解三角形(正弦定理、余弦定理、三角形面积公式)
高中数学三角函数公式大全全解
高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
《解三角形》常见题型详解
《解三角形》常见题型总结1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1 在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:::1:2:3,A .,,,6321::sin :sin :sin sin:sin:sin:1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC 中,已知C=30°,求a+b 的取值范围。
【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。
解:∵C=30°,sin sin sin sin 30a b c A B C ===︒∴(150°-A ).∴°·2sin75°·cos(75°-A)=2cos(75°-A)① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2cos75°=2×4综合①②可得a+b 的取值范围为考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
解三角形正弦定理余弦定理三角形面积公式
解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。
本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。
一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。
正弦定理可以从三角形的面积公式推导得出。
二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。
余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。
三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。
那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。
在计算三角形的面积时,还可以使用海伦公式。
海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。
总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。
正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。
这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。
三角函数与解三角形:正弦定理和余弦定理
正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。
如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。
解三角形(正弦定理、余弦定理、三角形面积公式)
2020年9月11日11时45分
9
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【训练1】(3)在△ABC中,a : b : c 3+1: 6:2, 判断三角形的形状并求三角形的最小角.
解析 由a : b : c 3+1: 6:2知,a b c
所以∠A ∠B ∠C,即∠A为最大角,∠C为最小角
【例1】(3)已知在△ABC中,a 2,b 3,c 4, 那么这个三角形的形状是______.
解析
由题意可知:c b a,
所以∠C ∠B ∠A,即∠C为最大角,
由余弦定理得:cosC= a2 b2 c2 2ab
4 9 16 1 0
2 23
4
所以∠C为钝角,即△ABC为钝角三角形。
2020年9月11日11时45分
11
余弦定理、正弦定理和三角形面积公式
➢ 夯基释疑
概要
➢ 考点突破
➢ 课堂小结
2020年9月11日11时45分
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
12
考点突破 考点二 正弦定理的应用——求三角形的边角
【例2】(1)在△ABC中,a=2,∠A=300,∠C =450 , 则b等于_______.
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
2020年9月11日11时45分
S 1 ab sin C 2
S 1 bc sin A 2
S 1 ac sin B 2
高三第一轮复习正弦定理、余弦定理与三角形面积公式
解斜三角形正弦定理、余弦定理与三角形面积公式【提纲挈领】主干知识归纳ABC ∆的6个基本元素:C B A c b a ,,,,,.其中三内角C B A ,,所对边边长分别为c b a ,,.1.正弦定理R CcB b A a 2sin sin sin ===(其中R 是ABC ∆的外接圆的半径)变式:C R c B R b A R asin 2,sin 2,sin 2===2.余弦定理A bc c b a cos 2222-+=,B ca a c b cos 2222-+=,C ab b a c cos 2222-+=. 变式:abc a b C ac b a c B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.3.三角形面积公式 (1).sin sin sin 2sin 21sin 21sin 212C B A R B ac A bc C ab S ABC====∆ (2)秦九韶—海伦公式:,))()((c p b p a p p S ABC ---=∆其中2cb a p ++=. 方法规律总结1.基本量观念:ABC ∆的6个基本元素:C B A c b a ,,,,,.已知三个基本量(至少一个为边)确定一个三角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换.2.方程观念:正余弦定理和面积公式是方程的粗坯,是解三角形的依据,从三角形6个基本元素来说是“知三求三”.有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边)的关系,归结为三角方程. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.3.转化思想:利用正余弦定理实现边角间的相互转化.4.利用正弦定理解三角形主要是以下两类:(1)已知两边和一对角;(2)已知两角和一边. 利用余弦定理解三角形主要是以下两类:(1)已知三边;(2)已知两边及其夹角. 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化.【指点迷津】【类型一】定理的推导与证明 【例1】(2011陕西理18)叙述并证明余弦定理.【解析】: 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍.或:在∆ABC 中,a,b,c 为A,B,C 的对边,有2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-证法一 如图2a BC BC =•u u u v u u u v()()AC AB AC AB =-•-u u u v u u u v u u u v u u u v222AC AC AB AB =-•+u u u v u u u v u u u v u u u v222cos b bc A c =-+即2222cos ab c bc A =+-同理可证2222cos b a c ac B =+-2222cos c a b ab C =+-证法二 已知∆ABC 中A,B,C 所对边分别为a,b,c,以A 为原点,AB 所在直线为x 轴,建立直角坐标系,则(cos ,sin),(,0)C b A b A B c ,2222(cos )(sin )a BC b A c b A ∴==-+22222cos 2cos sin b A bc A c b A =-++ 2222cos b a c ac B =+-同理可证2222222cos ,2cos .b c a ca B c a b ab C =+-=+-【类型二】解三角形【例1】【2015湖南,文17】设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(I )证明:sin cos B A =;(II) 若3sin sincos 4C A B -=,且B 为钝角,求,,A B C . 【解析】:(I )由题根据正弦定理结合所给已知条件可得sin sin cos sin A AA B=,所以sin cos B A = ;(II)222AC AC AB COSA AB=-•+u u u v u u u v u u u v u u u v根据两角和公式化简所给条件可得3sin sin cos cos sin 4C A B A B -==,可得23sin 4B =,结合所给角B 的范围可得角B,进而可得角A,由三角形内角和可得角C.【答案】(I )略;(II)30,120,30.A B C ===o o o【例2】[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值; (2)cos(B -C )的值.[解析]:(1)由BA →·BC →=2得c ·a ·cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B ,又b =3,所以a 2+c 2=9+2×2=13. 解⎩⎨⎧ac =6,a 2+c 2=13,得⎩⎨⎧a =2,c =3或⎩⎨⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-()132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.