离散数学课件
合集下载
离散数学课件1.8
∀ xA( x) ∴ A( y )
应用US规则的条件是: A(x)对于y必须是自由的。 设 A( x) = ∃y( x > y) 则 ∀xA( x) = ∀x∃y( x > y) , x,y的 的 个体域为R, 是一真命题. 个体域为 , 是一真命题 若应用US得 则是错误的。 若应用 得 ∃y( y > y) ,则是错误的。 正确的做法是换成 ∃y( z > y) ( z ∈ R)
用变元x取代 , 则要求在 原公式中y不 用变元 取代y, 则要求 在 原公式中 不 取代 能出现在量词(∀ 或 ∃ 的辖域之内 的辖域之内。 能出现在量词 ∀x)或(∃x)的辖域之内。
16
第一章 数理逻辑
推理规则的正确使用(4)
推导4: (1)G(x, c) (2)(∃x)G(x, x) P EG,(2)
17
第一章 数理逻辑 1.8.3 推理举例 例1 根据前提集合:同事之间总是有工作矛盾的,张平和李 明没有工作矛盾, 能得出什么结论? ; 解 设P(x, y): x和y是同事关系, Q(x, y): a: 张平, x和y有工作矛盾, b: 李明,
则前提是:∀x∀y(P(x,y) → Q(x,y)) , ┐Q(a,b) ∀ ∀
6
第一章 数理逻辑 这一规则也可写为:
∀ xA( x)推得A( x) 或
它的意义是, 全称量词可以删除。
∀ xA( x) ⇒ A( x).
7
第一章 数理逻辑 (2) 存在指定规则 存在特定规则 存在量词消去规则 ) 存在指定规则(存在特定规则 存在特定规则/存在量词消去规则 (Existential Specification)简记为ES。
15
第一章 数理逻辑
离散数学PPT课件
离散数学
1-6
Copyright © 《离散数学》精品课程小组
计算机与信息科学系
Department of Computer and Information Science
第七章 二元关系
7.1 有序对与笛卡儿积
由排列组合的知识不难证明: 如果|A| = m, |B| = n, 则|A B| = mn.
笛卡儿积运算具有以下性质: 1)对任意集合A, 根据定义有 A = , A = 2)一般地说, 笛卡儿积运算不满足交换律, 即 A B B A (当A B, A , B 时) 3)笛卡儿积运算不满足结合律, 即
(A B) C A (B C) (当A , B , C 时)
离散数学
1-4
Copyright © 《离散数学》精品课程小组
计算机与信息科学系
Department of Computer and Information Science
第七章 二元关系
例7.1 已知<x+2, 4> = <5, 2x+y>, 求x和y.
❖ 解 由有序对相等的充要条件有 x 2 5 2x y 4
第七章 二元关系
总体概述
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
计算机与信息科学系
Department of Computer and Information Science
第七章 二元关系
7.1 有序对与笛卡儿积 7.2 二元关系 7.3 关系的运算 7.4 关系的性质 7.5 关系的闭包 7.6 等价关系与划分 7.7 偏序关系
离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
《离散数学》课件-第3章集合的基本概念
17
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
离散数学课件ppt课件
联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
离散数学高等里离散数学课件-CHAP
图论
图的基本概念
边
连接两个节点的线段称为边。
简单图与多重图
只含一条边的图称为简单图, 含有相同端点的多条边称为多 重边。
节点
图中的顶点称为节点。
定向图与无向图
如果边有方向,则称为定向图; 如果边无方向,则称为无向图。
有限图与无限图
节点和边都有限的图称为有限 图,节点或边至少有一个为无 限的图称为无限图。
发展
随着计算机科学的快速发展,离散数学也得到了迅速的发展 。许多新的分支如组合数学、离散概率论等不断涌现,并广 泛应用于计算机科学、工程学、物理学等领域。
