初一数学上册教案

合集下载

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

初一数学上册教案(优秀5篇)

初一数学上册教案(优秀5篇)

初一数学上册教案(优秀5篇)初一数学上册教案篇一教学目标1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;2、会用计算器进行较繁杂的有理数混合运算。

教学重点1、有理数的混合运算;2、运用运算律进行有理数的混合运算的简便计算。

教学难点运用运算律进行有理数的混合运算的简便计算。

有理数的混合运算的运算顺序也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:先乘方,再乘除,最后加减。

如果有括号,先进行括号内的运算。

你会根据有理数的运算顺序计算上面的算式吗?2、8有理数的混合运算:同步练习1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。

做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

《2、8有理数的混合运算》课后训练1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?初一数学上册教案篇二教学目标:知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法教学难点:给定的数字将被填入它所属的集合中教学方法:问题导向法学习方法:自主探究法一、形势归纳小学我们学了整数和分数,上节课我们学了正数和负数。

谁能快速提出以下问题?1、有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将以上数字填入以下两组:正整数集{}和负整数集{}。

初一数学上册教案(17篇)

初一数学上册教案(17篇)

初一数学上册教案(17篇)篇1:初一数学上册教案重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x,两边同除以x,得x=1三、巩固练习教材第14页练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11初一数学上册教案篇2:初一数学上册教案教学目的:1.了解计算器的性能,并会操作和使用;2.会用计算器求数的平方根;重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;难点:乘方和开方运算;教学过程:1.计算器的使用介绍(科学计算器)2.用计算器进行加、减、乘、除、乘方、开方运算例1用计算器求下列各式的值.(1)(-3.75)+(-22.5) (2)51.7(-7.2)解(1)(-3.75)+(-22.5)=-26.25(2)51.7(-7.2)=-372.24说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.随堂练习用计算器求值1.9.23+10.22.(-2.35)×(-0.46)答案1.37.8 2.1.081篇3:初一数学上册教案一、教学目标:1.知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

初一数学上册教案(优秀11篇)

初一数学上册教案(优秀11篇)

初一数学上册教案(优秀11篇)初一的数学上册教案篇一【教学目标】知识与技能理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。

过程与方法通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验。

情感、态度与价值观通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣。

【教学重难点】重点:合并同类项法则的探索及应用。

难点:合并同类项法则的理解和灵活运用。

【教学过程】一、温故知新师:你们知道等式的基本性质是什么吗?学生回答,教师点评。

师:利用等式的基本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3x.学生解答,然后集体订正。

问题展示:问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?师:设前年购买计算机x台,那么去年购买计算机多少台?生:2x台。

师:今年购买计算机多少台?生:4x台。

师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=140合并同类项7x=140系数化为1x=20二、例题讲解解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-壹五×4-6×3.解:(1)合并同类项,得-x=-2,系数化为1,得x=4.(2)合并同类项,得6x=-78,系数化为1,得x=-一三.三、巩固练习解下列方程:1.3x+4x-2x=18-7.2.y-y+y=×6-1.四、课堂小结师:这节课你学习了哪些知识?获得了哪些经验?学生发言,教师予以补充。

初一数学上册教案篇二教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。

2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。

本课内容是本章后续的有理数的相关概念及运算的基础。

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。

在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。

二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。

2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。

在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。

三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。

在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。

这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。

突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。

本节课的教学难点为:用正数、负数表示指定方向变化的量。

四、教学过程设计1、创设情境,引入新知教师展示教科书图1。

初一数学上册个人教案5篇

初一数学上册个人教案5篇

初一数学上册个人教案5篇教学目标1.了解代数和的概念,理解有理数加减法可以相互转化,会进展加减混合运算;2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想;3.通过加法运算练习,培育学生的运算力量。

教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律精确快速地进展,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。

了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是由于有理数加、减混合算式都看成和式,就可敏捷运用加法运算律,简化计算.(二)学问构造(三)教法建议1.通过习题,复习、稳固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要仔细总结、分析学生在进展有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮忙学生改正.2.关于“去括号法则”,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。

这时,称这个和式为代数和。

再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。

代数和概念是把握有理数运算的一个重要概念,请教师务必赐予充分留意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。

如12-5+7 应变成 12+7-5,而不能变成12-7+5。

#447226初一数学上册个人教案2教学目的借助“线段图”分析简单的行程问题中的数量关系,从而建立方程解决实际问题,进展分析问题,解决问题的力量,进一步体会方程模型的作用。