[答案](1)a =3,c =2.(2)2327. 【例3】【2015安徽,理16】在ABC ∆中,3,6,324A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.【答案】10【类型三】三角形的面积【例1】(2013年课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为 ( )A .2+2B .+1C .2-2D .-1【解析】:由正弦定理有224sin6sin2=⇒=c c ππ,又462)]46(sin[sin +=+-=πππA ,所以1346222221sin 21+=+⨯⨯⨯==∆A bc S ABC . 答案:B【例2】【2015天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【例3】[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sinA -sinB )=(c -b )sinC ,则△ABC 面积的最大值为________.[解析]: 根据正弦定理和a =2可得(a +b )(a -b )=(c -b )c ,故得b 2+c 2-a 2=bc ,根据余弦定理得cos A =b 2+c 2-a 22bc =12,所以A =π3.根据b 2+c 2-a 2=bc 及基本不等式得bc ≥2bc -a 2,即bc ≤4,所以△ABC 面积的最大值为12×4×32= 3.答案:3【同步训练】【一级目标】基础巩固组 一、选择题1设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos A =b c <,则b =( )A 3B .2C .22D .3【解析】由余弦定理得:2222cos a b c bc =+-A ,所以(2223223223b b =+-⨯⨯即2680bb -+=,解得:2b =或4b =,因为bc <,所以2b =,故选B .【答案】B2.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A .3 B.9 32 C.3 32D .3 3【解析】:由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC =12ab sin C =3 32.答案:C3. 在△ABC 中,角A 、B 、C 所对应的边为c b a ,,,若c b A3,31cos ==,则C sin 的值为( )A .31 B .32C .322 D.33【解析】:由.,cos 23,31cos 222222c b a A bc c b a c b A -=-+===得及 故△ABC 是直角三角形,且,2π=B 所以31cos sin ==A C .答案:A4.[2014·新课标全国卷Ⅱ] 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1【解析】:根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =1+2-2×1×2×22=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =1+2-2×1×2×⎝⎛⎭⎫-22= 5. 答案:B5.在OAB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅OB OA ,则OAB∆的面积为( )A .3 B .23C .35 D.235【解析】:由条件知,21cos ,5,2-=∠==AOB OB OA 所以235235221=⨯⨯⨯=∆OAB S .答案:D 二、填空题6.【2015福建,理12】若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________.【答案】77.【2015北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】18.[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【解析】:因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S=12|AB →|·|AC →|sin A =12×23×sin π6=16. 答案:16三、解答题9.【2015新课标1,文17】已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若ab =,求cos ;B(II )若90B=o ,且a = 求ABC ∆的面积.【解析】:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积. 试题解析:(I )由题设及正弦定理可得22b ac =.又ab =,可得2bc =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222ac ac +=,得c a ==所以D ABC 的面积为1. 【答案】(I )14(II )1 10. 【2015浙江,文16】在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.【解析】(1)利用两角和与差的正切公式,得到1tan3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin CA B A B A B =+=+=,所以11sin 3922ABCS ab C ∆==⨯⨯=. 【答案】(1)25;(2)9【二级目标】能力提升题组一、选择题1.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22ab -=,sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150【解析】由由正弦定理得2c c R =⇒=,所以cosA=222+c -a 2b bc ==A=300答案:A2.[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤24[解析]: 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sinA sinB sinC ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sin A sin B sin C =R 3≥8.答案:A 二、填空题3.【2015广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,1sin 2B =,6C =π,则b = .【答案】1. 三、解答题4. 【2015山东,文17】ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知36cos ()23B A B ac =+==求sin A 和c 的值. 【解析】在ABC ∆中,由3cos B =6sin B =因为A B C π++=,所以6sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,3cos 9C =, 因此sin sin()sin cos cos sin A B C B C B C =+=+65336223=+=.由,sin sin a cA C =可得22sin 323sin 6cc A a c C ===,又23ac =1c =. 22【高考链接】1. (2016年全国II 理13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若135cos ,54cos ==C A ,a =1,则b = .【解析】:由余弦定理有⎪⎪⎩⎪⎪⎨⎧-+=-+=b c b bcc b 2113521542222,解得1321=b . 【答案】1321=b2. 【2015浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值.【答案】(1)2;(2)3b=.3.【2015江苏,15】在ABC ∆中,已知ο60,3,2===A AC AB.(1)求BC 的长; (2)求C 2sin 的值.因此212743sin 2C 2sin Ccos C 27==⨯⨯=. 【答案】(1)7;(2)43 4. 【2015新课标2,理17】ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin B C∠∠; (Ⅱ)若1AD =,2DC =,求BD 和AC 的长.【答案】(Ⅰ)12;(Ⅱ)1,2==AC BD .。
余弦定理公式大全
正弦、余弦定理 解斜三角形建构知识结构1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
解三角形
C .10( 6 2 ) D.10( 6 2 )
典例:
例1:在△ABC中,∠B=450,AC= cosC= 2 5
5
(1)求BC边的长
10 ,
(2)记AB的中点为D,求中线CD的长度
例2:
在ABC中,m
(cos
C
,
sin
C
),n
(cos
(4)余弦定理的变式:cos C a2 b2 c2 2ab
(5)三角形面积公式:SΔ
1 ah
2
,
SΔ
1 ab sinC
2
(6)在△ABC中,易推出: ① sinA=sin(B+C),cosA=-cos(B+C),
tanA=-tan(B+C)
② sin A cos B C , cos A sin B C ,
解斜三角形
知识要点归纳
(1)正弦定理:
a b c 2R sinA sinB sinC
(2)余弦定理: c2=a2+b2-2abcosC
(3)正弦定理的变式:
a=2RsinA b=2RsinB
sin A a sinB b
2R
2R
c=2RsinC.
