药代动力学模型
群体药代动力学模型
群体药代动力学模型
群体药代动力学模型是指通过对一组具有相似特征的研究对象进行药代动力学研究,推导出该组研究对象中个体和群体对于药物吸收、分布、代谢和排泄的平均趋势和特征的科学方法。
该模型基于药代动力学基本原理,通过对研究对象进行药代动力学研究,建立数学模型,以描述和预测药物在体内吸收、分布、代谢和排泄的平均趋势和特征。
药物基因组学可以说是基因功能学与分子药理学的有机结合。
以药物效应及安全性为目标,研究各种基因突变与药物反应的关系,在个体化给药中应用,从而为临床用药提供理论依据,使患者用药更安全、更有效。
群体药代动力学模型的应用范围广泛,可以用于药物疗效研究、不良反应分析、药物相互作用分析、新药开发、临床试验设计等方面。
群体药代动力学研究技术指导原则如下:
1.概述。
药物在人体内的药代动力学行为普遍存在个体间变异。
2.适用范围。
给药方案的优化,特定人群用药方案的选择,儿科人群的用药
研究,种族因素分析,药物相互作用评价,生成暴露-效应分析的暴露指标。
3.在临床研究设计中的相关考虑。
研究人群,样本量,协变量,采样设计,
检测物质,生物样品分析等。
4.数据分析。
分析计划,数据处理,模型建立,模型评价,模型模拟。
5.质量控制。
分析报告和数据提交。
需要注意的是,群体药代动力学模型的应用需要具备一定的统计学和药代动力学基础知识,并且需要严格遵守科学伦理和相关法律法规。
药代动力学公式范文
药代动力学公式范文一室模型是最简单的药代动力学模型,假设药物在体内只存在于一个组织或器官,如血浆。
该模型的公式如下:Cp=D/Vd*e^(-K*t)其中,Cp为单位时间内的药物浓度,D为给定剂量,Vd为分布容积,K为消除常数,t为时间。
Cp=(D/Vc)*(e^(-K1*t)-e^(-K2*t))其中,Cp为单位时间内的药物浓度,D为给定剂量,Vc为中心室的分布容积,K1和K2为消除常数,t为时间。
3. 生物利用度(Bioavailability)生物利用度是指给定药物经口给药后进入循环系统的比例,常用F表示。
生物利用度可以通过以下公式计算:F=AUC口服/AUC静脉注射其中,AUC口服为给定药物经口给药后测得的血药浓度-时间曲线下的面积,AUC静脉注射为给定药物静脉注射后测得的血药浓度-时间曲线下的面积。
4. 绝对生物利用度(Absolute bioavailability)绝对生物利用度是指给定药物通过口服给药与静脉注射给药后的生物利用度比例,常用F'表示。
绝对生物利用度可以通过以下公式计算:F'=(D/AUC口服)*(AUC静脉注射/D)其中,D为给定剂量,AUC口服为给定药物经口给药后测得的血药浓度-时间曲线下的面积,AUC静脉注射为给定药物静脉注射后测得的血药浓度-时间曲线下的面积。
5. 清除率(Clearance)清除率是指单位时间内完全从体内清除药物的速率,常用Cl表示。
清除率可以通过以下公式计算:Cl=D/AUC其中,D为给定剂量,AUC为给定药物测得的血药浓度-时间曲线下的面积。
6. 半衰期(Half-life)半衰期是指药物浓度降低一半所需的时间。
半衰期可以通过以下公式计算:t1/2=0.693/K其中,t1/2为半衰期,K为消除常数。
以上是常见的药代动力学公式,通过使用这些公式,可以预测药物在体内的浓度变化,进而指导合理用药。
需要注意的是,不同药物具有不同的药代动力学特征,因此需要根据具体药物的特点选择合适的药代动力学模型和相应的公式。
药物药代动力学模型建立与验证
药物药代动力学模型建立与验证药物代谢动力学是研究药物在体内的吸收、分布、代谢和排泄的过程以及这些过程之间的相互关系的学科。
药代动力学模型是对药物代谢动力学过程进行量化和描述的数学模型。
建立和验证合适的药代动力学模型对于药物的研发和药物治疗的优化至关重要。
一、药物药代动力学模型的建立药物药代动力学模型的建立是一个复杂的过程,需要考虑药物在各个器官和组织中的分布、药物的代谢过程以及体内的各种生理功能。
建立药物药代动力学模型的一般步骤包括:1. 数据收集与处理在建立药物药代动力学模型之前,需要收集和整理相关的药物代谢动力学实验数据。
这些数据可以来自于体外实验、动物实验或者人体临床试验。
收集的数据需要进行处理,包括数据的纠正、筛选和校正等。
2. 模型选择与建立根据药物的性质和研究目的,选择合适的药代动力学模型。
常见的药代动力学模型包括单室模型、双室模型、生理药动模型和机械药动模型等。
根据实验数据进行参数估计,确定模型的参数。
3. 参数估计与模型验证通过药代动力学模型中的参数估计方法,对模型中的吸收、分布、代谢和排泄过程的参数进行估计。
估计得到的参数需要进行模型的验证,与实验数据进行比较,评估模型的拟合程度和预测能力。
二、药物药代动力学模型的验证药物药代动力学模型的验证是判断模型的可靠性和适用性的过程。
常用的验证方法包括:1. 模型的预测能力验证将模型应用于新的实验数据,观察模型在新数据上的拟合效果和预测精度。
如果模型能够准确预测新数据的代谢过程和药物浓度变化,说明模型具有较好的预测能力。
