信号发生器课程设计报告

合集下载

555信号发生器课程设计报告书

555信号发生器课程设计报告书

西北农林科技大学电子技术课程设计课题名称班级姓名学号电话指导教师日期 6月17日—6月28日目录第一章、设计任务及要求................................................... - 1 - 第二章、信号发生器设计方案............................................... - 1 -2.1 总体设计方案论证及选择:......................................... - 1 -2.2函数信号发生器总体方案框图....................................... - 1 - 第三章、单元电路原理与电路............................................... - 2 -3.1方波发生电路..................................................... - 2 -3.1.1方案选择................................................... - 2 -3.2方波——三角波转换电路原理图..................................... - 4 -3.3三角波——正弦波转换电路原理图................................... - 5 - 第四章电路的安装与调试.................................................. - 8 - 第五章设计总结......................................................... - 12 -5.1经验:.......................................................... - 12 -5.2不足:.......................................................... - 12 -5.3感想:.......................................................... - 12 - 附录 ................................................................... - 12 - 元件清单列表........................................................ - 12 - 参考文献................................................................ - 13 - 鸣谢 ................................................................... - 13 -第一章、设计任务及要求设计要求:用555定时器设计一个信号发生器,要求输出方波、三角波、正弦波并,设计输出电压及频率第二章、信号发生器设计方案2.1 总体设计方案论证及选择:方案一:通过RC震荡电路产生正弦波,然后经过过零比较器,产生三角波,在通过积分电路产生方波。

信号发生器的设计 设计报告

信号发生器的设计 设计报告

3.3 三角信号的实现 Sawtooth(t,width)用于产生三角波,其中 width 是取值介于 0 和 1 之间的一个 参数,其取值决定了在一个周期中峰值的发生点。本设计中取 width=0.5,以获得标准 形状的三角波。 完整 y 坐标表达式如式 3.4, y = A ∗ sawtooth 2π ft + φ/360 , 0.5 3.4
引言
1
引言
随着计算机软硬件技术的发展,越来越多现实物品的功能能够由计算机实现。信号
发生器是一种常用的信号源,广泛应用于电子技术试验、自控系统和科学研究等领域。 传统的台式仪器加工工艺复杂、价格高、仪器面板单调、数据存储、处理不方便。以 Matlab 和 LabVIEW 为代表的软件的出现,轻松的用虚拟仪器技术解决了这些问题。 Matlab 是一个数据分析和处理功能十分强大的工程实用软件, 其为数据的输入和输 出提供了十分方便的函数和命令, 利用这些函数和命令可以很轻松地实现对外部物理世 界的输入和输出。采用 Matlab 软件编程,可以方便地输出所需要的正弦波、三角波、 方波等信号,有效的实现信号发生器的基本功能。
2
设计要求
设计一个简单的信号发生器,要求能够产生频率、幅度、占空比可调的正弦波、三
角波和方波。

3
设计原理
要设计的信号有正弦波、三角波、方波。此三种波形都可以利用 Matlab 提供的函
数编程实现。
3.1 正弦信号的实现 正弦波信号的数学表达式如 3.1 示: y = A ∗ sin 2πft + φ 其中:A 为幅值; f 为频率; φ 为相位; 在 Matlab 中,相应的正弦波信号可由下式 3.2 计算, y ∆t = A ∗ sin 2πfn∆t + φ 波形显示。 3.2 幅值、频率在用户界面输入。在已知 t 且 y 表达式确定后,用 plot 二维作图获得 3.1

信号发生器课程设计报告完整版

信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

课设报告——简易信号发生器

课设报告——简易信号发生器

简易信号发生器设计摘要随着电子技术的飞快发展,单片机也应用得越来越广泛,基于单片机的智能仪器的设计技术不断成熟。

单片机构成的仪器具有高可靠性,高性价比。

单利用单片机采用程序设计方法来产生波形,线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强等优点,而且还能对波形进行细微的调整,改良波形,易于程序控制。

只要对电路稍加修改,调整程序,就能实现功能的升级。

本系统利用单片机AT89C51采用程序设计方法产生正弦波、三角波、方波、锯齿波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,并通过按键来控制四种波形的类型选择。

本次设计主要由信号发生模块、数模转换模块和仿真模块。

关键词:单片机;数模转换;液晶显示屏目录第1章概述 (1)第2章系统总体方案选择 (1)2.1 系统硬件设计图 (1)2.2系统软件设计 (1)第3章各单元硬件设计及工作原理 (2)3.1单片机最小系统的设计 (2)3.2 函数信号发生器的设计 (2)3.2.1DAC0832芯片工作方式的选择 (2)3.2.2DAC0832芯片外围电路的设计 (2)3.3LCD12864显示屏 (3)3.3.1LCD12864与LCD1602的区别 (3)3.3.2LCD12864显示屏原理及其硬件设计 (3)第4章软件设计与说明 (3)4.1软件设计思路 (3)4.2波形数据输出程序设计 (4)4.3LCD12864显示程序设计 (5)第5章调试结果及其说明与使用说明 (6)5.1调试过程中遇到的问题 (6)5.1.1LCD12864显示问题 (6)5.1.2幅值调节问题 (6)5.2使用说明 (6)第6章总结 (7)第7章参考文献 (8)附录 (9)第1章概述在本系统中,设计的要求为产生三角波、正弦波、方波信号,要求频率和幅值可调。