sinC c 2R
a : b : c sin A: sinB : sinC
基础训练: 1、在△ABC中, 若A 600,a 4 3,b 4 2
则B=
。
2、在△ABC中, a=6,b= 6 3 ,A=300
则边c=
。
3、在△ABC中,sinA:sinB:sinC=2:3:4, 则CosB=_________
解三角形知识点归纳(附三角函数公式)
高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:ααααααsin cos cot ,cos sin tan ==特殊角的三角函数值三角函数值0 111不存在三角函数诱导公式:“ (2k πα+)”记忆口诀: “奇变偶不变,符号看象限”,是指(2kπα+),k ∈Z 的三角函数值,当k 为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);当k 为偶数时,函数名不变。
三角形三边关系公式三角函数
三角形三边关系公式三角函数三角形是初中数学中一个重要的几何形体,也是很多高中数学的基础知识。
而三角形的三边关系公式和三角函数则是三角形相关的必备知识。
下面我们来详细了解一下这方面的内容。
一、三角形三边关系公式三角形三边关系公式是求解三角形的重要公式,在初中的教学中,通过这些公式,可以求解任意三角形的内角和、周长、面积等重要性质。
1. 余弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:cos α = (b² + c² - a²) / 2bccos β = (a² + c² - b²) / 2accos γ = (a² + b² - c²) / 2ab其中,cos表示余弦函数,a、b、c表示三边,α、β、γ表示与其对应的内角。
2. 正弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:a / sin α =b / sin β =c / sinγ其中,sin表示正弦函数。
3. 勾股定理:在直角三角形ABC中,设斜边AB对应的内角为α,直角边AC和BC分别对应的内角为β、γ,斜边AB的长度为c,直角边AC和BC的长度分别为a、b,则有:a² + b² = c²二、三角函数三角函数是三角学中的重要分支,是数学和物理学中非常基础而常用的知识。
在初中数学中,学习三角函数有助于理解三角形的各种性质,同时也是后续高中数学学习的基础。
1. 正弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边AC的长度为a,则有正弦函数:sin α = a / c2. 余弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边BC的长度为b,则有余弦函数:cos α = b / c3. 正切函数:在直角三角形ABC中,设直角边AC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有正切函数:tan α = b / a4. 余切函数:在直角三角形ABC中,设直角边BC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有余切函数:cot α = a / b通过学习上述三角形三边关系公式和三角函数的知识,我们可以更深刻地理解三角形的结构和性质,从而更好地解决与其相关的问题。
解三角形(正弦定理、余弦定理、三角形面积公式)
4 9 16 1 0
2 23
4
所以∠C为钝角,即△ABC为钝角三角形。
2020年12月4日10时36分
解三角形(正弦定理、余弦定理、三角形 面积公式)
9
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【训练1】(3)在△ABC中,a : b : c 3+1: 6:2, 判断三角形的形状并求三角形的最小角.
解三角形(正弦定理、余弦定理、三角形 面积公式)
8
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【例1】(3)已知在△ABC中,a 2,b 3,c 4, 那么这个三角形的形状是______.
解析
由题意可知:c b a,
所以∠C ∠B ∠A,即∠C为最大角,
由余弦定理得:cosC= a2 b2 c2 2ab
61 2 5 6 ( 1) 2
91
2020年12月4日10时36分
解三角形(正弦定理、余弦定理、三角形 面积公式)
7
考点突破 考点一 余弦定理应用——1、求三角形的边角
【训练1】(2)在△ABC中,AB= 3+1,AC=2,BC= 2, 求三角形的三个内角.
解析
(2)cos A
AC 2 AB2 BC 2 2AC AB
解析 由a : b : c 3+1: 6:2知,a b c
所以∠A ∠B ∠C,即∠A为最大角,∠C为最小角
由余弦定理得:cosA= b2 c2 a2 6 4 ( 3+1)2
2bc
2 62
3 3 0,所以∠A为锐角, 26
即△ABC为锐角三角形.