2. 模型参数的稳定性验证通过对模型参数进行敏感性分析,评估模型中参数的稳定性和可靠性。
敏感性分析包括参数估计误差对模型输出的影响程度的评估,以及模型参数的置信区间的计算和分析。
3. 模型的同质性验证将模型应用于不同个体或不同实验条件下的数据,观察模型在不同情况下的适应性和一致性。
如果模型在不同个体和不同实验条件下的数据上都能够良好地拟合,说明模型具有较好的同质性。
药物代谢动力学(第六章)非房室模型
• 十、 非房室模型和房室模型的优缺点比较1
• 非房室模型的最基本的优点是限制性假设较少, 只要求药时曲线的尾端符合指数消除,而这一点 容易被实验所证实。此外,解决了不能用相同房 室模型拟合全部实验数据的问题。例如,有的实 验对象其数据符合一房室模型,另有部分对象数 据符合二房室模型,很难比较各参数。而用非房 室模型分析,不管指数项有多少,都可以比较各 组参数,如AUC、MRT、Cl等。但是从另一个角 度看,这也是非房室模型的缺点,不能提供药时 曲线的细节,只能提供总体参数。
• 二、 生物利用度
• 生物利用度通常是指某口服剂量实际到达 血液循环的分数(F),用于指药物经血管外 给药后,药物被吸收进入血液循环的速度 和程度的一种量度,是评价制剂吸收程度 的重要指标。生物利用度分为绝对生物利 用度和相对生物利用度。
由于通常静脉注射剂量的生物利用度等于1,故绝对生物利 用度计算公式为:
令: f ( t) = C/ AUC (0 ≤t < ∞) 由于在区间( - ∞,0) 上C = 0 ,从而f ( t) = 0 ,故有:
AUC 0 c(t)dt
表明函数f ( t) 可视为随机变量———药物在 体内滞留时间的概率密率函数.
• 非房室模型的统计矩方法以概率论和数理 统计学中的统计矩(Statistical Moment)方法 为理论基础,对数据进行解析,包括零阶
MRT代表药物分子在体内的平均驻留时间,VRT为其方差。 零阶矩与一阶矩可以用于药物动力学分析,VRT为较高阶的 矩,由于误差较大,结果难以肯定,应用价值很小
• MRT概念的理解:
• 一次给药含有无数个的药物分子,例如对 于分子量为300g/mol,即使1mg的药物也 含有2×1018个药物分子。这些药物在体内 停留的时间并不一致,有些被迅速排泄, 而有一些可能停留较长的时间,极少数甚 至可能停留终生。上述平均驻留时间MRT 中“平均”就是这些药物分子停留时间的 平均值。
药代动力学及其参数基本概念
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
二、试验设计
一般应选用高、中、低3个剂量组,根据人体 耐受性试验的结果 高剂量组的剂量一般应高于临床试验的治疗 剂量,但不应超过人体的最大耐受剂量 受试人数:每组8~12例
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
三、 试验操作步骤
三种单剂量的药代动力学试验结果反映不同药物 剂量(小、中、大剂量)的吸收和消除动力学的 规律是线性或非线性动力学
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
五、药代动力学参数的估算
线性或非线性动力学的判断标准举例:依立雄胺 (epristeride)的9名健康男性受试者单剂量口服 5 mg、10 mg、20 mg爱普列特片剂进行药代动 力学研究结果如下(表8-2、表8-3)
或因与血浆蛋白结合力高,不易进入组织,其Vd 值常较小,约为0.15~0.3L/kg;与此相反,碱性 有机药物如苯丙胺、山莨菪碱等易被组织所摄取, 血中浓度较低,Vd值常超过体液总量(60kg的正 常人,体液约36L,即0.6L/kg)。例如,地高辛 的Vd达600L(10 L/kg),说明该药在深部组织大 量储存。
物效的 浓最 度临低 。床中最毒佳浓效度果,是(维C持SS)药min物大的于(药CS物S)m的ax最小低于有药
(六)负荷剂量(Loading dose,DL)
概念:临床上为了使药物尽快到达稳态 从而尽早发挥疗效,常常先给予一个较维持 剂量大的剂量使药物迅速达到稳态水平,然 后在预定的给药间隔时间给予维持剂量维持 稳态水平,这个在第一次使用的剂量称为负 荷剂量。
应用
3. 根据表观分布容积调整剂量 通常药物的表观分布容积与体表面积成正
第九章 药代动力学与药效学动力学结合模型
第九章药代动力学与药效动力学结合模型第一节概述药代动力学(Pharmacokinetics,PK)和药效动力学(Pharmacodynamics,PD)是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际意义。
传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲和力和内在活性等。
但药物的作用在体内受到诸多因素的影响,因而其在体内的动力学过程较为复杂。
以往对于药动学和药效学的研究是分别进行的,但实际上药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联系。