并且显示内容可以在LCD显示出来,在本系统中,主控为AT89C51单片机,D/A 转换芯片采用的为ADC0832,LCD显示屏采用LCD12864,本系统设置有三个控制按键,分别为频率转换按键、波形切换按键、幅值切换按键,通过这三个按键,可以对输出的波形进行控制,波形幅值为0—5V,分为5个幅值挡位,频率范围为40Hz—400Hz,分为50个频率挡位。

信号发生器数字信号处理课程设计报告

信号发生器数字信号处理课程设计报告

目录一、课程设计要求二、设计过程(1)设计题目(2)设计源代码(3)设计结果(4)结果分析三、设计总结与心得体会四、课程设计指导书一、课程设计要求1、课程设计指导书①《数字信号处理(第二版)》,丁玉美等,西安电子科技大学出版社;②《MATLAB 及在电子信息课程中的应用》,陈怀琛等,电子工业出版社。

2、课程设计题目⑴、信号发生器用户根据测试需要,可任选以下两种方式之一生成测试信号:①、直接输入(或从文件读取)测试序列;②、输入由多个不同频率正弦信号叠加组合而成的模拟信号公式(如式1-1 所示)、采样频率(Hz)、采样点数,动态生成该信号的采样序列,作为测试信号。

⑵、频谱分析使用FFT 对产生的测试信号进行频谱分析并展示其幅频特性与相频特性,指定需要滤除的频带,通过选择滤波器类型(IIR / FIR),确定对应的滤波器(低通、高通)技术指标。

⑶、滤波器设计根据以上技术指标(通带截止频率、通带最大衰减、阻带截止频率、阻带最小衰减),设计数字滤波器,生成相应的滤波器系数,并画出对应的滤波器幅频特性与相频特性。

①IIR DF 设计:可选择滤波器基型(巴特沃斯或切比雪夫型);②FIR DF 设计:使用窗口法(可选择窗口类型,并比较分析基于不同窗口、不同阶数所设计数字滤波器的特点)。

⑷、数字滤波根据设计的滤波器系数,对测试信号进行数字滤波,展示滤波后信号的幅频特性与相频特性,分析是否满足滤波要求(对同一滤波要求,对比分析各类滤波器的差异)。

①IIR DF:要求通过差分方程迭代实现滤波(未知初值置零处理);②FIR DF:要求通过快速卷积实现滤波(对于长序列,可以选择使用重叠相加或重叠保留法进行卷积运算)。

⑸、选做内容将一段语音作为测试信号,通过频谱展示和语音播放,对比分析滤波前后语音信号的变化,进一步加深对数字信号处理的理解。

3、具体要求⑴、使用MATLAB(或其它开发工具)编程实现上述内容,写出课程设计报告。

多功能信号发生器课程设计报告

多功能信号发生器课程设计报告

河南理工大学《单片机应用与仿真训练》设计报告多功能信号发生器设计姓名:张冬波张立中学号:310808010425 310808010426专业班级:电气08-4指导老师:刘巍所在学院:电气工程与自动化学院2011年6月28 日摘要本设计采用基于AT89S52的单片机最小系统为核心,成功产生出幅值和频率都可调的正弦波、梯形波、方波、三角波等波形。

频率范围是0-2000Hz,幅值调节范围-10V到+10V。

本系统主要由四大模块组成:液晶显示模块、波形发生模块及稳幅输出模块,幅频调节模块、及外部电源模块。

各个模块的实现方法如下:一、液晶显示模块:本系统采用应用较广泛的1602液晶作为显示模块。

其显示与控制机理是单片机通过与液晶按照一定的规定相连接,然后再程序中在对液晶进行初始化后,就可以向其写字符或读字符。

二、波形发生模块及稳幅输出模块:产生指定波形可以通过DAC芯片来实现,不同波形产生实质上是对输出的二进制数字量进行相应改变来实现的。

本系统采用的是经典的DAC0832 8位数/模转换器。

稳幅输出则通过两个LM324集成运放来实现对DAC0832输出电流信号到电压信号的转变。

三、幅频调节模块:通过按键与两个门电路74ls00和74ls04的组合来实现通过产生中断来实现对波形的选择和频率的调节。

而幅值调节通过一个10K的电位器来实现参考电压Vref的改变来改变幅值。

四、外部电源模块:变压器将220V交流电降成16V交流后在通过整流桥经过7812和7912滤波后即产生正负12V直流电用作LM324的电源。

本系统软件主要通过C语言开发,硬件电路设计具有典型性。

同时,本系统中任何一部分电路模块均可移植于其它实用开发系统的设计中,电路设计实用性很强。

目录1、概述 (4)1.1 信号发生器现状 (4)1.2 单片机在波形发生器中的应用 (4)2、系统总体方案及硬件设计 (5)2.1 系统分析 (5)2.2 总体方案设计 (6)2.2.1系统总体结构框图设计 (6)2.3 总体硬件设计 (6)2.4系统各模块设计 (7)2.4.1 资源分配 (7)2.4.2显示器接口设计 (7)2.4.3 复位与时钟电路设计 (8)2.4.4 按键中断电路设计 (10)2.4.5 D/A转换电路设计 (10)3、软件设计 (15)3.1软件总体设计 (15)3.2 软件功能设计 (16)3.2.1系统初始化程序设计 (16)3.2.2 按键检测及中断处理程序 (16)3.2.3 液晶显示程序 (17)3.2.4 正弦波发生程序设计 (19)3.2.5方波产生程序 (20)3.2.6三角波产生程序 (20)3.2.7梯形波产生程序 (21)4、实验仿真 (22)4.1 protues软件仿真步骤 (22)4.2 仿真结果 (23)4.3仿真结论 (25)5、课程设计体会 (26)参考文献 (27)附1:源程序代码 (28)附2:系统原理图 (35)1、概述1.1 信号发生器现状. 目前,市场上的信号发生器多种多样,一般按频带分为超高频、高频、低频、超低频、超高频信号发生器。