离散数学的应用领域
计算机科学
离散数学在计算机科学中有着广泛的 应用,如算法设计、数据结构、计算 机图形学、数据库系统等。
工程学
离散数学在工程学中也有着广泛的应 用,如电子工程、通信工程、机械工 程等。
要点二
详细描述
集合可以用列举法、描述法、图示法等多种方法来表示。 列举法是将集合中的所有元素一一列举出来,适用于元素 数量较少的集合。描述法是用数学符号和逻辑表达式来描 述集合中的元素,适用于元素数量较多且具有共同特征的 集合。图示法则是用图形来表示集合,直观易懂,适用于 具有明显包含关系的集合。
03
如果图中任意两个节点之间都存在一 条路径,则称该图为连通图。
路径与回路
欧拉回路与哈密顿回路
如果一条回路恰好经过图中的每条边 一次,则称为欧拉回路;如果一条回 路恰好经过图中的每个节点一次,则 称为哈密顿回路。
连接两个节点的序列称为路径,如果 路径的起点和终点是同一点,则称为 回路。
04
离散概率论
离散概率的基本概念
图的表示方法
邻接矩阵
用矩阵表示图中节点之 间的关系,如果节点i与 节点j之间存在一条边, 则矩阵中第i行第j列的 元素为1,否则为0。
图的基本概念
边
连接两个节点的线段称为边。
简单图与多重图
只含一条边的图称为简单图, 含有相同端点的多条边称为多 重边。
节点
图中的顶点称为节点。
定向图与无向图
如果边有方向,则称为定向图; 如果边无方向,则称为无向图。
有限图与无限图
节点和边都有限的图称为有限 图,节点或边至少有一个为无 限的图称为无限图。
发展
随着计算机科学的快速发展,离散数学也得到了迅速的发展 。许多新的分支如组合数学、离散概率论等不断涌现,并广 泛应用于计算机科学、工程学、物理学等领域。
离散数学的应用领域
计算机科学
离散数学在计算机科学中有着广泛的 应用,如算法设计、数据结构、计算 机图形学、数据库系统等。
工程学
离散数学在工程学中也有着广泛的应 用,如电子工程、通信工程、机械工 程等。
要点二
详细描述
集合可以用列举法、描述法、图示法等多种方法来表示。 列举法是将集合中的所有元素一一列举出来,适用于元素 数量较少的集合。描述法是用数学符号和逻辑表达式来描 述集合中的元素,适用于元素数量较多且具有共同特征的 集合。图示法则是用图形来表示集合,直观易懂,适用于 具有明显包含关系的集合。
03
如果图中任意两个节点之间都存在一 条路径,则称该图为连通图。
路径与回路
欧拉回路与哈密顿回路
如果一条回路恰好经过图中的每条边 一次,则称为欧拉回路;如果一条回 路恰好经过图中的每个节点一次,则 称为哈密顿回路。
连接两个节点的序列称为路径,如果 路径的起点和终点是同一点,则称为 回路。
04
离散概率论
离散概率的基本概念
图的表示方法
邻接矩阵
用矩阵表示图中节点之 间的关系,如果节点i与 节点j之间存在一条边, 则矩阵中第i行第j列的 元素为1,否则为0。
离散数学课件-绪论
离散数学课件-绪论
目录
• 离散数学的概述 • 离散数学的主要分支 • 离散数学的基本概念 • 离散数学的研究方法 • 离散数学的学习意义和价值
01
离散数学的概述
离散数学的定义
• 离散数学:离散数学是研究数学结构中非连续、分离对象的数 学分支。它主要关注集合论、图论、逻辑、组合数学等领域, 用于描述和研究离散对象之间的关系和性质。
在离散数学中,形式化方法常用于描述集合、关系、图等数学对象,如集合论中的集合定义和关系定 义。
归纳法
归纳法是从个别到一般的推理方法, 通过对一些具体实例的分析,归纳出 一般规律或性质。
VS
在离散数学中,归纳法常用于证明一 些关于自然数的性质和定理,如归纳 法在证明阶乘性质中的应用。
反证法
反证法是一种间接证明方法,通过假设与要 证明的命题相矛盾的命题成立,推出矛盾, 从而证明原命题成立。
逻辑学
01
逻辑学是研究推理和论证的规则 和结构的数学分支。逻辑学为离 散数学的各个分支提供了推理和 证明的工具和方法。
02
逻辑学中的基本概念包括命题、 量词、推理规则、证明等,这些 概念为离散数学的各个分支提供 了推理和证明的工具和方法。
组合数学
组合数学是研究计数、排列和组合问题的数学分支。组合数学在计算机科学、统 计学和运筹学等领域有广泛应用。
离散数学的起源和发展
起源