早期的临床药动学研究通过对治疗药物的血药浓度的监测(Therapeutic Drug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。
随着药代动力学和药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动力学研究中观察到的S形曲线,而是呈现出一个逆时针滞后环。
进一步研究发现血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应的变化情况。
针对上述问题Sheiner等人于1979年首次提出了药动学和药效学结合模型,并成功地运用这一模型解释了上述的现象。
药代动力学模型ppt(38张)
Css
k0 kV
定义任意时间血药浓度与稳态浓度比为fss, 即:
f ss
C C ss
从而可以计算血药浓度达到稳态浓度的某一分数fss所需要的时间长短。
假定该时间相当于nt1/2,由3-19式得到: n ln(1 f ss ) 0.693
静脉滴注给药存在下列特征:
1) 按恒速滴注给药, 血药浓度随时间递增,当时间趋
药物进入组织中的速率主要受组织血流灌注速率的控制 膜限制模型(membrane limited) 毛细血管膜的通透性成为药物进入组织的主要限制因素。 如脑、睾丸等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
肝清除率(Hepatic clearance,CLH )
概念:在单位时间内肝脏清除药物的总量与当
无穷大时, 血药浓度达稳态。对于同一药物,稳态浓度
大小取决于滴注速率。
2) 达到稳态某一分数所需要的时间长短取决于半衰期,
而与滴注速率无关。当时间相当于3.32t1/2,时,血药浓度 相当于稳态浓度的90%, 当时间相当于6.64t1/2时,血药 浓度相当于稳态浓度的99%。
3)已知期望血药浓度,可以确定静脉滴注速率k0
各阶统计矩的计算
1.零阶矩
AUC c(t)dt
0
2.一阶矩
MRT 0 tC(t)dt AUMC
AUC
AUC
3.二阶矩
误差大、结果不肯定、应用价值小,故不用
药代动力学模型(PPT38页)
用统计矩计算药代动力学参数
一、清除率
是指单位时间内多少表观分布容积内的药物被清除掉。
Cl
( dx )dt 0 dt
第3节 生理药物代谢动力学模型 一、生理药物代谢动力学模型的基础
药代动力学模型及应用
药代动力学模型及应用药代动力学模型,这名字听起来是不是很高大上?别紧张,其实它就是在研究药物在我们身体里的“旅程”。
想象一下,你吃下去的药,经过了怎样的“冒险”。
药物在体内可不是随便走走就完事了,它们有自己的路线图,分成几个阶段:吸收、分布、代谢、排泄。
就好比一部精彩的电影,药物作为主角,得经历各种戏剧性的情节,才能顺利“落幕”。
首先说说吸收。
想象一下,你刚吃下药,药物开始在胃里开party。
胃酸一波接一波地冲击,药物得快速分解,才能进入血液。
这个过程可不是一蹴而就的。
有些药物就像小孩子,特别调皮,根本不听话,吸收得慢腾腾的。
而有的药物则像闪电,嗖的一下就进了血液。
这可真是个千差万别的世界!药物到底怎么选择“路线”的呢?这跟它的化学结构、溶解度还有配方都有关系。
太复杂了,听起来就让人头疼,但其实了解这些,对我们选药很有帮助哦。
药物进入血液后,得开始分布。
这就好比一个旅行团,药物们要找到各自的目的地。
有些药物偏爱特定的器官,比如心脏、肝脏,它们总是挤在一起,互相打招呼,搞得热闹非凡。
还真是个“聚会”呢!而有些药物则爱自由,喜欢在全身各处闲逛。
分布的速度和范围也因药物的性质而异。
想想看,哪种药物在身体里最受欢迎,哪个又总是被冷落,真是有趣的事情!然后,代谢登场。
药物在身体里待久了,得想办法换个“新装”。
这时候,肝脏就成了“时尚设计师”,负责将药物转变成可以被身体更好处理的形式。
代谢的过程也很复杂,有的药物在这里翻身成了超级英雄,有的则变得毫无用处。
这个过程就像变魔术,有时候药物变得更加活跃,有时候却变得懦弱无比。
你说,这不就是药物“变身”的时刻吗?药物得离开我们的身体。
这一步叫做排泄。
想象一下,药物经历了这么多,终于到了回家的时候。
主要通过肾脏来完成,尿液的产生就是药物离开的“出口”。
不过,有的药物在离开前还得经过一番复杂的处理,变得更容易被排出。
就好比一个好旅客,总得带着清爽的气息回家,不能留下“臭味”呀!说到这里,药代动力学模型的应用就来了。
临床药物代谢动力学药动学的模型(第五章)
4.负荷剂量:
同时快速静脉注射和静脉滴注给药 为了尽快达到目标浓度,先静脉注 射一个负荷剂量,使血药浓度一开始就达到稳态浓度,继之恒速静脉滴注, 则:
Xload Css V k0 V k0
Vdk
k
c civ civgtt e X 0 Kt k 0 (1 eKt )
四、药动学参数
案例分析
假如:药物的V=9.20L,CL=4.74L/h,那么机体每小时 可将表观分布容积中的4.74L内的药物清除体外 请问:是否意味着在不到2h时间内就将药物全部清除?
