土壤腐殖质组成测定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤腐殖质组成测定

土壤腐殖质事土壤有机质的主要成分。一般来说,它主要是由胡敏酸(HA)和富里酸(FA)所组成。不同的土壤类型,其HA/FA比值有所不同。同时这个比值与土壤肥力也有一定关系。因此,测定土壤腐殖质组成对于鉴别土壤类型和了解土壤肥力均有重要意义。

实验方法:用 0.1M焦磷酸钠和0.1M氢氧化钠混合液处理土壤,能将土壤中难溶于水和易溶于水的结合态腐殖质络合成溶于水的腐殖质钠盐,从而比较完全的将腐殖质

提取出来。

实验操作步骤:

1、称取0.25mm相当于2.50g烘干重的风干土样,置于250ml三角瓶中,用移液管准确加入0.1M焦磷酸和0.1M氢氧化钠混合液,震荡5分钟,塞上橡皮套,然后静置13——14小时(控制温度在20℃左右),旋即摇匀进行过滤,收集滤液(一定要清亮)。

2、胡敏酸和富里酸总碳量的测定

吸取滤液,移入150毫升三角瓶中,加3mol/L H2SO4约五滴(调节ph为7)至溶液出现浑浊为止,置于水浴锅上蒸干。加/L(1/6K2Cr2O7)标准液,用注射筒迅速注入浓硫酸5ml,盖上小漏斗,在沸水浴上加热15分钟,冷却后加蒸馏水50ml稀释,加邻啡罗林指示剂3滴,用∕L硫酸亚铁滴定,同时作空白实验。

3、胡敏酸量测定

吸取上述滤液于小烧杯中,置于沸水浴上加热,在玻璃搅拌下滴加3mol∕L H2SO4酸化(约30滴),至有絮状沉淀析出为止,继续加热10分钟使胡敏酸完全沉淀。过滤,以∕L H2SO4洗涤滤纸和沉淀,洗至滤液无色为止(即富里酸完全洗去)。以热的∕L NaOH

溶解沉淀,溶解液收集于150ml三角瓶中(切忌溶解液损失),如前法酸化,蒸干,测碳。(此时的土样重量w相当于1g)

结果计算:

1、腐殖质总碳量(%)= [ **(V0-V1 )*V0 ]*100/W

式中:毫升标准重铬酸钾溶液空白实验滴定的硫酸亚铁毫升数。

V1--待测液滴定用去的硫酸亚铁毫升数

w--吸取滤液相当的土样重(g)

5----空白所用K2Cr2O7毫升数

注意事项:1、在中和调节溶液pH时,只能用稀酸,并不断用玻棒搅拌溶液,然后用玻棒醮少许溶液放在ph试纸上,看其颜色,从而达到严格控制ph

2、蒸干前必须将ph调至7,否则会引起碳损失

固体废物堆肥胡敏酸光谱学特性研究进展

摘要着重论述了堆肥过程中光谱学特性研究方法,主要包括紫外光谱法、红外光谱法、13C-核磁共振波谱法及荧光光谱法。介绍了在不同光谱分析条件下,堆肥过程中胡敏酸分子的结构特性。最后指出不同光谱学分析方法判断堆肥腐熟度存在的不足及今后的发展趋势。关键词固体废物堆肥胡敏酸光谱