离散数学的起源可以追溯到古代数学中的一些研究,如几何学和逻辑学。随着 时间的推移,离散数学的各个分支逐渐形成和发展,成为一门独立的学科。
发展
离散数学的发展与计算机科学的发展密切相关。随着计算机科学的兴起,离散 数学在理论和实践方面都得到了广泛的应用和发展。
离散数学的应用领域
目录
• 离散数学的概述 • 离散数学的主要分支 • 离散数学的基本概念 • 离散数学的研究方法 • 离散数学的学习意义和价值
01
离散数学的概述
离散数学的定义
• 离散数学:离散数学是研究数学结构中非连续、分离对象的数 学分支。它主要关注集合论、图论、逻辑、组合数学等领域, 用于描述和研究离散对象之间的关系和性质。
在离散数学中,形式化方法常用于描述集合、关系、图等数学对象,如集合论中的集合定义和关系定 义。
归纳法
归纳法是从个别到一般的推理方法, 通过对一些具体实例的分析,归纳出 一般规律或性质。
VS
在离散数学中,归纳法常用于证明一 些关于自然数的性质和定理,如归纳 法在证明阶乘性质中的应用。
反证法
反证法是一种间接证明方法,通过假设与要 证明的命题相矛盾的命题成立,推出矛盾, 从而证明原命题成立。
逻辑学
01
逻辑学是研究推理和论证的规则 和结构的数学分支。逻辑学为离 散数学的各个分支提供了推理和 证明的工具和方法。
02
逻辑学中的基本概念包括命题、 量词、推理规则、证明等,这些 概念为离散数学的各个分支提供 了推理和证明的工具和方法。
组合数学
组合数学是研究计数、排列和组合问题的数学分支。组合数学在计算机科学、统 计学和运筹学等领域有广泛应用。
离散数学的起源和发展
起源
离散数学的起源可以追溯到古代数学中的一些研究,如几何学和逻辑学。随着 时间的推移,离散数学的各个分支逐渐形成和发展,成为一门独立的学科。
发展
离散数学的发展与计算机科学的发展密切相关。随着计算机科学的兴起,离散 数学在理论和实践方面都得到了广泛的应用和发展。
离散数学的应用领域
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学课件第一章
图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。
数学离散数学PPT课件
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 1 c a c b b d a c c b
0 ¬ 1
1 0
《离散数学》
page: 4
7.1 运算 7.1.2 运算 3)几个术语 ②运算封闭性
y z
y
z=x*y
x
x
2013年10月25日星期五
作为运算(函数)z自然应该在A中,但当 x,y取自A的子集B时,Z是否也在B中?
《离散数学》
page: 5
o a b zl c zl d zl o a b c d zr zr zr zr zr
zl zl
如,R上的普通除法中的0,普通乘法中的0,集合交, 并运算中的空集与全集 page: 19
2013年10月25日星期五
《离散数学》
7.1 运算 7.1.3 运算的特殊元素,逆元,消去律 ③零元 设o为S上的二元运算,若存在元素,∀x↔S,有 zlox=zl (xozr=zr) , 则称 zl(zr)为左(右)零元。 若运算o既有左零元zl,又有右零元zr,则其左右零元 必相等且惟一,此时称为运算o的零元z。
2013年10月25日星期五
《离散数学》
page: 10
7.1 运算 7.1.2 运算的性质 ③分配律 设о和*为S上的二元运算,若有∀x,y,z↔S,都有: x*(yоz)=(x*y)о(x*z) (左分配) (yоz)*x=(y*x)о(z*x) (右分配) 则称运算*对о是可分配的(*对о满足分配律) 。 如,R上普通乘对加,减法满足分配律,但加,减法对乘 除法不满足分配律。
2013年10月25日星期五
《离散数学》
page: 7
7.1 运算 7.1.2 运算的性质 ①交换律 设о为S上的二元运算,若有∀x,y↔S,都有 xoy=yox, 则称运算о是可交换的(运算满足交换律)。 如,R上普通的加,乘法满足交换律,而减,除法不 满足交换律。
其它可交换与不可交换的例子: 满足交换律的运算(特殊的二元关系)是否就是对称 关系? z=xoy=o(<x,y>) <<x,y>,z>↔o 满足交换律的运算运算表的特点:?