五、常见房室模型特征及参数求算
一室模型
二室模型
静脉注射给药 静脉滴注给药 多剂量给药 血管外给药
Vd
Vdk
Css eKt Css Css eKt Css
2. 一室静脉滴注给药
3. 一室血管外给药
1)模型的建立与特征
1.当t=0,Xa=FX0,X=0 2.药物吸收速率与吸收部位的药量成正比 3.药物的消除速率与当时体内药量的一次方成正比
3. 一室血管外给药
2)体内药量(浓度)与时间关系
1. 基本参数K和CO:最小二乘法 回归拟合
t /h C /mg/ml LogC
0.5 3.5 0.544
1 5.8 0.753
…… …… ……
1.一室静脉注射给药
3)药动学参数的计算
2. 表观分布容积( Vd ):
注意:
Vd X X 0
C
C0
一般情况下,成人的V值多在数升到数百升之间,为什么地高辛V有700L? 与哪些因素有关,有何临床意义?
三、药物转运速度过程
(一)、一级速度过程(first order processes)
临床药物代谢动力学:药物代谢动力学公式
一室模型
一、静脉注射
1. 血药浓度经时方程
浓度时间关系
对数时间关系
一室模型 一、静脉注射
2. 重要参数:
Vd
X X0 C C0
一室模型 一、静脉注射
3. K的求算:
1)血药浓度
2)尿速度法
2)尿亏量法
一室模型 二、静脉滴注
1. 血药浓度时间方程:
k C (1 e kT) e k .t ' (t ' t T ) V .k
三、多剂量给药
1.多剂量函数
一室模型
三、多剂量给药
2.多剂静脉注射给药(经时方程)
一室模型
三、多剂量给药
2.多剂静脉注射给药
一室模型
三、多剂量给药
2.多剂静脉注射给药
一室模型
三、多剂量给药
2.多剂静脉注射给药
一室模型
(一)多剂量给药
3.间歇静脉滴注给药
一室模型
1)稳态最大和最小浓度
2)τ 、t`和 K0的估算
2.303 Ka t max lg Ka K K
c
e
Ka(t t 0)
max
FXo Vd
e
Kt max
c
KaFX 0 K (t t 0) ( Vd ( Ka K )
e
)
一室模型
三、血管外给药
2.重要参数
KaXo V /F ( Ka K ) A
一室模型
一室模型
(一)多剂量给药
4.口服给药
二室模型
血药浓度经时方程
二室模型
3)参数间的关系
K10、K12
二室模型
药代动力学12 第九章 药代动力学与药效学动力学结合模型
药代动力学12 第九章药代动力学与药效学动力学结合模型第九章药代动力学与药效动力学结合模型第一节概述药代动力学(Pharmacokinetics, PK)和药效动力学(Pharmacodynamics,PD) 是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际意义。
传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲和力和内在活性等。
但药物的作用在体内受到诸多因素的影响,因而其在体内的动力学过程较为复杂。
以往对于药动学和药效学的研究是分别进行的,但实际上药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联系。
早期的临床药动学研究通过对治疗药物的血药浓度的监测(TherapeuticDrug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。
随着药代动力学和药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动力学研究中观察到的 S形曲线,而是呈现出一个逆时针滞后环。
进一步研究发现血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应的变化情况。
药代动力学-药效学模型
药代动力学-药效学模型
药代动力学-药效学模型是指通过数学模型来描述药物在体内
的药代动力学过程和药效学效应。
药代动力学是研究药物在体内吸收、分布、代谢和排泄的过程,主要包括药物的吸收速率、分布容积、消除速率等参数。
药代动力学模型通常采用方程或数学模型来描述药物在体内的浓度变化。
药效学是研究药物在体内产生的生理或生化效应的过程,主要包括药物的最大效应、最大效应的作用时间、药物对效应的敏感性等参数。
药效学模型通常采用方程或数学模型来描述药物对效应的浓度-反应关系。
药代动力学-药效学模型将药物的药代动力学和药效学连系在
一起,可以用来预测药物在体内的浓度变化和产生的效应,对药物的治疗效果进行评估和优化。