cosC= a2 b2 c2 (
4+( 3+1)2 2 2 2( 3+1)
正弦定理和余弦定理三角形面积公式
正弦定理和余弦定理三角形面积公式好的,以下是为您生成的文章:在我们学习数学的漫漫长路中,有两个家伙就像数学王国里的“哼哈二将”,那就是正弦定理和余弦定理。
这俩定理不仅是解决三角形问题的神器,还和三角形面积公式有着千丝万缕的联系。
先来说说正弦定理。
它就像是一个神奇的魔法咒语,“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”。
这听起来是不是有点绕?其实说白了,就是如果一个三角形的三条边分别是 a、b、c,它们所对应的角分别是 A、B、C,那么就有a/sinA = b/sinB = c/sinC。
我记得有一次,我在课堂上讲正弦定理的时候,有个调皮的学生突然举手说:“老师,这定理有啥用啊,感觉好复杂!”我笑了笑,给他出了一道题:“一个三角形,其中两条边分别是 3 和 4,它们夹角是 60 度,能算出第三条边吗?”这学生一下子懵了,然后我就引导他用正弦定理来思考。
先通过正弦定理求出角 A 和角 B 的正弦值,再根据三角形内角和 180 度求出角 C 的大小,最后就能轻松算出第三条边的长度啦。
那孩子眼睛一下子亮了,直说:“原来这么神奇!”接下来再聊聊余弦定理。
它就像是一个侦探,能通过已知的边和角的信息,把未知的边或者角给揪出来。
余弦定理说的是“对于任意三角形,任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍”。
用公式表示就是 a² = b² + c² - 2bc·cosA ,b² = a² +c² - 2ac·cosB ,c² = a² + b² - 2ab·cosC 。
有一次我带学生们去操场上做实地测量。
我们想知道操场边上那个三角形花坛的面积。
同学们有的拿尺子量边,有的测角度。
然后我就引导他们用刚学的余弦定理先求出未知的边,再用正弦定理求出某个角的正弦值,最后算出面积。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形.正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。
解三角形-公式汇总
题型: b cosC c cos B a sin A ,判断三角形形状 方法 1:角化边 公式:sinA:sinB:sinC=a:b:c 或 结论:
方法 2:边化角 公式:a:b:c = sinA:sinB:sinC 将原式转化为 sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。 注: 三角形内常见角度转化:
型 (2)已知 a:b:c=1:2: ,求 cosB
方法:已知三边求角,余弦定理推论 1,
(3)已知
,求 cosA
方法:已知三边平方关系,余弦定理推论 2,b2+c2-a2=2bccosA1三、求三角形面积
公式:
题型 1:已知 a,b,c,A 求△ABC 的面积. 方法:带公式 题型 2:已知 A,a,b+c,求△ABC 的面积. 方法:
一、正弦定理 公 正弦定理: 式
推论 1:(边化角)
解三角形 公式汇总
解三角形
推论 2:(角化边)
题 (1)已知 sinB 求 B:一题多解型 判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
型 (2)asin B=2b: 方法:边化角,推论 1,a:b=sinA:sinB
(3)3sin A=5sinB 或 sinA:sinB:sinC=1:2:3 方法:角化边,推论 2,sinA:sinB=a:b
五、解三角形应用举例
仰角: 俯角: 坡度:
2
解三角形
二、余弦定理
公
余弦定理:
推论 1:
(已知两边及夹角,求第三边) (已知三边,求角)
式
推论 2: (三边的平方关系)
a2+b2-c2=2abcosC b2+c2-a2=2bccosA a2+c2-b2=2accosB
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。
如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
高考数学解三角形中的要素基础知识与典型例题讲解
高考数学解三角形中的要素基础知识与典型例题讲解一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +−=⇔+−= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+−变式:(1)222cos 2b c a A bc+−=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+−+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a ba b=⋅−⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==−S ∴=cos a b ab C ⋅=∴ ()()22S a b a b =⋅−⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =− 4、三角形内角和A B C π++=(两角可表示另一角)。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
正弦定理 余弦定理
【基础知识精讲】1.正弦定理、三角形面积公式正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于该三角形外接圆的直径,即:A a sin =B b sin =C csin =2R. 面积公式:S △=21bcsinA=21absinC=21acsinB.2.正弦定理的变形及应用变形:(1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA ∶sinB ∶sinC=a ∶b ∶c (3)sinA=R a 2,sinB=R b 2,sinC=Rc 2. 应用(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:a.已知两角和任一边,求其他两边和一角.b.已知两边和其中一边的对角,求另一边的对角.一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况. ①A 为锐角时②A 为直角或钝角时.(2)正弦定理,可以用来判断三角形的形状.其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a 、b 、c 分别用2RsinA 、2RsinB 、2RsinC 来代替.3.