这是因为根据左右么元的特点必有: eloer= el =er = e 而如果我们假设还存在另外一个么元E,则必有: eoE= e = E 么元的例子:逻辑运算,集合,实数….
2013年10月25日星期五
《离散数学》
page: 18
7.1 运算 7.1.3 运算的特殊元素 ③零元 设o为S上的二元运算,若存在元素,∀x↔S,有 zlox=zl (xozr=zr) , 强调自我 则称 zl(zr)为左(右)零元。
这是因为根据左右么元的特点必有: zlozr= zl =zr = z 而如果我们假设还存在另外一个零元Z,则必有: zoZ= z =Z 零元的例子:逻辑运算,集合,实数….
2013年10月25日星期五
《离散数学》
page: 20
7.1 运算 7.1.3 运算的特殊元素 ④逆元 设o为S上的有么元的二元运算,若对于元素a↔S, 存在元素al-1,有 al-1oa = e , 则称元素al-1是的a左逆元(右逆元ar-1 ?) 结论:若运算o是有么元的可结合的二元运算,且元 素a既有左逆元al-1 ,又有右逆元ar-1,则其左右逆元必相 等且惟一,此时称它为元素a的逆元,记为a-1。 显然,任意二元运算的么元都是可逆的,且逆元就是 它自己,而零元一般是不可逆的。 如,矩阵乘法运算中的逆矩阵,R上普通加法中,元 素x的逆?普通乘法中元素x的逆?
证明:x,y↔N, x*(x△y)=max{x,min{x,y}}=x x△(x*y)=min{x,max{x,y}}=x ∴运算*和△满足吸收律
《离散数学》
page: 13
2013年10月25日星期五
7.1 运算 7.1.2 运算的性质 ⑤等幂的 设o为S上的二元运算,若∀x↔S,有 xox=x, 则称运算o是等幂的(称为满足等幂律)。 如,∧,∨与∪,∩都是等幂的,而R上的普通加,减, 乘,除都不是等幂的。
2013年10月25日星期五
《离散数学》
page: 12
7.1 运算 7.1.2 运算的性质 ④吸收律 设о和*为S上的两个可交换的二元运算, 若∀x,y↔S,都有: x*(xоy)=x 且 xo(x*y)=x , 则称运算*和о满足吸收律。 例1 N为自然数集,x,y↔N,x*y=max{x,y}, x△y=min{x,y},试证运算*,△满足吸收律
其它可分配与不可分配的例子…..
2013年10月25日星期五
《离散数学》
page: 11
7.1 运算 7.1.2 运算的性质 ④吸收律 设о和*为S上的两个可交换的二元运算, 若∀x,y↔S,都有: x*(xоy)=x 且 xо(x*y)=x , 则称运算*和о满足吸收律。
如,∧,∨与∪,∩都满足吸收律,而R上的普通加, 减,乘,除都不满足吸收律。
《离散数学》
page: 15
2013年10月25日星期五
7.1 运算 7.1.3 运算的特殊元素 ①幂等元 设o为S上的二元运算,若x↔S,有xox=x,则称x为 运算o的幂等元。 如,∧,∨与∪,∩都是等幂的运算,所以,集合中 的任意元素都是幂等元。
R上的普通加,乘法不是等幂的,但是,加法运算中, 0是幂等元,乘法运算中,0和1是幂等元
2013年10月25日星期五
《离散数学》
page: 14
7.1 运算 7.1.2 运算的性质 结论:在代数系统<S,*,o >中,若运算*,o满足吸收律, 则必满足等幂律。 ∀a,b,c∊S,若有: a*(aob)=a ao(a*b)=a 则必有:a*a=a aoa=a 这是因为:a*a =a*(ao(a*b)) =a*(ao( … )) =a 同理可得: aoa=a
2013年10月25日星期五
《离散数学》
page: 8
7.1 运算 7.1.2 运算的性质 ①交换律 设о为S上的二元运算,若有∀x,y↔S,都有 xoy=yox, 则称运算о是可交换的(运算满足交换律)。
* a b c d a a b a c b a c a b c a c b b d a c c b * a b c d a a a a a b a c b c c a b a b d a c b c
7.1 运算 7.1.2 运算 3)几个术语 ②运算封闭性 示例1:R中的普通加法(+), 对其子集N 示例2:R中的普通减法(-), 对其子集Z
示例3:R中的普通除法(/), 对其子集Z 示例4:R中的普通取反(单目-), 对其子集N
2013年10月25日星期五
y
z=x*y
x
《离散数学》
page: 6
普通的除法,是定义在何集合上的?