这种模型可以在临床研究中应用,帮助医生个性化制定用药方案,提高治疗效果和减少不良反应。
药剂学中的药物代谢动力学模型
药剂学中的药物代谢动力学模型药物代谢动力学模型是药剂学领域中的重要研究内容,它通过数学模型来描述药物在人体内的代谢过程及动力学行为。
药物代谢动力学模型的研究对于药物的合理使用和剂量调整具有重要意义。
本文将介绍药物代谢动力学模型的基本概念、分类及应用,并探讨其在药剂学研究中的意义和挑战。
一、药物代谢动力学模型的基本概念药物代谢动力学模型是研究药物在体内代谢过程的一种定量描述方法。
它可以通过建立数学方程来描述药物浓度与时间的关系,以及药物在人体内的代谢速率和消除速率等动力学参数。
常用的药物代谢动力学模型有零级动力学模型、一级动力学模型和双室模型等。
1. 零级动力学模型零级动力学模型是指药物在体内的消除速率与药物浓度无关,而是固定的。
这意味着无论药物的浓度如何,消除速率都保持不变。
这种模型常见于药物的饱和消除情况,例如乙醇的代谢。
2. 一级动力学模型一级动力学模型是指药物在体内的消除速率与药物浓度成正比。
即随着药物浓度的增加,消除速率也相应增加。
此模型常见于大多数药物的代谢过程,例如头孢菌素的消除。
3. 双室模型双室模型是较为复杂的药物代谢动力学模型。
它认为药物在体内存在两个相互转化的组织或器官,分别为中央室和外周室。
药物在体内的分布和消除分别受到这两个室的影响。
此模型常见于某些特定药物的代谢,如静脉注射药物。
二、药物代谢动力学模型的分类根据药物的作用机制和代谢途径,药物代谢动力学模型可进一步分类为饱和动力学模型和线性动力学模型。
1. 饱和动力学模型饱和动力学模型适用于药物的代谢饱和状态。
当药物在体内的代谢通路达到饱和时,代谢酶的速率将不再增加,而是保持恒定。
此时,药物代谢动力学模型通常采用零级动力学模型。
2. 线性动力学模型线性动力学模型适用于药物的代谢非饱和状态。
当药物在体内的代谢通路尚未达到饱和时,代谢酶的速率将随着药物浓度的增加而线性增加。
此时,药物代谢动力学模型通常采用一级动力学模型。
三、药物代谢动力学模型的应用药物代谢动力学模型的研究对于药物的合理使用和剂量调整具有重要的指导作用。
药物代谢动力学 数学建模
房室模型
二、细胞膜的结构与药物的转运
• 细胞膜主要由类脂(磷脂为主)和蛋白 质组成 • 分子结构的模式,——―液态镶嵌模型”。 • 生物膜是可塑的、流动的、嵌有蛋白质 的类脂双层分子的膜状结构。
• 药物的转运:药物跨过生物膜的运动。
• 以被动转运为主。
• 被动转运:药物从细胞膜高浓度一侧向低 浓度一侧的顺浓度差转运。 • 特点:不耗能,没有饱和限速,不受其他 转运物质的竞争性制约。膜两侧只要存在 浓度差,转运就不会停止。
pH和pKa决定药物分子解离多少
一般的规律是弱酸性药物在酸性体
液中(胃中)解离少,容易通过细胞膜,
即可被吸收。弱碱性药物在碱性体液
中(小肠)解离少,容易通过细胞膜,主
要在小肠吸收。
pH和pKa决定药物分子解离多少
• 不同药物的pKa不同,在同一体 液条件下解离度不同,进入靶细
胞的量不同,效应强度也不同
体内总药量(X0)与零时间血药浓度 (C0)的比值 Vd= X0 / C0
Vd是计算值,非体内生理空间,只 表示药物在体内分布广窄程度
• Vd大小取决于: • 药物理化性质(pKa等) • 在组织中的分配系数
• 与血浆蛋白或组织蛋白结合率
Vd意义——推测药物在体内的分布范围
70kg的人体,总含水量为40~46L, 血浆3L
• 2.双室模型 药物进入体内后,能迅速进入机体 的某些部位,对另一些部位,需要一段时间才 能完成分布。 • 中央室:血液及血流丰富能够瞬时分布的组织、 器官(心、肝、脾、肺、肾) • 周边室:血液供应少、药物分布缓慢的组织、 器官(骨骼、脂肪、肌肉)
房室模型
(compartment model)
dC/dt = -k1C0 积分得: Ct = C0e
药代动力学及其参数基本概念
应用
3. 根据表观分布容积调整剂量 通常药物的表观分布容积与体表面积成正
比,故用体表面积估算剂量比较合理,尤其是小 儿用药或使用某些药物(如抗癌药物)时。
(三)半衰期(half-life time,t1/2)
生物半衰期(biological half-time)是指药物效应下降 一般的时间,血浆半衰期(plasma half-time)是指药物 的血浆浓度下降一般所需的时间。药代动力学的计算,一 般是指血浆半衰期。
药代动力学及其参数基本概念
中山大学临床药理研究所 赵香兰
一、药代动力学的概念