余弦定理在△ABC 中,有a 2=b 2+c 2-2bccosA; b 2=c 2+a 2-2accosB ; c 2=a 2+b 2-2abcosC ; 变形公式:cosA=bc a c b 2222-+,cosB=ac b a c 2222-+,cosC=abc b a 2222-+在三角形中,我们把三条边(a 、b 、c)和三个内角(A 、B 、C)称为六个基本元素,只要已知其中的三个元素(至少一个是边),便可以求出其余的三个未知元素(可能有两解、一解、无解),这个过程叫做解三角形,余弦定理的主要作用是解斜三角形.4.解三角形问题时,须注意的三角关系式:A+B+C=π 0<A ,B ,C <πsin2B A +=sin 2C -π=cos 2Csin(A+B)=sinC特别地,在锐角三角形中,sinA <cosB,sinB <cosC,sinC <cosA.【重点难点解析】掌握正、余弦定理,并学会用其余弦定理解三角形.例1 在△ABC 中,已知A >B >C ,且A=2C,b=4,a+c=8,求a 、c 的长.解:由正弦定理A a sin =C c sin 及A=2C 得C a 2sin =C c sin ,即C C a cos sin 2=Ccsin , ∴cosC=ca 2. 由已知a+c=8=2b 及余弦定理,得cosC=abcb a 2222-+=)()2(222c a a c c a a +-++ =)(4))(35(c a a c a c a ++-=a ca 435-.∴ca 2=a ca 435-,整理得(2a-3c)(a-c)=0∴a ≠c,∴2a=3c. ∵a+c=8,∴a=524,c=516. 例2 在△ABC 中,如果lga-lgc=lgsinB=-lg 2,且B 为锐角,试判断此三角形的形状.解:∵lga-lgc=lgsinB=-lg 2,∴sinB=22 又∵0°<B <90°,∴B=45° 由lga-lgc=-lg 2,得c a = 22. 由正弦定理得c A sin sin = 22.即2sin(135°-C)= 2sinC即2[sin135°cosC-cos135°sinC ]=2sinC.∴cosC=0,得C=90° 又∵A=45°,∴B=45°从而△ABC 是等腰直角三角形.例3 如图已知:平行四边形两邻边长为a 和b(a <b),两对角线的一个交角为θ(0°<θ<90°),求该平行四边形的面积.分析:由于已知了平行四边形相邻两边长和对角线的一个交角,再考虑到平行四边形的面积是△AOB 的四倍,因此只要求OA ·OB ·sin θ即可.解:设平行四边形ABCD 的对角线AC 与BD 相交于O.AB=a,BC=b,∠AOB=θ,又设OA=x,OB=y.在△AOB 中,应用余弦定理可得: a 2=x 2+y 2-2xycos θ ① 在△BOC 中,应用余弦定理可得: b 2=x 2+y 2-2xycos(180°-θ) ② 由②-①得: b 2-a 2=4xycos θ∵0°<θ<90°,∴xy=θcos 422a b - (b >a)∴S □=4S △AOB =2xysin θ=222b a -tan θ例4 在△ABC 中,已知4sinBsinC=1,b 2+c 2-a 2=bc,且B >C ,求A 、B 、C.分析:由于题设条件b 2+c 2-a 2=bc 十分特殊,将它与余弦定理对照可得A=60°,这样B+C=120°,于是再利用条件4sinBsinC=1,可求得B 与C.解:由余弦定理cosA=bca c a 2222-+=bc bc 2=21.又∵0°<A <180°∴A=60°∴B+C=120°,又由于4sinBsinC=1 ∴4sinBsin(120°-B)=1 ∴4sinB(23cosB+21sinB)=1∴3sin2B+2sin 2B=1 ∴3sin2B=cos2B∴tan2B=33,∴2B=30°或2B=210°由于B+C=120°,且B >C ,60°<B <120° ∴2B=210°,∴B=105°,从而C=15° ∴A=60°,B=105°,C=15°例5 已知△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且a+c=2b ,A-C=3π,求sinB 的值. 解法一:由正弦定理和已知条件a+c=2b ,得sinA+sinC=2sinB ,由和差化积公式得 2sin2C A +·cos 2CA -=2sinB 由A+B+C=π,得 sin2C A +=cos 2B 又A-C=3π,得 23cos 2B =sinB∴23cos 2B =2sin 2B ·cos 2B又∵0<2B <2π,cos 2B≠0 ∴sin2B =43 从而cos2B =2sin 12B -=413 ∴sinB=23·413 =839. 解法二:由正弦定理和已知条件a+c=2b ,得sinA+sinC=2sinB∵A-C=3π,A+B+C=π 两式相减可得B=32π-2C∴sin(3π+C)+sinC=2sinB 得sin 3πcosC+cos 3πsinC+sinC=2sinB∴23cosC+23sinC=2sinB即3cos(3π-C)=2sinB ∴3cos 2B =4sin 2B ·cos 2B∵0<B <π,∴cos 2B≠0∴sin2B =43 cos2B =2sin 12B -=413 ∴sinB=23·cosB=839【难题巧解点拔】例1 △ABC 中,若a=5,b=4,cos(A-B)=3231,求AB. 分析:很明显,只要求cosC 的值,应用余弦定理即可求出AB. 解法一:由已知条件a=5,b=4b a b a -+=B A B A sin sin sin sin -+=2sin2cos 2cos2sinB A B A BA B A -+-+=9,①由已知cos(A-B)= 3231,根据半角公式有sin2B A +=2)cos(1B A --=81,cos 2B A -=2)cos(1B A -+=863代入①式得tg2B A +=639∵tg 2B A +=ctg 2C , ∴tg2C = 963,根据万能公式cosC=81∴c 2=a 2+b 2-2abcosC=36,AB=c=6解法二:∵A >B ,如图,作∠BAD=∠B,∴AD=BD∠CAD=∠A-∠B 令AD=BD=y,CD=x,由余弦定理cos(A-B)=boyx y b 2222-+= 3231,x=a-y,∴yy 8910-= 3231,y=4,x=1 △CAD 中再由余弦定理cosC=81,∴c=6 评析:上述解法反映边向角的转化,也可由角向边转化直接求出边.例2 半圆O 的直径为2,A 为直径延长线上的一点,且OA=2,B 为半圆周上任意一点以AB 为边向形外作等边三角形ABC(如图),问B 点在什么位置时,边形OACB 的面积最大,并求出这个最大面积.