《13-4 课题学习 最短路径问题》课件(共21张ppt)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线.
· A·
B
l 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河流l边 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点.设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).
·
B
l
B′
思考:证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么? A
·
B
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
·
C′ C
l
B′
如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小呢? 思考1:如何将点B转“移” 到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与 CB′的长度相等? 思考2:你能利用轴对称的 有关知识,找到上问中符合条 件的点B′吗? A
C
山 A Q P 河岸
大桥
B
2.如图:A为马厩,B为帐篷,牧马人某一天要从马厩牵 出马,先到草地边某一处牧马,再到河边饮马,然后回到 帐篷,请你帮他确定这一天的最短路线。
a A b M
A′
N B
问题2
a M′ A M A′ N N′ b
证明:取不同于,M,N的另外两
点M/,N/
B
由于M/N/=MN=AA/; 由平移的性质可知: AM=A/N,AM/=A/N/ 又根据“两点之间,线段最 短”可知A/N/+N/B>A/B 所以,AM/+N/B>AM+NB, 所以,AM/+N/B+M/N/> AM+NB现要在河上 造一座桥MN,桥造在何处可使从A到B的路径 AMNB最短?(假定河的两岸是平行的直线,桥 要与河垂直。)
a A M b
N
B
问题2:你能证明一下如果在不同于 MN的位置造桥M/N/,距离是怎样的, 能证明我们的做法AM+MN+NB的和是 最短距离吗?试一下。
13.4 最短路径问题
“将军饮马” --相传,古希腊亚历山大里亚城里有 一位久负盛名的学者,名叫海伦.有一天,一位将军专 程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
A
B
l
将A,B 两地抽象为两个点,将河流l 抽象为一条直
变式练习
• 变式4:如图,一个旅游船从大桥AB 的P 处 前往山脚下的Q 处接游客,然后将游客送往 河岸BC 上,再返回P 处,请画出旅游船的最 短路径.
C
山
A
Q
河岸
P
大桥 B
由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路.将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最 小”. 同问题2是一种类型,自己在练习本上独立完成
变式1:已知直线m、l和点B,在直线m、l上分 别取点A、点C,使点B到点C再到点A的距离之 和最小。
变式2:如图,有两条直线m、l和一点B,在直 线m、l上分别取点A、点C,使△BAC的周长最 小。
变式3:如图,有两条直线m、l和点B、点D,在 直线m、l上分别取点A、点C,使四边形DACB 的周长最小。
问题3:还有其他的方法选两点M,N,使得 AM+MN+NB的和最小吗?试一试。
a b
A
M
N
B
如何在四边形ABCD内取一点O, 使得点O到 四边形四个顶点的距离和最小。
如何在四边形ABCD内取一点O, 使得点O 到四边形四个顶点的距离和最小。
证明:如果存在不同于点O 的交点P,连接PA、PB、PC、 PD, 那么PA+PC>AC, 即PA+PC>OA+OC, 同理,PB+PD>OB+OD, ∴PA+PB+PC+PD> OA+OB+OC+OD, 即点O是线段AC、BD的交点时, OA+OB+OC+OD之和最小.
·
B
·
l
如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? B
作法: (1)作点B 关于直线l 的对称 点B′; (2)连接AB′,与直线l 相交 于点C. 则点C 即为所求.
·
A
·
C
l
B′
问题3
你能用所学的知识证明AC +BC最短吗?
·
A
·
B
C
l
B′
问题3 你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′. 由轴对称的性质知, BC =B′C,BC′=B′C′. A ∴ AC +BC · = AC +B′C = AB′, C′ AC′+BC′ C = AC′+B′C′. 在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.