药代动力学(Pharmacokinetics)简称药动 学,是研究机体对药物的作用规律的科学,它应 用动力学(kinetics)原理与数学模式,定量地描 述与概括药物通过各种途径进入机体内的吸收 (Absorption)分布(Distribution),代谢(Metabolism) 和排泄(Elimination),即ADME过程的“量时” 变化或“血药浓度经时”变化的动态规律。
药代动力学主要参数(一)
浓度
峰浓度Cmax
6
达峰时间tmax
4
浓度曲线下的面积AUC 2
0
0
2
图2-1
4
6
8
时间
10 12
服用单剂药物后的药时曲线
(三)表观分布容积
(Apparent volume of distribution,Vd)
概念:药物进入机体后,实际上各组织中 的药物浓度是不同的。在进行药代动力学计算时, 可设想药物是均匀地分布于各种组织与体液,且 其浓度与血液中相同,在这种假设条件下药物分 布所需的容积称为表观分布容积(Vd)。因此, 表观分布容积是一个数学概念,并不代表具体的 生理空间,用来估算在给一定的剂量的药物后, 人体接触药物的程度与强度。
药物药代动力学模型的建模与验证
药物药代动力学模型的建模与验证药物的药代动力学模型是研究药物在人体内吸收、分布、代谢和排泄的过程的数学模型。
通过建立和验证药代动力学模型,我们可以更好地理解药物的行为和效应,从而为药物疗效评价、用药剂量设计和个体化治疗提供科学依据。
本文将介绍药物药代动力学模型的建模方法以及验证过程。
一、药物药代动力学模型的建模方法药物药代动力学模型的建模是根据药物在人体内的药代动力学过程,通过数学方程来描述药物在不同组织器官间的转移和转化。
建模的过程包括以下几个步骤:1. 收集数据:首先,需要从临床研究或实验室实验中收集药物在人体内的浓度-时间数据。
这些数据可以通过血样、尿液或其他生物样本进行采集。
2. 选择模型类型:根据收集到的数据,需要选择适当的模型类型来描述药物在不同组织器官间的转移和转化。
常见的模型类型包括一室模型、两室模型以及生理药动学模型等。
3. 参数估计:通过数学方法,对模型中的参数进行估计。
参数估计的方法包括最小二乘法、最大似然估计等。
4. 模型评估:评估建立的模型是否符合实际数据。
可以使用统计指标比如残差分析、相关系数等来评估模型的拟合程度。
二、药物药代动力学模型的验证过程建立药物药代动力学模型后,需要对其进行验证,以确保该模型能够准确描述药物在人体内的动力学过程。
验证的过程可分为内验证和外验证两个阶段。
1. 内验证:内验证是指使用收集到的数据对模型进行验证。
通过比较模型预测的药物浓度和实测值,来评估模型的准确性和可预测性。
2. 外验证:外验证是指将建立好的模型应用于新的数据集,检验模型的预测能力。
这些新的数据集可以是来自不同的人群、疾病状态或用药方法等。
在进行验证过程时,需要充分考虑模型的灵敏度、特异性、稳定性和可解释性等指标。
同时,还需要对模型进行不确定性分析,以评估模型预测的置信区间和可靠性。
三、药物药代动力学模型的应用药物药代动力学模型的建立和验证为药物疗效评价和用药剂量设计提供了重要依据。
实验报告药物代谢动力学研究结果分析
实验报告药物代谢动力学研究结果分析本文旨在对实验报告的药物代谢动力学研究结果进行分析和解读。
药物代谢动力学是研究药物在体内转化与消除的过程,对于评估药物疗效和安全性具有重要意义。
以下将从药物的消失速率、半衰期、清除率、生物利用度以及药物代谢动力学模型等方面进行分析和讨论。
首先,药物的消失速率是评估药物代谢速度的重要指标。
在实验中,观察到药物在体内的浓度随时间的变化,绘制出药物浓度-时间曲线。
在曲线的初始阶段,药物浓度下降迅速,这是由于药物在体内的消失速率大于其输入速率。
根据一级动力学模型,药物的消失速率与当前药物浓度成正比,即一级速率方程:dC/dt = -kC,其中dC/dt表示药物浓度的变化率,k表示药物的消失速率常数,C表示药物浓度。
其次,半衰期是衡量药物在体内消失速度的重要参数。
半衰期定义为药物浓度下降到初始浓度的一半所需的时间。
根据一级动力学模型,半衰期与消失速率常数k呈反相关关系,半衰期越短,药物代谢速度越快,反之则代谢速度较慢。
第三,清除率是评估药物在体内消除的速率的指标。
清除率是指单位时间内机体从血浆中清除药物的数量。
根据一级动力学模型,清除率等于消失速率常数k乘以药物的分布容积,即CL = kVd,其中CL表示清除率,Vd表示药物的分布容积。
清除率的值可以反映药物的有效清除能力,对于评估药物在体内的代谢和消除具有重要意义。
第四,生物利用度是评估药物经过给药途径后被吸收的程度的指标。
生物利用度与药物的给药途径、吸收速率以及首过效应有关。