ICL8038信号发生器课程设计报告

ICL8038信号发生器课程设计报告

武汉理工大学《专业课程设计(一)》课程设计说明书课程设计报告题目:基于icl8038信号发生器的设计学院:理学院专业:光信息科学与技术班级:1003班******学号:0121014430306指导教师:吴薇日期:2011年12月30日目录技术指标 (3)设计方案及其比较.................... 错误!未定义书签。

方案一 ...................................... 错误!未定义书签。

方案二 ...................................... 错误!未定义书签。

方案三 ...................................... 错误!未定义书签。

方案比较 (4)实现方案 (4)调试过程及其结论 (8)心得体会 (9)参考文献 (10)课程设计成绩鉴定表 (11)基于icl8038信号发生器任务书1.技术指标设计、组装、调试信号发生器电路,使它能输出正弦波、方波和三角波;其频率在20-20kHz范围内可调;输出电压:方波U p-p≤4V,三角波U p-p=6V,正弦波U p-p=1V。

2.设计方案及其比较2.1方案一采用传统的直接频率合成器。

这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。

但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。

其电路图如下:2.2方案二采用5g8038芯片,8038可同时产生正弦波、方波和三角波。

改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300KHz。

2.3方案三采用icl8038芯片,icl8038是一个能够输出三种波形的精密型集成电路,只需要调整外部的相关电容,电阻值就可以产生方波,三角波,正弦波低失真的脉冲信号。

在外界温度变化时产生低的频率漂移,工作变化周期宽,占空比可调,具有较高的电平输出范围,容易使用的特点。

信号发生器的设计课程设计报告

信号发生器的设计课程设计报告

课程设计报告一、设计题目信号发生器的设计二、设计目的1.掌握数字系统的设计方法;2.掌握硬件描述语言——Verilog HDL;3.掌握模块化设计方法;4.掌握开发软件的使用方法。

三、设计要求1.能够正常输出正弦波,方波,三角波;2.能够设置与调整幅度;3.波形选择;四、设计平台(软件、硬件)1.Quartus2简介Altera Quartus II 作为一种可编程逻辑的设计环境, 由于其强大的设计能力和直观易用的接口,越来越受到数字系统设计者的欢迎。

Altera Quartus II 设计软件是业界唯一提供FPGA和固定功能HardCopy器件统一设计流程的设计工具。

工程师使用同样的低价位工具对Stratix FPGA进行功能验证和原型设计,又可以设计HardCopy Stratix器件用于批量成品。

系统设计者现在能够用Quartus II软件评估HardCopy Stratix器件的性能和功耗,相应地进行最大吞吐量设计。

Altera的Quartus II可编程逻辑软件属于第四代PLD开发平台。

该平台支持一个工作组环境下的设计要求,其中包括支持基于Internet的协作设计。

Quartus平台与Cadence、ExemplarLogic、MentorGraphics、Synopsys和Synplicity等EDA供应商的开发工具相兼容。

改进了软件的LogicLock模块设计功能,增添了FastFit编译选项,推进了网络编辑性能,而且提升了调试能力。

2.Modelsim简介Mentor公司的ModelSim是业界最优秀的HDL语言仿真软件,它能提供友好的仿真环境,是业界唯一的单内核支持VHDL和Verilog混合仿真的仿真器。

它采用直接优化的编译技术、Tcl/Tk技术、和单一内核仿真技术,编译仿真速度快,编译的代码与平台无关,便于保护IP核,个性化的图形界面和用户接口,为用户加快调错提供强有力的手段,是FPGA/ASIC设计的首选仿真软件。

DDS正弦信号发生器课程设计报告

DDS正弦信号发生器课程设计报告

EDA设计报告----基于DDS的正弦信号发生器专业:班级:学号:姓名:目录一、DDS信号发生器原理 (2)二、基于DDS的正弦信号发生器设计实现 (3)三、DDS信号发生器原理图 (6)四、仿真结果 (7)五、硬件调试结果及分析 (7)六、心得与体会 (9)一. DDS信号发生器原理对于正弦信号发生器, 它的输出可以用下式来描述:其中, Sout是指该信号发生器的输出信号波形, fout 只输出信号对应的频率。

上式的表述对于时间t是连续的, 为了用数字逻辑实现该表达式, 必须进行离散化处理, 用基准时钟clk进行抽样, 令正弦信号的的相位θ为在一个clk周期Tclk, 相位θ的变化量为其中fclk指clk的频率对于2π可以理解为“满”相位, 为了对Δθ进行数字量化, 把2π切割成2N, 用词每个clk周期的相位增量Δθ用量化值BΔθ来描述: BΔθ=(Δθ·2N)/2π, 且BΔθ为整数与上式联立可得:显然, 信号发生器可以描述其中θk-1指前一个clk周期的相位值, 同样得出由以上推倒可以得出, 只要对相位的量化值进行简单的累加运算, 就可以得到正弦信号的当前相位值, 而用于累加的香味增量量化值BΔθ决定了信号的输出频率fout并呈现简单的线性关系。