重点、难点1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程一、复习1.列一元一次方程解应用题的一般步骤和方法是什么?2.行程问题中的根本数量关系是什么?路程=速度×时间速度=路程 / 时间二、新授例 1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡探望爷爷,在行驶了三分之一路程后,估量连续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

初一数学上册教案

初一数学上册教案

初一数学上册教案初一数学上册教案「篇一」教学目标1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点:深化对正负数概念的理解知识重点:正确理解和表示向指定方向变化的量教学过程:(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。

这就是说:数的范围扩大了(数有正数和负数之分)。

那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。

(数0既不是正数又不是负数,是正数和负数的分界,是基准。

这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。

那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。

在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。

了解。

的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性。

“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。

这个问题只要初步认识即可,不必深究。

分析问题解决问题问题3:教科书第6页例题说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。

初中七年级上册数学《整式》教案优质范文五篇

初中七年级上册数学《整式》教案优质范文五篇

初中七年级上册数学《整式》教案优质范文五篇三人行,必有我师焉择其善者而从之,其不善者而改之。

今天为大家带来的是初中七班级上册数学《整式》教案教案优质(范文),希望可以帮助到大家。

初中七班级上册数学《整式》教案教案优质范文一教学目标:1、理解用字母表示数的意义,会用字母表示简单的数量关系与规律,渗透符号化数学思想,培育符号感。

2、让学生经历自主探索、合作沟通的过程,提高分析、解决问题的能力,培育用数学的意识。

3、创设各种情景,增强学生学习的爱好,培育学生良好的意志品质,进一步提高创新和实践能力。

教学过程:1、创设情景,揭示课题老师活动:我们已经学习了26个英文字母,这些英文字母除了能组成(英语单词)外,你们知道在我们现实生活中还有哪些作用吗?学生活动:学生沉思一会儿,不敢举手发言老师活动:大家一起看题:填一填(1)、小A和小B周末到电影院去看《阿Q正传》,问这里的字母A、B、Q等表示________。

(2)、国庆长假期间,小明游玩了A城市与B城市,问这里面的字母A、B表示________。

(3)、扑克牌中有K牌、Q牌等,问这里的字母K、Q表示_______。

学生活动:生1:第一题表示人名;生2:第二题表示地名;生3:第三题表示数字;生4:老师,我还能举出一些例子,如质量中的CE认证,音乐中的C大调等。

老师活动:用肯定的、赞赏的语气表扬了生4,同时指出在数学中字母可以表示数,然后出示课题:用字母表示数走进代数世界。

通过创设问题情境,调动学生的生活(阅历),初步体会字母在日常生活中的广泛应用,激发学生的学习爱好,明确本堂课的学习目的。

2、动手操作,探索规律老师活动:让学生动手用火柴搭一搭如图所示的正方形,问搭建1个、2个、3个、4个、及n个这样的正方形各需要多少根火柴?学生活动:学生分4人小组共同搭建,观察、讨论、探索、猜想、沟通所需火柴根数,回答n个正方形所需火柴数时答案有3n+1,4+3(n-1),4n-(n-1)等。

七年级数学上册教案精选12篇

七年级数学上册教案精选12篇

七年级数学上册教案精选12篇课时篇一三维目标七年级上册数学教案篇二一、知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二、过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三、情感态度与价值观培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。

教具准备投影仪。

教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。

人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。

五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。

而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0 ,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。

初一数学上册教案(15篇)

初一数学上册教案(15篇)

初一数学上册教案(15篇)初一数学上册教案1教学目的:1.了解计算器的性能,并会操作和使用;2.会用计算器求数的平方根;重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;难点:乘方和开方运算;教学过程:1.计算器的使用介绍(科学计算器)2.用计算器进行加、减、乘、除、乘方、开方运算例1用计算器求以下各式的值.(1)(-3.75)+(-22.5) (2)51.7(-7.2)解(1)(-3.75)+(-22.5)=-26.25(2)51.7(-7.2)=-372.24说明输入数据时,按键挨次与写这个数据的挨次完全相同,但输入负数时,符号转换键要放在数据之后键入.随堂练习用计算器求值1.9.23+10.22.(-2.35)×(-0.46)答案1.37.8 2.1.081初一数学上册教案2【教学目标】学问与技能了解并把握数据收集的基本方法。