生物利用度可以用以下公式表示:F = AUCo/AUCi × Doseo/Dosei,其中F表示生物利用度,AUCo和AUCi分别表示口服给药和静脉给药情况下的药物曲线下面积,Doseo和Dosei分别表示口服给药和静脉给药的药物剂量。
生物利用度越高,代表药物吸收效果越好。
最后,药物代谢动力学模型是对实验数据进行拟合的重要工具,可以用来预测和解释药物在体内转化与消除的过程。
常见的群体药代动力学模型
常见的群体药代动力学模型《我与药代动力学的奇妙相遇》嘿,你知道吗?在我们生活的这个神奇世界里,有好多特别的知识就像宝藏一样等着我们去发现呢。
今天呀,我就想和你聊聊那个听起来超级复杂的“群体药代动力学模型”。
我第一次听到这个词的时候,就感觉像是听到了来自外太空的语言。
什么是群体药代动力学模型呀?难道是一群药在动力学里做模型?哈哈,这当然是我那时候超级幼稚的想法啦。
后来,我就去问我的科学老师。
老师就笑着说:“孩子啊,这可不是你想的那样呢。
”老师开始给我讲,药代动力学啊,就像是追踪小侦探,要弄清楚药物进入我们身体之后是怎么跑来跑去的。
比如说,你吃了一片药,这药就像是一个小小的旅行者,它在你的身体里要去很多地方。
它会经过你的胃,就像经过一个小隧道,然后到肠道,再通过血管,就像坐着小火车,到达身体的各个部位。
那这个药物在身体里旅行的速度、它停留的时间、它发挥作用的程度,这些都是药代动力学要研究的。
那群体药代动力学模型呢?这时候呀,我的好朋友小明在旁边说:“是不是一群人的药在身体里旅行的情况呀?”老师就笑着点点头说:“有点这个意思呢。
群体药代动力学模型研究的不是一个人的药物反应,而是一群人的。
就好比我们看一群小蚂蚁搬家,每只蚂蚁的速度、力量可能都不太一样,但是我们可以找到它们的一些共同规律。
这就像不同的人吃了同一种药,有的人可能很快就好了,有的人却要很久,这里面是有很多因素的。
”我就好奇地问:“那都有什么因素呢?”老师就耐心地给我解释,年龄就是一个大因素。
就像老爷爷老奶奶和我们小朋友吃同样的药,那效果肯定不一样呀。
老爷爷老奶奶就像老汽车,零件都有点旧了,运转起来可能就慢一些,药物在他们身体里的旅行路线和在我们小朋友身体里就不太一样。
还有性别呢,男孩子和女孩子的身体就像不同的小花园,对药物这个小种子的反应也会不同。
而且呀,不同的民族也会有差别,这就像是不同的花朵品种,有的花朵可能更适合在某种土壤里生长,不同民族的人身体就像不同的土壤,对药物这个“小种子”的接受程度和反应也不一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
残差法
Ba
b
消除相(b相)
t
药物
中央室 Xc,Vc
Ke(k10)
k12
k21
周边室 Xp。Vp
dXc dt =-(k12+k10)Xc+k21Xp dXp dt =k12Xc- k21Xp 经拉普拉斯转换
Ct=A e- a t + B e- b t
计算药代动力学参数的程序
MRT0
tC(t)dt
AUMC
AUC AUC
3.二阶矩
误差大、结果不肯定、应用价值小,故不用
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
用统计矩计算药代动力学参数
一、清除率
是指单位时间内多少表观分布容积内的药物被清除掉。
Cl
( dx )dt 0 dt
Cdt
X0 AUC
0
对于血管外途径给药,则:
统计矩的优点: 1.不依赖动力学模型,只要求药物的 体内过程属线性动力学 2.解决了不能用房室模型拟合的问题 3.可取代房室模型分析
统计矩的缺点: 不能提供血药浓度-时间曲线的细节,
只能提供总体参数。
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
第3节 生理药物代谢动力学模型 一、生理药物代谢动力学模型的基础
药代动力学模型(PPT38页)
定义任意时间血药浓度与稳态浓度比为fss, 即:
f ss
C C ss
从而可以计算血药浓度达到稳态浓度的某一分数fss所需要的时间长短。
假定该时间相当于nt1/2,由3-19式得到: n ln(1 fss) 0.693
静脉滴注给药存在下列特征:
1) 按恒速滴注给药, 血药浓度随时间递增,当时间趋
第2节
统计矩理论为基础的非房室模型
概述
统计矩(Statistical Moment)的概念:
是以概率论和数理统计学中的统计矩方法为理 论基础,对数据进行解析一种方法。
统计矩的特征参数***
1.零阶矩 AUC
反映体内药物量
2.一阶矩
MRT (mean residence time) 平均驻留时间
反映速度的参数