直接数字合成器DDS就是根据以上原理而设计的数控频率合成器, 下图为其基本DDS结构, 主要有相位累加器、相位调制器、正弦ROM查找表构成图中的相位累加器、相位调制器、正弦ROM查找表是DDS结构中的数字部分,二、基于DDS的正弦信号发生器设计实现根据设计原理框图分别设计出加法器、寄存器、正弦波ROM。

1.32位加法器ADDER32设计在原理图文件文件下在空白处双击, 单击“MegaWizard Plug-In Manager”选择第一项选择器件为cyclone, 语言方式为VerilogHDL。

在算数项Arithmetic中选择计数器LPM_ADD_SUB.存于所建工程文件夹下命名为ADDER32.单击NEXT,进入以后对话框后选择32位加法器工作模式选择有一位加法进位输出, 选择有符号加法方式, 选择2级流水线工作模式 ,此时该加法器变为有时序电路的模块, 最后至finish按钮, 编辑完成。

信号发生器课程设计报告

信号发生器课程设计报告

闽南师范大学物理与电子信息工程系课程设计报告课题:方波、三角波、正弦波发生器电路课设名称信号发生器课设题目简易信号发生器的设计专业:电气工程及其自动化班级姓名:学号:座号:系别:物理与电子信息工程系指导教师:2013年5 月20日目录1、设计任务 (3)1.1设计要求……………………………………………………………………3.1.1.1任务 (3)1.1.2设计要求 (3)1.2系统框图 (3)2.波形原理图 (3)3.波形仿真与示波器观察波形 (5)4、单元电路的设计 (12)4.1方波、三角波发生电路 (12)4.1.1工作原理的分析 (13)4.1.2参数的计算及器件的选择 (15)4.2 正弦波发生电路 (15)4.2.1工作原理的分析及其参数的计算及器件的选择 (15)5、系统测试 (17)5.1 使用的测试仪器 (17)5.2 测试的方法和步骤 (17)5.3测试结果 (18)6、结论..................................................错误!未定义书签。

187.附录 (19)附录一:元器件清单 (19)附录二:原理图 (20)附录三:PCB图 (20)附录四:实物图(正反面) (21)1.设计任务1.1设计要求利用集成运算放大器LM324设计一个简易函数信号发生器,要求能产生正弦波、方波和三角波三种波形。

1.1.2设计要求采用双电源供电形式:电源12CC V V =+、12EE V V =-;要求在2k Ω负载条件下,输出信号满足:(1)正弦波:V V PP 10≥;方波:V V PP 14≤;三角波:V V PP 8≤ ; (2)频率范围:200Hz ~3kHz 范围内连续可调; (3)波形无明显失真。

1.2系统框图2.波形原理图 2.1正弦波发生电路2.2方波、三角波发生电路3.波形仿真与示波器观察波形3.1 数据的测量正弦波方波三角波3.2仿真结果方波三角波正弦波4、单元电路的设计4.1.1方波、三角波工作原理1积分电路是一种运用较为广泛的模拟信号运算电路,它是组成各种模拟电子电路的重要基本单元,它不仅可以实现对微分方程的模拟,同时在控制和测量方波-三角波发生电路波形图系统中,积分电路也有着广泛运用,利用其充放电过程可以实现延时,定时以及各种波形的产生.积分电路还可用于延时和定时。

信号发生器课程设计完整版

信号发生器课程设计完整版

信号发⽣器课程设计完整版多功能信号发⽣器摘要随着EDA技术以及⼤规模集成电路技术的迅猛发展,波形发⽣器的各⽅⾯性能指标都达到了⼀个新的⽔平。

Altera,Xilinx,AMD 等公司都推出了⽐较好的CPLD和FPGA产品,并为这些产品的设计配备了设计、下载软件,这些软件除了⽀持图形⽅式设计数字系统外,还⽀持设计多种数字系统的语⾔,使数字系统设计起来更加容易。

SOPC-NIOS EDA/SOPC实验开发系统是根据现代电⼦发展的⽅向,集EDA和SOPC系统开发为⼀体的综合性实验开发系统,除了满⾜⾼校专、本科⽣和研究⽣的SOPC 教学实验开发之外,也是电⼦设计和电⼦项⽬开发的理想⼯具。

整个开发系统由核⼼板SOPC-NIOSII-EP2C35、SOPC开发平台和扩展板构成,根据⽤户不同的需求配置成不同的开发系统。

采⽤CPLD/FPGA器件在QuartuesII 设计环境中⽤VHDL语⾔完成的波形发⽣器具有频率稳定性⾼,可靠性⾼,输出波形稳定等特点。

本⽂介绍了基于EDA技术的波形发⽣器的研究与设计。

在本课程设计中使⽤Altera公司的EP2C35系列的FPGA芯⽚,利⽤SOPC-NIOSII-EP2C35开发板⾼速AD/DA转换模块等资源,运⽤LPM-ROM制定的⽅法设计的波形发⽣器,利⽤4×4键盘阵列实现了正弦波,⽅波,三⾓波,以及锯齿波四种波形的输出及频率和幅度的控制,并利⽤液晶显⽰模块实现信号频率、波形和幅度的显⽰,经过实际下载到FPGA实验板上,设计要求已经完全实现。