堆肥法是固体废弃物资源化处理的主要方式之一,堆肥的过程是微生物利用有机物质作为能源进行好氧发酵的过程[1],同时也是有机物质腐殖化与稳定化的过程[2]。堆肥过

程中,有机物质通过微生物的作用形成复杂的、暗棕色的、稳定的腐殖质类物质,其分子量在200~300 000 g/mol,根据腐殖质在强酸中的溶解性的不同,可将其分为胡敏酸(Humic acid,HA)类、富里酸类及胡敏素(Humin)等物质,其中胡敏酸分子量介于10 000~100 000 g/mol,溶于碱溶液但不溶于强酸溶液。通常胡敏酸类物质含量及其结构的复杂化程度是决定堆肥质量及腐熟度的重要因素之一。同时,堆肥产品施入土壤后,胡敏酸类物质可以改善土壤团粒结构、影响重金属的迁移转化、缓冲土壤pH,并且由于其含有作物生长所需要的营养元素(N、P、K等),可以作为土壤氧分的潜在储存库,并且会对作物的生长发育产生积极的作用[3]。堆肥过程中胡敏酸结构变化,不仅影响堆肥的腐熟进程,还决定着堆肥产品的培肥效果。因此,利用光谱扫描手段对堆肥过程中胡敏酸分子结构进行分析,从物质结构的角度了解堆肥过程及腐熟度,判断堆肥质量,是研究者面临的主要研究内容之一。目前在堆肥过程中研究胡敏酸光谱学特性应用较多的方法为紫外光谱法(UV-Visible absorption spectrum,UV-Vis)、红外光谱法(Fourier transform infrared, FTIR)、13C-核磁共振波谱法(Solid-state 13C-NMR)、荧光光谱法(Fluorescence spectrum),通常胡敏酸结构特性大都采用多种光谱分析的方法[4-8]。本文将对这些分析技术作一综合评述。

1 堆肥过程中胡敏酸变化

在堆肥的不同阶段,腐殖质、胡敏酸、富里酸含量及其结构特性不同,因此堆肥过程腐殖酸类物质变化对判断堆肥腐熟度具有十分重要的意义。通常情况下,堆肥初期胡敏酸含量较少,而富里酸含量则处于较高的水平。在堆肥过程中,腐殖质总量基本恒定[9],但由于堆肥的固体废弃物种类及性质不同,腐殖质含量也可能发生变化[10];而胡敏酸含量一般呈明显的增加趋势。Sugaharq[11]利用生活垃圾堆肥,研究了胡敏酸、富里酸及腐殖化指数(胡敏酸/富里酸,HI),结果表明,堆肥过程中富里酸含量呈明显降低的趋势,而胡敏酸含量、HI值则呈明显的增加的趋势。Chetez[9]的研究也得到了相似的结果,胡敏

酸含量堆肥初期为7%,而堆肥后则增加至12%。综合已有的研究报道表明,堆肥的腐熟进程实质上也是胡敏酸物质含量增加及芳构化程度增强的过程;同时由于富里酸结构较为简单,通过微生物作用,可发生矿化,进而使堆肥中富里酸含量减少[12],同时一部分富里酸还可以通过分子间的键合形成更为复杂的胡敏酸物质[10]。

2 胡敏酸紫外光谱特性

胡敏酸分子中的多价健与非共用电子,通常具有发色基团(C=C、C=O)与助色基团(C —OH、C=NH2),它们都在紫外光区域出现吸收,其光谱的共同特征是吸收值随波长增加而减少[13]。在堆肥过程中,胡敏酸的紫外吸收在扫描波长范围内呈逐渐增加的趋势,在堆肥腐熟后期,增加幅度趋缓,在整个堆肥周期内,胡敏酸在短波长紫外吸收增加幅度明显大于较长波长[11]。胡敏酸紫外扫描光谱通常在200~210 nm有1个较强紫外吸收峰,而在285 nm附近则形成1个类肩峰。随着堆肥的进行200~210 nm处吸收峰逐渐增强,并伴随红移现象发生,210 nm附近最大吸收峰是由含有π—π共轭结构的分子如(芳香族)中的电子的π→π* 跃迁引起,最大吸收峰向近紫外区域移动,说明堆肥过程胡敏酸的共轭作用增加,缩合度增强[14]。另外,波长285 nm附近的类肩峰可能是胡敏酸分子中木质素成分引起[15],或者是由由含有π—π共轭结构的分子(如芳香族)中的电子的π→π*跃迁引[14]。随着堆肥的进行,285 nm处类肩峰逐渐减弱,表明胡敏酸分子木质素成分减少,芳香族化合物含量增加。或者是胡敏酸分子中共轭作用增强,腐殖化程度提高。因此测定不同堆肥时期胡敏酸的紫外光谱性质,可以对城市生活垃圾堆肥的腐熟程度进行定性的判断。

3 胡敏酸红外光谱特性

红外光谱可以作为胡敏酸主要官能团变化的定性分析工具,胡敏酸的红外光谱主要吸收带及其所对应的主要官能团见表1。随着堆肥的进行,羧基特征峰(1710 cm-1)逐渐演变为

相关文档
最新文档