第3章 药代房室动模型力的学判定模型
第1节 房室模型
一、药物浓度-时间曲线(药时曲线)
血
药
达峰时间
浓
度
吸 收 分 布 过 程 潜伏期 持续期
最低中毒浓度
药峰 浓度 安全范围
最低有效浓度
代谢排泄过程
残留期
时间
二、房室模型理论 (一)开放式一室模型
1.静脉注射给药
K:消除速率常数
dX kX 积分后 Xt=X0 e-kt
性质:建立在机体的生理、 生化、解剖和药物热力学 性质基础上的一种整体模型
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
二、药物在组织中的命运
基于生理特性的组织 房室模型
药量变化速率=进入速率-输出速率-消除速率+合成速率 血流灌注速率限制性模型(perfusion-rate limited)
Cl FX0 AUC
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
二、MRT与半衰期关系
1. i.v.给药
.
1 k
t1/2 0.693
2. 血管外给药
11 MR ex.eTkka MR ivTMAT
MAT:平均吸收时间 MAT=1/Ka
3.短时间静脉滴注给药
MRTMRivTT2 T为滴注时间
C F0 X (ek(tta)e ) ka(tt0) V(kka)
药代动力学模型(PPT38页)
3.静脉滴注药物代谢动力学
假定静脉滴注给药速率为k0, 得到体内药量的速率方程
dX dt
k0
k
X
解方程
C k0 (1ekt) kV
血药浓度-时间曲线方程
当时间t 趋于无穷大时
C ss
Байду номын сангаас
k0 kV
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
三、稳态表观分布容积
Vss可在药物单剂量静注后通过清除率与平均驻留时 间积进行计算
VssC•lMRTA Xi.U v. •C MRT
k Cl V ss
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
非房室模型和房室模型的优缺点比较
3.二阶矩
药代动力学模型(PPT38页)
方差(variance of mean residence 反映MRT的差异 time,VRT)
药代动力学模型(PPT38页)
统计矩的优点: 不依赖动力学模型
用统计矩的条件: 药物的体内过程属线性动力学
各阶统计矩的计算
1.零阶矩
AUC c(t)dt
0
2.一阶矩
药物进入组织中的速率主要受组织血流灌注速率的控制 膜限制模型(membrane limited) 毛细血管膜的通透性成为药物进入组织的主要限制因素。 如脑、睾丸等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
肝清除率(Hepatic clearance,CLH )
无穷大时, 血药浓度达稳态。对于同一药物,稳态浓度
大小取决于滴注速率。
2) 达到稳态某一分数所需要的时间长短取决于半衰期,
而与滴注速率无关。当时间相当于3.32t1/2,时,血药浓度 相当于稳态浓度的90%, 当时间相当于6.64t1/2时,血药 浓度相当于稳态浓度的99%。
3)已知期望血药浓度,可以确定静脉滴注速率k0
k0 CsskV
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
(二)开放式二室模型
药物
Ke(k10) 中央室
k12
k21
周边室
中央室 血液、细胞外液、血流丰富的心、肝、肺, 脾、肾
周边室 血流贫乏的肌肉、脂肪、皮肤等
假定:药物仅从中央室消除
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
PCNONLIN, 3P87, 3P97, PK-BP-NI等
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
a bk10k21 abk21k12k10
A X0(ak21) VC(ab)
B X0(k21b) VC(ab)
V c
X0 A B
药代动力学模型(PPT38页)
药代动力学模型(PPT38页)
dt
CX0 V
ek
t
C0ek
t
取对数
VX C
C0
X0 V
lnClnC0kt
2.血管外途径给药的药物代谢动力学
dX a dt
ka X a
dX dt
kaX a kX
解上述微分方程,得到给药后的血药浓度时间曲线:
C FX0 (ek tekat) V(kka)
存在一滞后时间(lag time, t0)