关键字:FPGA;VHDL;EDA;QUARUS2;多功能信号发⽣器⽬录1.摘要-----------------------------------------------------------12.多功能发⽣器设计⽬的与设计的意义-------------------------------3 2.1多功能发⽣器设计⽬的---------------------------------------32.2多功能发⽣器设计的意义-------------------------------------33.多功能发⽣器课程设计的内容及相关要求---------------------------34多功能发⽣器设计的⽅案以及相关原理-----------------------------44.1. 多功能发⽣器设计的原理框图-------------------------------44.2 多功能信号发⽣器的实现的⽅案------------------------------44.21 频率产⽣模块------------------------------------------44.22 键盘控制模块------------------------------------------54.23 波形控制模块------------------------------------------64.24 16*16点阵显⽰模块和数码管显⽰模块--------------------74.25 ⽤LPM-ROM制定的波形数据的⽂件模块--------------------75.多功能发⽣器的仿真结果及波形------------------------------------86 多功能发⽣器设计的⼼得体会--------------------------------------87. 多功能发⽣器设计的参考⽂献-------------------------------------98.附录-----------------------------------------------------------10 附录A 多功能发⽣器的原理总框图-------------------------------10附录B 各个模块的相关程序-------------------------------------12B.1 频率控制模块的程序----------------------------------12B.2 键盘控制模块程序------------------------------------15B.3 波形控制模块程序------------------------------------18B.4 16*16点阵与数码管显⽰模块--------------------------20B.5 波形数据⽂件程序------------------------------------262.多功能发⽣器设计⽬的与设计的意义2.1 设计⽬的(1)掌握⽅波—三⾓波——正弦波函多功能发⽣器的原理及设计⽅法。

信号发生器设计报告(DOC)

信号发生器设计报告(DOC)

序号(学号):1223000101吉林建筑大学城建学院课程设计报告信号发生器的设计姓名宋丽萍系电气信息工程系专业电子信息工程班级电子12-1指导教师雷艳敏(副教授)2013 年12 月27 日目录摘要 (1)ABSTRACT (3)第1章前言 (4)1.1绪论 (4)1.2 设计目的 (4)第2章信号发生器的设计原理 (5)2.1原理框图 (5)2.2信号发生器的原理图 (5)2.2.1矩形波发生电路及工作原理 (5)2.2.2正弦波发生电路及工作原理 (6)3.2.3三角波发生电路及工作原理 (7)第3章仿真电路分析 (9)3.1 矩形波波形 (10)3.2 三角波波形 (11)3.3 正弦波波形 (12)总结 (15)参考文献 (16)致谢 (17)附录1整机原理图 (18)摘要信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。

采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。

通过对电路分析,确定了元器件的参数,并利用仿真软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。

本设计是信号发生器的设计,主要由比较器、积分器构成,它能产生频率范围为1KHZ~10KHZ内的方波、三角波、正弦波。

关键词 : 方波;正弦波;三角波;信号发生器ABSTRACTSignal generator is widely used in electronics engineering, communication engineering, automatic control, remote control, measuring instrument, instrument and computer technology. Using integrated op-amp and the way of the combination of discrete component, using hysteresis comparator circuit to produce square wave signal, and make full use of the differential circuit to convert the circuit, so as to design a can transform a simple triangle wave, sine wave and square wave signal generator. Based on circuit analysis, to determine the parameters of the components, and by using simulation software simulation circuit of the ideal output, overcomes the low frequency signal generator circuit design of technical problems, makes the design of the low frequency signal generator has simple structure, easy to implement.This design is the design of the signal generator, mainly by the comparator, integrator, differential amplifier, it can produce within the frequency range of 1 KHZ ~ 10 KHZ square wave, triangle wave, sine wave.Key Words: square wave; Sine wave; Triangle wave. Signal generator第1章前言1.1绪论凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。

多波信号发生器课程设计报告

多波信号发生器课程设计报告

简介在人们认识自然、改造自然的过程中, 经常需要对各种各样的电子信号进行测量, 因而如何根据被测量电子信号的不同特征和测量要求, 灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号(各种波形), 然后用其它仪表测量感兴趣的参数。

信号源在各种实验应用和实验测试处理中, 它不是测量仪器, 而是根据使用者的要求, 作为各种激励源, 仿真各种测试信号, 提供给被测电路, 以满足测量或各种实际需要。

多波信号发生器就是信号源的一种, 能够给被测电路提供所需要的波形。

多波信号发生器多采用模拟电子技术, 由分立元件或模拟集成电路构成, 产生正弦波、方波、三角波、矩形波等幅值可调的信号。

任务要求1、能产生矩形波、方波、三角波、正弦波等波形;2、产生的矩形波的占空比可调;3、产生的方波、三角波、正弦波的频率和幅度在一定范围内可调;4、产生的波形在一定程度上不失真。

设计方案方案一设计原理方框图:原理方框图(方案一)设计电路原理图:方案原理: 555定时器接成多谐振荡器工作形式, C2为定时电容, C2的充电回路是RV1→R2→RV2→C2;C2的放电回路是C2→RV1→R2→IC的7脚(放电管)。