2013年10月25日星期五
《离散数学》
page: 3
7.1 运算 7.1.2 运算 3)几个术语 ①运算表—表示函数运算关系的表
∧ 0 0 0 1 0 1 0 1 * a b c d
2013年10月25日星期五
→ 0 0 1 1 0 a a b a c b a c a b
el
如,R上的普通减法中的0,普通除法中的1,普通乘 法中的1 …
2013年10月25日星期五
《离散数学》
page: 17
7.1 运算 7.1.3 运算的特殊元素 ②么元(单位元) 设o为S上的二元运算,若∀x↔S,存在元素el(er), 有 elox=x (xoer=x) , 则称el(er) 为左(右)么元。 若运算o既有左么元el,又有右么元er,则其左右么元 必相等且惟一,此时称为运算o的么元e(单位元)。
2013年10月25日星期五
《离散数学》
page: 21
7.1 运算 7.1.3 运算的特殊元素 在讨论了上述概念之后,我们就可以讨论运算的另一 个运算性质:消去律 设o为S上的二元运算,若对于任意元素x,y,z↔S,满 足 ⑴x非零元,且xoy=xoz ⇒ y=z ⑵x非零元,且yox=zox ⇒ y=z 则称运算o满足消去律。
7.1 运算 7.1.2 运算 3)几个术语
②运算封闭性 --- 对于A上的2元运算*,若对于A的子 集B,任意的x,y∊B,有x*y∊B,则称运算*在B中的封闭的。 如,R中的普通减法运算,在整数集合Z中是?
R的普通减法运算,在N中?
R*的普通除法运算,在Z中? R的普通加法运算,在{x|x与5互质}中? R的普通加法运算,在{x|x是30的因子}中? R的普通加法运算,在{x|x是30的倍数}中? R的普通加法运算,在{x|x的某次幂可被16整除}中?
7.1 运算 7.1.2 运算 1)集合A上的k元运算—集合Ak到集合A 上的函数。
显然,k=1和2时就是所谓的一元运算和二元运算。 2)说明 ①作为函数的另一种形式,运算通常写成新的表示形 式,即表达式形式,如: - (<x,y>)=x-y x-y ②以后的讨论以二元运算为主,涉及的运算多为广义 的运算,比如出现运算符*并不代表普通的乘法运算(除非 特别申请)。
集合的并运算:零元,可消去? 集合的笛卡尔积运算:零元,可消去? 矩阵乘法运算:零元,可消去? R上普通的加法运算:零元,可消去?
2013年10月25日星期五
《离散数学》
page: 22
课堂练习: P171 9 10 11 12 14 课外作业: P172 13
15
2013年10月25日星期五
《离散数学》
2013年10月25日星期五
《离散数学》
page: 24
7.2 代数系统
7.2.1 代数系统的代数常数 代数系统中运算的特殊元素,即运算的么元和零元统 称为代数常数。 例2 设A={0,1,2,3,4},定义A上的运算㊉ 5 ,⊙ 5 分 别为模5的加,乘法,讨论<A , ㊉5,⊙5 >的运算性质和 代数常数。 运算满足: ㊉5 0 1 2 3 4 交换律,结合律 0 0 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 0 3 4 0 1 4 0 1 2 0 1 2 3