过程与方法在调查的过程中,要有仔细的看法,主动参加。

情感、看法与价值观体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】重点:把握统计调查的基本方法。

难点:能依据实际状况合理地选择调查方法。

【教学过程】一、讲授新课像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采纳问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采纳普查可以收集到较全面、精确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采纳。

在这些状况下,经常采纳抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

初一数学上册的教案(优秀7篇)

初一数学上册的教案(优秀7篇)

初一数学上册的教案(优秀7篇)初一数学上册教案篇一教学目标1、会进行简单的整式加、减运算、2、能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力、重、难点会进行简单的整式加、减运算、教学过程一、情境创设1、操作:(1)准备三张如下图所示的卡片(2)思考:用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长、二、探索活动活动一:1、整式的加减运算要进行哪些步骤?进行整式的加减运算时,____________________________________________《3、6整式的加减》同步测试1、三个小队植树,第一队种_棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵、2、甲仓库有煤壹五00吨,乙仓库有煤800吨,从甲仓库每天运出煤5吨,从乙仓库每天运出煤2吨,求m天后,甲、乙两仓库一共还有多少吨煤,并求出当m=30时,甲、乙两仓库一共存煤的数量?3、6整式的加减:测试1、已知三角形的第一边长为2a+b,第二边比第一边长a-b,第三边比第二边短a,求这个三角形的周长?2、某同学做了一道数学题:“已知两个多项式为A,B,B=3_-2y,求A-B的值、”他误将“A-B”看成了“A+B”,结果求出的答案是_-y,那么原来的A-B的值应该是( )A、4_-3yB、-5_+3yC、-2_+yD、2_-y初一的数学上册教案篇二学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1、会用绝对值比较两个负数的大小。

2、会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:一、创设情境根据绝对值与相反数的意义填空:-5的相反数是,-的相反数是,的相反数是;|0|=,0的相反数是。

初一数学上册教案【最新8篇】

初一数学上册教案【最新8篇】

初一数学上册教案【最新8篇】初一数学教案篇一教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.�下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本。

合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题。

教材分析1、教材地位与作用。

就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。

它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。

这一思想实质贯穿后继学习的各种因式分解方法。

通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。

因此,它起到了承上启下作用。

2、教学目标。

根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:(一)知识目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

(二)能力目标:3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

(三)情感目标:1、通过参与对单项式概念的探究活动,提高学习数学的兴趣。

2、培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。

初一数学第一章教案

初一数学第一章教案

初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。

过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。

教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。

讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。

2024年初一数学教案上册范文6篇

2024年初一数学教案上册范文6篇

初一数学教案上册范文6篇初一数学教案上册篇1学习目标:1、通过学生自学提问、探索讨论的方法,使学生初步了解计算器面板上的按健名称和功能。

2、了解计算器的形状、款式、功能不同的基础上,学会计算器的基本操作方法、并能进行简单的四则计算。

3、培养学生运用计算器解决生活中的实际问题,培养学生的运用意识和解决问题的能力。

4、在自主探究的学习过程中培养学生的问题意识和创新意识。

在解决实际问题中,渗透节约、环保等诸方面意识。

学习重点、难点:介绍常用键的功能和使用方法。

设计理念:《数学课程标准》指出:数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上。

学生是数学学习的主人,教师是学生学习的组织者、引导者与合作者。

计算器是如今生活中经常用到的计算工具,对学生来说并不陌生,所以教学中我让学生根据自带的计算器,结合教学目标自学课本,让学生在看一看、摸一摸、想一想、议一议的过程中认识计算器,学会基本操作方法,并在应用中感受到计算器带来的方便,体会到运用计算器解决实际问题时所带来的成功的快乐。

教具、学具准备:1、每个学生自备一个计算器。

2、教师的计算器,实物投影仪,课件,多媒体教学过程:一、创设情境师:同学们,你们经常去超市吗?我昨天也去了超市,并选购了好多东西,可是,要到付款的时候,我有点犹豫,我就带了1000元钱,也不知道够不够,这时如果是你,你会怎么办?(算一算) 师:怎么才能又准确又快地算也来呢,你想到了什么计算工具?(计算器)师:在日常生活中,你还在哪见过计算器?它们有什么作用?师:小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器。

二、学习用计算器计算1、了解计算器的结构(1)师:你了解计算器吗?假如你是一位计算器推销员,你打算怎样介绍你手中的这款计算器的构造?(板书:面板、显示器、键盘)键盘里有哪些键?(板书:数字键、运算符号键、功能键) 这个点是什么意思?(点出开机、关机、删除)(2)请一生介绍自己的计算器(实物投影)② 小组内学生相互介绍自己的计算器。