由于RV1.RV2为可调电阻, 因此充放电时间常数可调, 同时频率在一定的范围内可调, 当充电时间常数与放电时间常数近似相等, 由IC的3脚输出的是近似对称方波;当充电时间常数与放电时间常数不相等时, 由IC的3脚输出的是矩形波。

IC的3脚输出的方波经过R5与C5组成的积分电路时, 此时会对C5进行充放电, 输出三角波。

三角波经过二级低通滤波器, 滤除高次谐波, 产生正弦波。

发光二极管VD用作电源指示灯。

方案二:方案原理方框图:原理方框图(方案二)设计电路原理图:方案原理: 上图为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路, 同时兼作选频网络, R1.R2.RV1及二极管等元件构成负反馈和稳幅环节。

信号发生器课程报告

信号发生器课程报告

河南理工大学《微机原理与单片机接口技术》课程设计报告多功能信号发生器设计姓名:高艺伟禹明娟学号:311008000412 311008000406 专业班级:电气10—1班电气10—2班指导老师:王莉王新所在学院:电气工程与自动化学院2113 年4月4 日摘要本设计是基于STC10F08XE单片机构成的多功能信号发生器,可以用来产生方波,三角波,锯齿波等波形。

电源部分使用7805,7812,7912做出响应的电源。

电源部分应充分考虑功率,所以还要有一定的滤波高频率波,使输出电压稳定功率可靠。

显示部分使用1602液晶显示。

便于操作简单。

减少了对单片机使用频率。

节约运行内存。

提高了单片机的运算处理速度。

波形产生部分采用了D/A转换芯片DAC0832和LM324。

单片机通过控制0832输出变化的电流信号。

324是电流信号转化为电压信号。

人机通信主要靠显示屏了按键。

通过5个按键可以调整波形,频率,振幅。

具体做法:使用计数器的定时功能,将每个周期分为32个小段进行采样。

在每个小段对信号进行采样。

这样就能产生相应的信号。

这是信号时微小的电流信号。

我们在经过放大就能达到电压信号。

在经过电压放大比较器就可以得出具有正负的信号。

至于采样点的赋值问题。

本次采用的是计算法。

此设计优点是程序可移植性好集成度高。

便于在使用中对程序改进维护且占用的存储空间小。

缺点:对单片机的性能要求高。

波形的精度和准确度和单片机的计算速度,计算精度成正比,是这种编程的最大瓶颈。

但是随着科技的发展,现在芯片的计算精度、计算速度也大大提高。

计算法的优越性更好。

此次设计的信号发生器基于泰勒级数计算方法可以各种波形。

关键字:STC10F08XE单片机DAC0832 多功能信号发生器目录1 概述 (4)1.1 单片机简述 (4)1.2 信号发生器分类 (4)1.3多功能信号发生器设计 (4)2 系统总体方案及硬件设计 (5)2.1总体部署 (5)2.2 总体方案选择 (6)2.3改变幅度方案选择 (6)2.4单片机详述 (6)2.5 电源 (8)2.6 lcd显示 (8)2.7 波形产生 (10)3 软件设计 (13)3.1 基本要求 (13)3.2 Keil uVision4简介 (13)3.3 Keil 与Proteus 联合调试仿真 (14)4 Proteus软件仿真 (15)4.1仿真图 (15)3.2 结果显示 (15)5 课程设计体会 (17)参考文献 (17)附1 源程序代码 (18)附2 系统原理图 (27)1 概述1.1 单片机简述随着大规模集成电路技术的发展,中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、(I/O)接口、定时器/计数器和串行通信接口,以及其他一些计算机外围电路等均可集成在一块芯片上构成单片微型计算机,简称为单片机。

函数信号发生器课程设计报告

函数信号发生器课程设计报告

《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。

根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。

经测试,所设计波形发生电路产生的波形与要求大致相符。

关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。

1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。

1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。

1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。

模电课程设计简易信号发生器报告

模电课程设计简易信号发生器报告

模电课程设计-简易信号发生器报告模电课程设计报告电子系课题名称:简易信号发生器设计专业名称:电子信息科学与技术学生班级:10电信科技师范2班第一章设计的目的及任务1.1 设计目的1.11掌握电子系统的一般设计方法1.12掌握模拟IC器件的应用1.13培养综合应用所学知识来指导实践的能力1.14掌握常用元器件的识别和测试1.15 熟悉常用仪表,了解电路调试的基本方法1.2设计任务设计正弦波函数信号发生器1.3课程设计的要求及技术指标1.31设计、组装、调试函数发生器1.32输出波形:正弦波;1.33频率范围:20Hz~20KHz;1.34输出电压:不小于1V有效值1.35失真度:γ<= 5%第二章函数发生器的总方案及原理框图2.1 原理框图图2-12.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件,也可以采用集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与RC桥式正弦波振荡器共同组成的正弦波函数发生器的设计方法。

本课题中函数发生器电路组成如下所示:采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz的低频信号。

因为对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。

放大电路是一种直接耦合的多级放大电路,用于将产生的正弦波幅值放大。

第三章元器件明细清单元器件明细清单如下名称参数数量电阻7.5k2电阻560k1电阻 4.7k1电阻 5.1k 2电阻24k2电阻 3.3k3电阻1k 2可变电阻100k2电容1042电容1032电容1022电解电容10uf4电解电容47uf1三极管npn3第四章单元电路设计3.1正弦波发生电路的工作原理正弦波振荡电路是一种选频网络和正反馈网络的放大电路。