解:设∠AOB=x ,则 S △AOB =21·2·1·sinx=sinx, AB 2=OA 2+OB 2-2·OA ·OB ·cosx=5-4cosx. S △ABC =43AB 2=43 (5-4cosx)= 45-3cosx ∴S OACB =S △AOB +S △ABC=sinx-3cosx+435 =2sin(x-3π)+435 ∵0<x <π,-3π<x-3π<32π ∴x-3π=2π时,∴即x=65π时,S OACB 有最大值2+435(平方单位) 例3 已知△ABC 中,AB=AC=a,∠BAC=φ,等边三角形PQR 的三边分别通过A ,B ,C 三点.试求△PQR 的面积的最大值.分析:先依题意画出图形(如图).因为变动三角形PQR 为正三角形,它的面积S=43PQ 2,问题可转化为求边长PQ 的最大值.为此需要建立PQ 的函数式,这又必须选取适当的量作为自变量.观察图形可以发现,PQ 的位置是随着∠PAB 的大小变化而变化的.不妨就以∠PAB 为自变量.以下的程序就是应用三角形的边角关系,求出以∠PAB 的三角函数表示PQ 的解析式,最后求它的最大值.解:设∠PAB=x,那么∠PBA=120°-x,∠QAC=180°-x-φ,∠QCA=x+φ-60°.在△PAB 中,∵)120sin(x PA-︒=︒60sin AB ,∴PA=32a sin(120°-x),在△AQC 中,)60sin(︒-Φ+x AQ=︒60sin AC∴AQ=32a sin(x+φ-60°)∴PQ=PA+AQ=32a [sin(120°-x)+sin(x+φ-60°)=34a sin(2Φ+30°)cos(90°-2Φ-x). 因为其中a,2Φ+30°都是常量,所以当90°-2Φ-x=0即x=90°-2Φ时,取得 (PQ)max =34a sin(2Φ+30°) 同时也就取得了 (S △)max =43 (PQ)2max=334a 2sin 2(2Φ+30°)例4 在△ABC 中,已知A=2C ,求证:3b <c-a <2b.证明:在△ABC 中,由A=2C ,得C=2A ,∴B=π-3A,∴0<A <3πb ac - =B A C sin sin sin -=)sin(sin sin C A A C +-=2cos2sin 2sin2cos 2C A C A A C A C ++-+ =23sin 2sin A =2sin 2cos 2sin 42sin2A A A A -=12cos 412-A =1cos 21+A .∵0<A <3π,∴21<cosA <1,即2<2cosA+1<3∴31<b a c -<21,故3b <c-a <2b.评析:解本题的关键是利用正弦定理及三角公式将b a c -转化为1cos 21+A ,结合角A的取值范围推得结论.【课本难题解答】课本第132页,习题5.9第8题: |F |≈132N ,β≈38° 第9题两条对角线的长分别是415cm 和43cm,面积是48cm 2.【命题趋势分析】本节主要考查:1.根据已知条件,求三角形的末知元素,或判断三角形的形状. 2.运用正、余弦定理及关系式A+B+C=π解决三角形中的计算和证明问题. 3.利用所学的三角知识解决与三角形有关的三角函数问题和简单的实际问题. 根据考试的方向,可以预见,利用正、余弦定理解斜三角形问题将会与三角函数、数列、方程、向量等知识相结合,尤其是与生活、生产、科学实验实际相结合,考查综合运用数学知识的能力.【典型热点考题】例1 在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,设a+c=b ,A-C=3π,求sinB 的值.解:根据正弦定理和已知可得:sinA+sinC=2sinB,A+B+C=π 则2sin2C A +·cos 2CA -=2sinB.又A-C=3π,sin 2C A -=cos 2B∴2cos 2B cos 6π=2sinB=4sin 2B cos 2B又∵0<2B <2π∴sin2B =43 cos2B =2sin 12B -= 413 ∴sinB=2·413·43=839例2 若△ABC 的三个内角A 、B 、C 成等差数列,且最大边为最小边的2倍,则三内角之比为 .解:设三角形三内角从小到大依次为B-d,B,B+d, 则B-d+B+B+d=180°∴B=60° 设最小边为x ,则最大边为2x,从而)60sin(d x -︒=)60sin(2d x +︒⇒tand=33,d=30° 所以三内角分别为A=30°,B=60°,C=90°,得三内角之比为1∶2∶3. ∴应填1∶2∶3.例3 在△ABC 中,A 、B 、C 三顶点所对边分别为a,b,c ,试证明b 2=c 2+a 2-2accosB.证明:因为=+则有:2=·=(+)·(+)=2+2+2·=AB 2+BC 2+2|AB |·|BC |cos(180°-B)=c 2+a 2-2accosB 所以b 2=c 2+a 2-2ac ·cosB例4 求sin 220°+cos 280°+3sin20cos80°的值.解:设△ABC 中的A=10°,B=20°,C=150°对应边分别为a,b,c. △ABC 的外接圆半径为2R ,则由正弦定理得: a=2Rsin10°,b=2Rsin20°,c=2Rsin150° 由余弦定理,得:(2Rsin150°)2=(2Rsin10°)2+(2Rsin20°)2-2(2Rsin10°)(2Rsin20°)cos150°即:sin 2150°=sin 210°+sin 220°+3sin10°sin20°则:cos 280°+sin 220°+3sin20°cos80°=41 说明:本题采用了构造法,题中余弦变正弦之后,注意到3=-2cos(180°-10°-20°).【同步达纲练习】一、选择题1.在△ABC 中,已知a=52,c=10,A=30°,则B 等于( ) A.105°B.60°C.15°D.105°或15°2.在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° A.0°<A <90°D.30°<A <60° 3.在△ABC 中,若2cos A a =2cos B b =2cosC c,则△ABC 的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC 中,若a=2,b=22,c=6+2,则∠A 的度数是( )A.30°B.45°C.60°D.75°5.设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( ) A.0<m <3 B.1<m <3 C.3<m <4 D.4<m <66.在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于( )A.75°B.120°C.135°D.150°7.△ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60°B.120°C.60°或120°D.45°8.在△ABC 中,若A=60°,b=16,且此三角形的面积S=2203,则a 的值是( ) A. 2400B.25C.55D.499.在△ABC 中,若acosA=bcosB,则△ABC 是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角10.在钝角三角形ABC 中,三边长是连续自然数,则这样的三角形( ) A.不存在 B.有无数多个 C.仅有一个 D.仅有两个二、填空题1.在△ABC 中,A=120°,B=30°,a=8,则c= .2.在△ABC 中,已知a=32,cosC=31,S △ABC =43,则b= . 3.已知锐角三角形边长分别为2、3、x ,则x 的取值范围是 . 4.在△ABC 中,A=60°,b ∶c=8∶5,其内切圆关径r=23,则a= ,b= ,c= .5.在△ABC 中,A=60°,b=1,面积为3,则CB A cb a sin sin sin ++++= .6.在△ABC 中,已知A 、B 、C 成等差数列,且边b=2,则外接圆半径R= .三、解答题1.设三角形三边长分别为15,19,23,现将三边长各缩短x 后,围成一个钝角三角形,求x 的取值范围.2.在△ABC 中,已知它的三边a ,b ,c 成等比数列,试证明:tan 2A tan 2C ≥31.3.已知在△ABC 中,c=22,a >b,C=4π,tanA ·tanB=6,试求a,b 以及此三角形的面积.【素质优化训练】1.在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.2.如图,在60°的∠XAY 内部有一点P ,P 到边AX 的距离是PC=2,P 到边AY 的距离是PB=11,求点P 到顶点A 的距离.3.在△ABC 中,若C=3B ,求bc的取值范围.4.已知△ABC 是钝角三角形,∠B >90°,a=2x-5,b=x+1,c=4,求x 的取值范围.5.在△ABC 中,已知cos 2B+cos 2C=1+cos 2A,且sinA=2sinBcosC,cosC=sinB ,求证:b=c 且A=90°.6.在△ABC 中,a,b,c 分别是角A 、B 、C 的对边,若a 2+c 2=2001c 2,求BA Ccot cot cot +的值.【生活实际运用】某人在塔的正东方沿南60°西的道路前进40米后,望见塔在东北方向上,若沿途测得塔的最大仰角为30°,求塔高.解:如图,由题设条件知: ∠CAB=∠1=90°-60°=30°∠ABC=45°-∠1=45°-30°=15° ∴∠ACB=180°-∠BAC-∠ABC =180°-30°-15°=135° 又∵AB=40米.在△ABC 中,由正弦定理知:︒15sin AC =︒135sin 40∴AC=︒︒135sin 15sin 40=402sin(45°-30°)=402 (sin45°cos30°-cos45°sin30°) =402 (22·23-22·21)=20(3-1)在图中,过C 作AB 的垂线,设垂足为E ,则沿AB 测得塔的最大仰角就是∠CED ,∴∠CED=30°.在Rt △ACE 中,EC=AC ·sinBAC=AC ·sin30°=20·(3-1)·21=10(3-1) 在Rt △DCE 中,塔高CD=CE ·tan ∠CED=10(3-1)·tan30°=3)33(10- (米).【知识验证实验】外国船只除特许者外,不得进入离我国海岸线d 海里以内的海域.设B 和C 是我国的两个设在海边的观测站,B 与C 之间的距离为m 海里,海岸线是过B 、C 的直线.一外国船在A 点处,现测得∠ABC=α、∠ACB=β.试求α、β满足什么关系时,就应向示经特许的外国船只A 发出警告?解:如图所示,作AD ⊥BC ,垂足为D ,在△ABC 中,∠BAC=180°-(α+β)∴sin ∠BAC=sin(α+β).由正弦定理得:βsin AB =)sin(βα+BC ,αsin AC =)sin(βα+BC. ∵BC=m ,故有: AB=)sin(sin βαβ+m ,AC=)sin(sin βαα+m由于S △ABC =21BC ·AD=21 m ·AD 且S △ABC =21AB ·AC ·sin(α+β). 所以21)sin(sin βαα+m ·)sin(sin βαβ+m ·sin(α+β)= 21mAD.从而有:AD=)sin(sin sin βαβα+m因此,当AD ≤d,即)sin(sin sin βαβα+m ≤d 时,就应向外国船只A 发出警发.【知识探究学习】如图,在四边形ABCD 中,BC=m,DC=2m,四个内角A 、B 、C 、D 之比为3∶7∶4∶10,试求△ABD 的面积.解:由于四个内角A 、B 、C 、D 比为3∶7∶4∶10,所以可设它们的大小依次为:3x 、7x 、4x 、10x.由四边形的内角和为360°,所以有:3x+7x+4x+10x=360°,可求得:x=15°. 在△BCD 中,由余弦定理得; BD 2 =BC 2+DC 2-2BC ·DC ·cosC.=m 2+(2m)2-2·m ·(2m)cos60° =3m 2∴BD=3m.这时,在△BCD 中,BD 2+BC 2=DC 2,所以△BCD 是直角三角形,DC 是斜边. ∴∠CDB=30°,∠ADB=120°. 在△ABD 中,由正弦定理得:AB=A ADB BD sin sin ∠∙=︒︒45sin 120sin 3m =223m,另外∠ABD=105°-90°=15°,BD=3m.所以S △ADB =21AB ·BD ·sin15°=21·223m ·3m ·sin15° =8239-m 2.参考答案【同步达纲练习】一、1.D 2.B 3.B 4.A 5.B 6.B 7.B 8.C 9.D 10.C二、1.338 2.213 3.(5,13) 4.14,10,16 5. 338 6. 332 三、1.3<x <112.提示可证:a+c ≥2b ,再得sinA+sinC ≥2sinB ,和差化积可得结论3.a=5106,b=558,S △=524【素质优化训练】1.a=14,b=10,c=62.143.1<b c<3 4. 310<x <4 5.可求出B=C=45° 6.1000。
正余弦定理三角形的面积公式
正余弦定理三角形的面积公式
嘿,让我来给你讲讲正余弦定理三角形的面积公式呀!那可太重要啦!
正弦定理的三角形面积公式是 S=1/2abSinC,这里的 a、b 是三角形的两条边,C 是它们的夹角。
比如说,有个三角形,两条边分别是 3 和 4,它们的夹角是 60 度,那用这个公式算出来的面积不就是1/2×3×4×Sin60°嘛,这多有意思呀!