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇七年级数学上册教案篇一教学目标:1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形2、在操作活动中认识棱柱的某些特性;3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;教学重点:通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法教学难点:根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:一、导入情境让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做活动一:1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

数学七年级上册教学设计篇二教学目标1 知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

2 过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

3 情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

教学重难点1 教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。

2 教学难点:理解平行与垂直概念的本质特征。

教学工具多媒体设备教学过程1 情境导入,画图感知1、学生想象在无限大的平面上两条直线的位置关系。

教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。

(2)像这样很平的面,我们就称它为平面。

(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。

初一数学上册教案 初一数学上册的教案(优秀5篇)

初一数学上册教案 初一数学上册的教案(优秀5篇)

初一数学上册教案初一数学上册的教案(优秀5篇)作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?问渠那得清如许,为有源头活水来,以下是可爱的小编帮大家整理的初一数学上册的教案(优秀5篇),希望对大家有一些参考价值。

初一数学上册教案篇一教学目标知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程,进一步理解并掌握如何去分母的解题方法。

能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。

1.了解方程的`解,解方程的概念;2.掌握运用等式的基本性质解简单的一元一次方程;3.经历体会解方程中的转化思想。

解一元一次方程:同步练习1.(20__?大连)方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=2【分析】方程移项合并,把x系数化为1,即可求出解。

【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值。

《4.2解一元一次方程》测试1.解方程|x|-2=0,可以按下面的步骤进行:解:当x≥0时,得x-2=0.解这个方程,得x=2;当x0时,得-x-2=0.解这个方程,得x=-2.所以原方程的解是x=2或x=-2.仿照上述的解题过程,解方程|x-2|-1=0.初一的数学上册教案篇二一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。

本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】【导语】本文为作者为您整理的人教版初一上册数学教案精选【三篇】,期望对大家有帮助。

课题:1.1正数和负数教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的爱好。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学进程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,扼要说明在前两个学段我们已经学过的数,并由此请学生摸索:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中显现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:摸索,交换师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并摸索讨论,然落后行交换。

(也能够出示气象预报中的气温图,地图中表示地势高低地势图,工资卡中存取钱的记录页面等)学生交换后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回想小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的愿望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

初一上册数学教案模板(十篇)

初一上册数学教案模板(十篇)

初一上册数学教案模板(十篇)初一上册数学教案模板一正数和负数一、教学目的(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

二、教学过程引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。

展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数§1.1 正数和负数知识点一:正数和负数的概念正数就是我们在小学学习的除0外的所有的数,负数就是在正数前面加上一个“-”号的数。

说明:1、0既不是正数,也不是负数,它是正数与负数的分界。

2、正数有时也可以在前面加“+”(正)号,有时“+”(正)号省略不写。

【例】下列各数中哪些是正数?哪些是负数?-2,0.5,+27,0,-3.14,160,-531. 知识点二:用正负数可以表示具有相反意义的量相反意义的量的正负性是相对的,且是可以互换的。