信号发生器的设计报告

信号发生器的设计报告

模拟电子技术课程设计报告姓名:学号:学院:班级:报告日期:(1)内容摘要:放大器是应用广泛的基本模拟电路,主要用于小信号的放大,基本性能指标有增益系数、输入电阻、输出电阻、通频带(带宽)等,依据不同的性能要求选用不同的集成运放作为放大器件,不同的集成运放其增益带宽积为不同的常数,输入电阻决定于第一级、输出电阻决定于最后一级。

(2)设计内容及要求:1、要求完成原理设计并通过软件仿真部分(1)输入为100mV的正弦信号,负载电阻1KΩ,放大器的性能参数为:增益40dB、输入电阻50Ω、输出电阻≤10Ω、通频带范围300Hz~4000Hz。

(2)输入为0.5mV的正弦信号,负载电阻1KΩ,设计放大器的性能参数为:增益80dB、输入电阻≥200KΩ、输出电阻≤50Ω、通频带范围20Hz~400KHz。

(3)输入为10mV的正弦信号,负载电阻1KΩ,设计放大器的性能参数为:增益60dB、输入电阻10KΩ、输出电阻≤20Ω、通频带范围500Hz~10KHz,要求增益可调,调节步进10dB。

软件仿真部分元器件不限,只要元器件库中有即可,但需要注意合理选取。

2、要求实际制作部分上述(3)输入为10mV的正弦信号,负载电阻1KΩ,设计放大器的性能参数为:增益60dB、输入电阻10KΩ、输出电阻≤20Ω、通频带范围500Hz~10KHz,要求增益可调,调节步进10dB。

硬件制作部分核心元器件:LM324、uA741、DAC0832,电阻电容不限。

(3)设计原理及分析:(1)根据要求输入为100mV的正弦信号,负载电阻1KΩ,增益40dB、输入电阻50Ω、输出电阻≤10Ω、通频带范围300Hz~4000Hz。

设计电路图:仿真波形图:实验数据:通频带为311.411HZ~4.105KHz,增益为39.34dB(2)根据要求输入为0.5mV的正弦信号,负载电阻1KΩ,增益80dB即放大10000倍、输入电阻≥200KΩ、输出电阻≤50Ω、通频带范围20Hz~400KHz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

(3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

(4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围400Hz~5KHz、输出幅值≥5V、负载电阻1KΩ。

软件仿真部分元器件不限,只要元器件库中有即可,但需要注意合理选取。

2、要求实际制作部分上述(4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ。

3、硬件设计:组装、调试根据原理图焊接的函数信号发生器.硬件制作部分核心元器件:uA741、LM324、9013,电阻电容不限。

五、系统方案设计:函数信号发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数信号发生器,使用的器件可以是分立器件,也可以采用集成电路,为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波、然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波获将方波变成正弦波等等,本次设计采用先产生方波、三角波,再将三角波变换成正弦波的方法。

由比较器和差分器组成方波--三角波产生电路,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定、输入阻抗高,抗干扰能力强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可以将频率很低的三角波转换为正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

波形转换电路:比较器产生方波→积分器产生三角波→用差分放大电路实现正弦波,相应转换关系如下:六、电路设计及原理分析(一)总电路设计图:①R1、R2、R3、R4 及U1构成同相输入迟滞比较器,在U1的6脚输出方波。

R4为可变电阻,可调节相应方波幅度。

②R5、R6、R16、C1和U2构成积分器,将方波变换成三角波,在U2的6脚输出三角波。

R6为可变电阻,可调节方波和三角波的频率。

③Q1、Q2及相应电阻、电容构成差分放大电路,利用差分放大电路传输特性曲线的非线性性将三角波转换成正弦波。

C2、C3、C4均为隔直通交电容,R7、R11为可变电阻,R7用于调节波形失真情况,R11用于调节差分放大电路传输曲线的对称性。

④Q3、Q4、R13、R14、R15构成比例电流源。

(二)方波产生电路:工作原理:由于同相迟滞比较器具有回差特性,有两个门限电压,设某个瞬间电路的输出电压为+Uz ,此时滞回电压比较器的门限电压为UTH1,输出信号经电阻R 对电容C 充电,uc 的波形如图(a )所示。

当uc 上升到UTH1时,比较器翻转,输出电压变为-Uz ,门限电压也随之变为UTH2,此时,电容C 经电阻R 放电,当该电压下降到UTH2时,输出电压又回到+Uz ,电容又开始充电的过程,周而复始,比较器输出端便得到矩形波信号Uo 。

其波形如图(b )所示。

设电容器在t=0时开始充电,充电的初始电压uc (0)=UTH2,电容器的充电电压uc 最终为+Uz ,根据这些特点可得电容充电过程三要素为uc (0)=UTH2 , uc (∞)=+Uz ,τ=RC根据一阶RC 电路的三要素表达式,可得电容上的电压随时间变化的关系:因滞回电压比较器的门限电压为: uc 从UTH2充电到UTH1所需的时间为tw ,因电容器充、放电的时间相等,所以,振荡的周期 改变R1、R2、R 和C 的参数,即可改变输出信号的频率,使充、放电电路的时间常数不相等,就可改变输出信号的占空比。