还有余弦定理的三角形面积公式S=√[p(p-a)(p-b)(p-c)],这里的 p 是半周长哦。
就好像有个三角形,三边分别是 5、6、7,先求出半周长,再用这个公式算面积,是不是感觉像在解谜一样有趣呢?哇塞,这些公式就像是打开三角形面积秘密的钥匙啊!你难道不想好好掌握它们,然后在解题中一展身手吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课班级:13级1班 授课时间:15年12月1日
2020年4月4日5时37分
1
余弦定理、正弦定理和三角形面积公式
➢ 夯
2020年4月4日5时37分
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
2
夯基释疑
熟记公式是本节的基本要求。
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
3
余弦定理、正弦定理和三角形面积公式
➢ 夯基释疑
概要
➢ 考点突破
➢ 课堂小结
2020年4月4日5时37分
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
4
考点突破 考点一 余弦定理应用——1、求三角形的边角
【例1】(1)在△ABC中,sinA= 4,且A为钝角,AB=3, 5
AC =5,则BC等于_______.
5
考点突破 考点一 余弦定理应用——1、求三角形的边角
【例1】(1)在△ABC中,sinA= 4,且A为钝角,AB=3, 5
AC =5,则BC等于_______.
(2)在△ABC中,a2 b2 c2 bc,则∠A等于______.
解
(2)由a2 b2 c2 bc可得,
b2 c2 a2 = bc
3+1)2 6 4
2
2ab
2 ( 3+1) 6 2
因为∠C是三角形的内角,所以∠C =450
2020年4月4日5时37分
10
考点突破 考点一 余弦定理的应用
规律方法
1、运用余弦定理解决两边及其夹角和已知三边求三角 的题目,是春季高考重点考查的知识点,而熟记公式是 解题的关键。 2、(1)判断三角形的形状时,要依据大边对大角求出 最大角的余弦值;
则cos A b2 c2 a2 bc 1
2bc
2bc 2
因为00 ∠A 1800 所以∠A=1200
2020年4月4日5时37分
知识回顾:
已知三角 函数值求角的 步骤:
1、定象限 2、找锐角 3、写形式
6
考点突破 考点一 余弦定理应用——1、求三角形的边角
【训练1】(1)在△ABC中,a=5,b=6,∠C=1200, 则c=__________.
解析 由a : b : c 3+1: 6:2知,a b c
所以∠A ∠B ∠C,即∠A为最大角,∠C为最小角
由余弦定理得:cosA= b2 c2 a2 6 4 ( 3+1)2
2bc
2 62
3 3 0,所以∠A为锐角, 26
即△ABC为锐角三角形.
cosC= a2 b2 c2 (
由余弦定理得:cosC= a2 b2 c2 2ab
4 9 16 1 0
2 23
4
所以∠C为钝角,即△ABC为钝角三角形。
2020年4月4日5时37分
9
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【训练1】(3)在△ABC中,a : b : c 3+1: 6:2, 判断三角形的形状并求三角形的最小角.
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
2020年4月4日5时37分
S 1 ab sin C 2
S 1 bc sin A 2
S 1 ac sin B 2
a b c 2R sin A sin B sin C
(2)在△ABC中,a2 b2 c2 bc,则∠A等于______.
解
(1)因为sinA=
4
,且A为钝角,
5
所以cosA 1 ( 4)2 3 ,
5
5
则BC 2 =AB2 AC 2 2 ABgACcosA
32 52 2 3 5 ( 3) 52 5
所以BC=2 13
2020年4月4日5时37分
所以∠C =1800 300 450 =1050
2020年4月4日5时37分
8
考点突破 考点一 余弦定理应用——2、判断三角形的形状
【例1】(3)已知在△ABC中,a 2,b 3,c 4, 那么这个三角形的形状是______.
解析
由题意可知:c b a,
所以∠C ∠B ∠A,即∠C为最大角,
sin 600 cos 450 + cos 600 sin 450 6+ 2
4 由正弦定理得: 2 = b
sin 300 sin1050
知识回顾:
两角和的正弦: “正余余正符号同”
sin( ) sin cos cos sin
解得:b= 6+ 2
概要
➢ 考点突破
➢ 课堂小结
2020年4月4日5时37分
考点一 考点二
例 1 训练1 例 2 训练2
考点三
例 3 训练3
12
考点突破 考点二 正弦定理的应用——求三角形的边角
【例2】(1)在△ABC中,a=2,∠A=300,∠C =450 , 则b等于_______.
解析 Q ∠B=1800 300 450 =1050 sin B= sin1050 = sin(600 450 )
解析
(1)由c2 =a2 b2 2ab cos C可得
c2 =52 +62 2 5 6cos1200 25 36 2 5 6cos(1800 600)
61 2 5 6 ( 1) 2
91
2020年4月4日5时37分
7
考点突破 考点一 余弦定理应用——1、求三角形的边角
【训练1】(2)在△ABC中,AB= 3+1,AC=2,BC= 2, 求三角形的三个内角.
解析
(2)cos
A
AC 2
AB2
BC 2
2 AC gAB
4+( 3+1)2 2
2 2( 3+1)
3 2
因为00 ∠A 1800 所以∠A=300
BC2 AB2 AC2 2+( 3+1)2 4 2
cos B
2BCgAB
2 2 ( 3+1) 2
因为00 ∠A 1800 所以∠A=450
(2)根据大角的余弦值的正负判断大角是锐角还是 钝角。如果余弦值是正值,最大角为锐角,则三角形是 锐角三角形;如果余弦值是负值,最大角为钝角,则三 角形是钝角三角形;如果余弦值是0,最大角为直角, 则三角形是直角三角形。
2020年4月4日5时37分
11
余弦定理、正弦定理和三角形面积公式
➢ 夯基释疑