,可以通过力学原理和数学分析来解析。

其次,刚体的运动规律可以通过刚体的运动方程来描述。

刚体的运动方程是刚体运动的基本方程,它描述了刚体在运动过程中的位置、速度和加速度之间的关系。

刚体的运动方程可以分为平动方程和转动方程两部分。

平动方程描述了刚体的质心运动。

质心是指刚体所有质点的质量加权平均位置,它相当于刚体的一个集中点。

平动方程可以通过牛顿第二定律来推导,即F=ma,其中F是作用在刚体上的合外力,m是刚体的质量,a是刚体的加速度。

根据牛顿第二定律,可以得到刚体的质心加速度与作用在刚体上的合外力之间的关系。

通过对刚体的质心加速度进行积分,可以得到刚体的质心速度和位置与时间的关系,从而得到刚体的平动方程。

转动方程描述了刚体的转动运动。

刚体的转动方程可以通过力矩和转动惯量来推导。

力矩是指力对物体产生转动效果的能力,它与力的大小和作用点到转轴的距离有关。

转动惯量是刚体对转动运动的惯性度量,它与刚体的质量分布和形状有关。

根据牛顿第二定律和力矩的定义,可以得到刚体的转动方程。

通过对刚体的转动方程进行求解,可以得到刚体的角加速度、角速度和角位移与时间的关系,从而描述刚体的转动运动。

此外,刚体的自由度也是理论力学中的重要概念。

自由度是指描述刚体运动所需的独立变量的个数。

对于平动的刚体,其自由度为3,分别是质心在三个坐标轴上的位移。

对于转动的刚体,其自由度为3,分别是绕三个坐标轴的转动角度。

理论力学03刚体力学

理论力学03刚体力学

的作用效果将改变!
力系的简化1
对于共点力:利用平行四边形法则进行矢量合成;
对于不共点但作用线相交的力,可以都滑移到交点处,
理 再利用共点力合成。
论 力
学 F2
F2
F12
F12
F12
F合
刚 体
F3
F3
力 学
F1
F1
F3
F3
A
FA
B FB

力偶(couple)
力偶:作用在同一物体上,大小相等、方向相反、又不

论 力
判断对错
学 一个转动的定长矢量对于时间的变化率,等于该矢量转
动的角速度矢乘该矢量本身。
刚 体 力 学
vdrrr
欧勒公式 泊松公式
dt
diˆ iˆ dˆj ˆj dkˆ kˆ
dt
dt
dt
角加速度
角加速度(Angular acceleraton):
d
理 单位: rad / s2
M AB F
两力间的垂直距离:力偶臂
力偶矩
力偶矩:是力与力偶臂的乘积。力偶矩是力偶唯一的力
学效果。
理 论
M BA FA AB FB

垂直于力偶面,遵从右手螺旋法则。

为自由矢量,可以作用在力偶面内的任意一点。
刚 体 力 学
F
M
F
F
A FA
M
F
多个共面力偶 可以进行力偶 矩合成,不受 作用点限制! (与力有别)
dt


方向: 转动瞬轴的改变方向

线加速度:
a
dv
又:
v
r
刚 体 力 学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1
刚体的平衡方程

n d 2 rc m 2 Fi ( e) 0 dt i n drci d n (e) mi Fi ) 0 (rci ) (rci dt i 1 dt i 1
1).平动 刚体运动时,其上任意一条直线始终平行移动,刚体 的这种运动称为平动.这时刚体的运动可用其上任 意一点来代表.一般常常用质心来代表. 2).转动 刚体在运动的每一瞬时,其上有两点保持不动, 这样的运动为转动,这两点的连线称为转轴.
注意: (1).转轴可以在刚体上,也可以在刚体外. (2).描述刚体的转动有两套物理量:线量和角量. 线量:描述各点的速度,加速度 角量:描述刚体转动的角速度,角加速度
4.刚体运动的分类
1)平动 2)定轴转动 平动的独立变量为三个 定轴转动的独立变量只有一个 平面平行运动的独立变量有三个
3)平面平行运动
4)定点转动 定点转动的独立变量有三个,其中两个确定 转动轴的方向,一个确定其它点绕轴转动的 角度。 5)一般运动 刚体一般运动的独立变量有六个
5.角速度矢量
角位移
r rb rb v r rb b rb
ra
r
b
rb
并与 v r ra a ra a [ra (rb ra )] b [ra (r b ra )]
i 1 i 1
刚体的动能
1 1 2 2 ( m r ) m r i i c i 1 2 2
n
1 2 ( m r i ci ) i 1 2
n
简表为:
T Tc Tci
n 1 2 i ) Fi ( e ) dr d ( mi r i 2 i 1 i 1 n
n en
角速度矢量
d n d en dt dt
en
n r dn lim r t dt
r dr lim 线速度 v t dt
r
角速度矢量和角加速度
d en dt



cos sin sin x sin sin cos y cos z
7.刚体运动的简约
1).力系的简化
力的可传性原理: 力的作用点可沿作用线随意移动. 但力的作用线不能随意移动.
若要把力移动到作用线外任意点,则必须 同时在该点再附加一力偶.
(即该点同时有一力偶矩和一单力在作用).
2).刚体运动的约简
恰斯尔定理
刚体的一般运动可以分解为随基点的平动 和绕基点的转动. 基点的选取随意,一般都选取质心为基点.
恰斯尔定理的证明:
在刚体上取两个基点a,b, 以a,b为原点的平动坐标系分别为
ra
a
rb
p
a xy z
b xy z

代入

v r rb b rb
比较
而a,b两点是任意的,所以
a b


表明基点随意.
刚体力学
一.刚体的特点:
1.刚体是特殊的质点组,不受约束时运动自由度为6. 受约束时自由度相应减少. 2.刚体的一般运动总可以分解为随基点的平动运动和 绕基点的转动.且基点的选取随意. 3.作用在刚体的许多力总可以简约为作用于一点的合力 和作用于该点的合力矩。
解决刚体运动思路:
1.确定刚体运动的自由度(独立运动方程数)。 2.将作用在刚体上的力简化为过质心的力和对质心的 力矩. (或将作用力简化为过任意基点的力和力矩). 3.刚体的运动方程: 质心的平动方程. 刚体绕质心的转动方程.

二.刚体的运动方程
Hale Waihona Puke n d rc ( mi ) 2 Fi ( e) dt i i n drci d n (e) mi Fi ) (rci ) (rci dt i 1 dt i 1
相关文档
最新文档