下图为仿真时的方波产生电路: 12222ln(1)w R T t RC R ==+[][]C C C C Z TH2Z ()()(0)()ttu t u u u e U U U e ττ--=∞+-∞=+-1TH Z 12R U U R R =±+111212w tZ Z Z Z R R U U U U e R R R R τ-⎡⎤=+--⎢⎥++⎣⎦21212122wt R R R e R R R R τ-+=++工作原理:根据RC 积分电路输入和输出信号波形的关系可知,当RC 积分电路的输入信号为方波时输出信号是三角波,由此可得,利用方波信号发生器和积分电路就可以组成三角波信号发生器。

根据叠加定理,A1同相端电位 A1的u+=u-=0,则阈值电压 uo1=±UZ ,若初态从-UZ 到+UZ ,则 该电路振荡信号的频率与三角波输出信号的幅度有关,根据三角波工作波形可知,正向积分的起始值为-UT ,终值为+UT ,积分时间为二分之一周期,可得出振荡周期 ,三角波输出信号的频率为 电路中的R1、R2、R 的阻值和C 的容量,可以改变振荡频率;而调节R1和R2的值可以改变三角波的幅值。

下图为仿真时的三角波产生电路:12Z o 2121R R u U u R R R R +=+++12T Z R U U R ±=±O 10O 01()()Z u U t t u t RC=-+124R RC T R =214R f R RC =三角波转换成正弦波:波形变换的原理是利用差分放大的传输特性曲线的非线性,波形变换过程如图所示。

由图可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Ui应正好使晶体接近饱和区域或者截至区域。

为实现三角波-正弦波转换电路,其中R7、R11为可变电阻,R7用于调节波形失真情况,R11用于调节差分放大电路传输曲线的对称性。

C2、C3、C4均为隔直通交电容。

七、电路仿真结果1.方波仿真结果:2.三角波仿真结果:3.正弦波仿真结果:八、硬件设计及焊接测试:(一)按照电路原理图进行焊接:1.先使用万用表,测出所需的电阻值,分辨电容正负极性,三极管的发射极、集电极和基极。

2.按照信号发生器的原理电路图,首先在电路板上布置好电路元件,避免焊到最后,没有剩余空间供其他部分电路焊接。

同时,必须认识到电路板上焊接点的分布,区分他们是否连接好,已经导通,避免短路。

3.最后,依次焊接元器件,连接好导线,接通电源,进行测试。

(二)焊接注意事项:1.依照器件分布原则,主要版块尽量分开,布好器件,然后进入焊接阶段;2.焊接时应该注意,焊剂加热挥发产生的化学物质对人体有害,操作时,鼻子尽量不要离烙铁太近,一般注意鼻子与焊接区域间保持不小于30cm的距离;3.在不使用电烙铁时,应把其放在右前方的烙铁架上,避免导线等被烫坏,并且在多人的环境中应避免烙铁头对准他人;4.在使用电烙铁时应注意手的握法,不能用手直接触摸烙铁头,避免手被烫伤;5.焊接并初步检查完后,检查电路板中是否存在虚焊,尤其注意电路中不要有短路的地方;6.开始进行波形调试,若开始发现没有产生波形,应该用万用表测试相应的参数并分析;7.注意芯片的引脚不能短路,否则可能会烧坏芯片;8.在调试时,有时会出现滑动变阻器的阻值调不了,这可能是有些引脚短路了,也有可能是滑动变阻器滑动端未接入电路。

(三)焊接完后实物如下:(四)调试:1.方波调试:在信号输出端接入示波器,观察是否有正弦波输出,调节R4实现方波的幅度可调,调节R6实现方波的频率可调。

2.三角波调试:如果正弦波正常输出,换三角波输出端口,检测是否有三角波,调节R7实现三角波的幅度可调,调节R6实现三角波的频率可调。

3.正弦波调试:接入直流电源后,将C3左边的线接地,测量差分放大电路的静态工作点。

调节R11使差分放大电路的传输特性曲线对称,用示波器进行观察并调试实现正弦波的幅度和频率可调。

(五)示波器输出波形:方波:三角波正弦波九、故障的原因分析及解决方案:1.故障一:测试电路观测不到波形。

原因分析:a.电路连接出现问题,例如:导线短路,未接地线或者电源线等;b.芯片为不合格品;c.杂波干扰,导致波形不能正常输出。

解决方案:a.仔细检查电路,可通过借助万用表等工具测试线路问题;b.换另一块合格芯片c.添加滤波电路滤除杂波。

2.故障二:频率增大时,正弦波和方波幅度不变,三角波幅度明显减小。

原因分析:积分电路的积分时间常数通常是保持不变的,随着方波信号频率的改变,积分电路输出的三角波幅度将同时改变。

解决方案:改变积分时间常数的大小。

同步减小C1或者Rw1,延长积分时间。

3.故障三:三角波顶部或底部失真。

原因分析:a.方波信号边沿失真。

b.积分电路时间常数选取不当。

解决方案:a.在方波信号输出端增加稳幅电路。

b.改变积分时间常数的大小,或者选择一大电阻(300K左右)与积分电容C1并联,调节三角波线性度。

4.故障四:在方波及三角波正常输出情况下,正弦波失真或输出不正常。

相关文档
最新文档