【例】如果向北走85米记作+85米,那么向南走70米记作 。

知识规律小结:1、区分正负数要根据正负数的概念,也可以根据符号区别,如果一个数的符号为“-”,则该数为负数;如果一个数的符号为“+”或没有符号,则该数为正数。

2、0既不是正数,也不是负数。

3、非正数:负数和零。

4、非负数:正数和零。

拓展:向东走-6米实际上就是向 走 米。

易错:零的意义是什么?(零是正数与负数的分界,不仅仅表示没有,也表示实际意义。

如收支0元,表示收入与支出平衡。

正数集 正整数集 非负数集 负分数集A§1.2 有理数第一课时 有理数 数轴知识点一:有理数的有关概念整数和分数统称有理数。

正整数、零、负整数统称整数。

正分数、负分数统称分数。

说明:1、有时可以把整数看作分母是1的分数。

2、因为有限小数、无限循环小数都可以化为分数,所以有限小数、无限循环小数都是有理数。

3、因为圆周率π是无限不循环小数,不能化成分数,所以圆周率π不是有理数。

4、引入负数后,数的范围扩大到了有理数,所以在整数和分数中不要忘记都有负数。

5、奇数和偶数也扩展到了负数。

知识点二:有理数的分类按整数、分数分类: 按正负性分类:说明:1、正整数和零,即自然数,称为非负整数,负整数和零称为非正整数。

2、前者是按除法的性质分类,后者是按减法的性质分类。

知识点三:数集的概念把一些数放在一起,就组成了一个数的集合,简称数集。

说明:1、数集可以用大括号表示,也可以用圆圈表示。

2、一个数集内不能有两个一样的数。

3、一个数集内有无限多时,要用“…”号。

4、所有有理数组成的数集叫有理数集;所有整数组成的数集叫整数集;所有正数组成的数集叫正数集;所有正整数和零组成的数集叫自然数集,也叫非负整数集。

【例1】把-31,6,-6.5,0,-127,313,-7.210,0.03·1·,-43,-5%填入相应的数集内。

【例2】在有理数中,是整数而不是正数的数是 ,是负数而不是分数的数是 。

拓展:有A={3,2,0,4}、B={5,6,-5,0,2}、C={-5,0,4,-2}三个数集,请把这些数填入对应的三个圆圈内。

知识点四:数轴的概念规定了原点、正方向和单位长度的直线叫做数轴。

如图:说明:1、数轴是一条直线,可以向两方无限延伸,画出的部分两边不要描点,以免画成射线或线段。

2、原点、正方向、单位长度是数轴的三要素,一般取右为正方向,箭头画在最右端。

知识点五:数轴的画法。

1、画一条水平的直线。

2、在直线上适当选取一点为原点。

3、确定向右为正方向,用箭头表示出来。

4、根据需要选取适当长度为单位长度,从原点向右、向左每隔一个单位长度取一点,依次标数。

说明:三要素缺一不可,数轴是一条直线,不要画成射线或线段,单位长度一定要一致。

知识点六:数轴上的点与有理数之间的关系。

1、所有的有理数都可以在数轴上的点来表示,但数轴上的点并不都表示有理数。

如π可以在数轴上表示,但π不是有理数。

2、正数可以用原点右边的点表示,反过来原点右边的点表示正数;负数可以用原点左边的点表示,反过来原点左边的点表示负数;0可以用原点表示,反过来原点表示0。

3、零是正数和负数的分界点。

【例1】在数轴上画出表示下列各数的点4,-3,-1.5,314,0,0.5 【例2】如图,比较a ,-a ,b ,-b ,0的大小,并用“〈”连接。

拓展:已知a 为整数,且-1﹤a ﹤3,则a= 。

§1.2 有理数第二课时 相反数知识点一:相反数的概念相反数的代数意义:只有符号不同的两个数叫做互为相反数。

零的相反数是零本身。

相反数的几何意义:在数轴上,位于原点两旁并且到原点距离相等的两个点所表示的两个数互为相反数。

说明:1、相反数总是成对出现的,只能两个数互为相反数,对一个数而言是谈不上互为相反数的。

2、只有是指除符号不同外,其他完全相同。

3、-a 与a 互为相反数,a 的相反数是-a ,-a 的相反数是a 。

【例】分别写出下列各数的相反数。

-3,2,4.5,0,316知识点二:多重符号的化简方法一个数前面是正号,可以把正号去掉;一个正数前面有偶数个负号,可以把负号一起去掉;一个正数前面有奇数个负号,则化简负号只剩一个负号。

【例】化简下列各数-(-5) -(+2) -[-(-6)] +[-(-5)]§1.2 有理数第三课时 绝对值知识点一:绝对值几何意义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。

代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

□注 绝对值等于它本身的是正数与零,易漏掉零;绝对值等于它的相反数的数的负数与零,易漏掉零。

说明:1、0既可以看作0本身,也可以看作是它的相反数。

2、数a 的绝对值3、无论是绝对值的几何意义,还是绝对值的代数意义,都揭示了一个绝对值的重要意义——非负性,即|a|≥0,也就是绝对值的最小值是0。

【例1】求下列各数的绝对值(略)【例2】化简: |32|- |)213(|+- |)5.6(|--- |)]31([|+-+ 知识点二:有理数大小的比较比较有理数的大小的方法有两种:1、利用数轴直观比较有理数的大小:数轴上右边的数总比左边的数大。

2、利用绝对值的知识比较有理数的大小:⑴正数大于0,负数小于0,正数大于负数。

⑵两个负数,绝对值大的反而小。

说明:在数轴上比较有理数大小比较直观,一目了然,但比较麻烦;而绝对值比较有理数大小比较方便,一般都采用。

【例3】比较大小: 4332--和 31125.1--和 综合应用:1、已知X 是整数,且3﹤X ≤5,则X= 。

2、已知|m +2|+|n -3|=0,求m 、n 的值。

3、化简:|X -3| |X +2|+|X -5|4、数a,b,c 在数轴上的位置如图,化简||||||c c b b a a ++§1.3 有理数的加减法第一课时 有理数的加法知识点一:有理数的加法法则法则1、同号两数相加,取相同的符号,并把绝对值相加。

法则2、绝对值不相等的异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数相加得0。

法则3、一个数同0相加,仍得这个数。

说明:1、一个有理数由符号和绝对值两部分组成,法则1、2就是分别确定了和的符号和绝对值。

2、互为相反数的两数相加得0,反之,如果两数的和为0,那么这两个数互为相反数。

3、加法法则的第一步是确定和的符号,第二步是确定和的绝对值。

□注 进行有理数的加法运算时,首先要确定用哪一条法则。

【例1】)315()216(++- 知识点二:有理数加法的运算律1、交换律:有理数加法中,两个数相加,交换加数的位置,和不变。

2、结合律:有理数加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

说明:1、符号相同的或分母相同的先相加。

2、相加得0的或相加得整数的先相加。

□注 运算符号和性质符号要分开,如3-(-4)中前一个“-”是运算符号,后一个“-”是性质符号。

【例2】)711()5.0()76()213(++-+++- 【例3】125.0)813(75.0)431(+-++- §1.3 有理数的加减法第二课时 有理数的减法知识点一:有理数减法法则减去一个数,等于加上这个数的相反数。

即a -b=a +(-b)说明:在有理数减法中,利用相反数,减法可转化成加法。

【例1】)614()312(+-- 知识点一:有理数的加减混合运算的步骤、1、把有理数的减法运算统一成加法运算。

2、根据需要写成省略加号和括号的代数和的形式。

3、灵活运用有理数加法法则和加法运算律进行正确的、简便的计算。

说明:1、统一加法后,括号和加号可以省略。

2、也可以利用符号化简直接简写。

3、读法:-20+7+5-3读作“负20、正7、正5、负3”,或“负20加7加5减3”【例2】)974()615()922()612(+--++-+ 【例3】-3+5-7+91-18综合应用:1、-1+2-3+4-5+6- … -99+1002、(-78)+(-77)+(-76)+(-75)+ … +(+99)+(+100)3、对于整数a 、b 、c 、d ,符号bd ac c d b a -=||,已知1﹤|41|d b ﹤3, 则b +d 的值是 。

§1.4 有理数的乘除法第一课时 有理数的乘法知识点一:有理数的乘法法则法则1、两数相乘,同号得正,异号得负,并把绝对值相乘。

法则2、任何数同零相乘都得零。

法则3、几个不是零的数相乘,负因数的个数是偶数个时,积是正数;负因数的个数是奇数时,积是负数。

法则4、几个数相乘,如果其中有因数为0,则积等于0。

说明:1、有理数乘法,要先根据负因数的个数确定符号,再把绝对值相乘。

2、在运算中要把小数化为分数,带分数化成假分数,便于约分。

【例1】 (-2)×(-5) 3221⨯- 【例2】 1.2×(541-)×(-2.5)×(73-) 知识点二:有理数的运算律乘法交换律、结合律、乘法分配律仍适用于有理数乘法。

【例3】(-25)×39×(-4) -17×)1713(- 726799×(-36) )21(75212)75()75(213-⨯-⨯---⨯ 知识点三:项、项的系数、合并含有相同字母的项项:在含有字母的和的形式中,每个加数就是一项。

项的系数:在字母与数字的乘积中,数字因数就是项的系数。

合并含有相同字母的项的法则:只需将它们的系数相加,作为结果的系数,再乘以字母因式,即ax+bx=(a+b)x ,其中x 为字母因数,a,b 分别为ax,bx 的系数。

□注 合并含有相同字母的项时要找准项民以及项的系数,千万别漏掉项的符号,不同字母的项不能合并。

【例4】 5x -2x a a a 814121++ 综合应用:1、若a b ﹤0,-b ﹥0,且|a|﹥|b|,则a +b 0.(填上“﹥”“﹤”或“=”)2、已知a,b,c 为三个不等于0的数,且满足abc ﹥0,a +b +c ﹤0,求cc b b a a ||||||++的值.3、已知a,b,c 为三个均不等于0的有理数,化简abcabc ca ca bc bc ab ab c c b b a a ||||||||||||||++++++。

相关文档
最新文档