【奥赛】2013年第十八届华杯赛决赛中年级(A)卷-试题及解析word版
2013高年级华杯赛决赛A卷答案
解答. 用右图代替题目中的 2 1 小长方形. 因为题目所给的小长方形上下不对称, 所以同一 个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以 只考虑上半部分的不同情形. 1) 相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻 空白格在最右边的情况, 有下图所示的 2 种图形,
12. 答案:不能
解答. 设放的最小自然数为 a , 则放的最大自然数为 a 23 . 于是这 24 个数的和为
A 12(2a 23).
假设可能, 设每个正方形边上的数之和为 S . 因为共有 5 个正方形, 这些和的和为 5S . 因为每个数在这些和中出现两次, 所以有
5S 2 A.
1 1 y 1.5 1.5 y 1.5 4.5 1.5 . 3 6
整理上式得
5 4 y 1.5 6.75 , 6
4 y 5.5 ,
y 1.375 (千米).
综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.
由上面的等式可得, (1)
9 (u1 u 2 u 2010 223 r ) 3r 9 (v1 v 2 v 2012 223 s) 5 s ,
(2)
9 ( w1 w2 w2013 223 t ) 6 t 9 (v1 v 2 v 2012 223 s) 5 s ,
“华杯赛”官网四大类网络课程 √ 专题讲座 √ 赛前串讲 √ 真题详解 √ 月月练讲解
第 2 页 共 5 页
客服电话:400 650 0888 记最小的 16 个数的和为 B , 则 B 8(2a 15) . 下面分两种情形讨论: (1) 若B S , 则
2013年第十八届华杯初赛小学中年级组A卷(含解析)
1.45 与40 的积的数字和是().A.9 B.11 C.13 D.152.在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A.B.3.小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是().A.小东B.小西C.小南D.小北4.2013 年的钟声敲响了,小明的哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份.已知小明哥哥出生的年份是19 的倍数,那么2013 年小明哥哥的年龄是()岁.A.16 B.18 C.20 D.225.如右图,一张长方形的纸片,长20 厘米,宽16 厘米.如果从这张纸上剪下一个长10 厘米,宽5 厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米.20 厘米16厘米二、填空题(每题10 分,满分40 分)7.如图,一个正方形被分成了4 个相同的长方形.每个长方形的周长都是20 厘米.则这个正方形的面积是平方厘米.8.九个同样的直角三角形卡片,拼成了如图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.9.幼儿园的老师给班里的小朋友送来55 个苹果,114 块饼干,83 块巧克力.每样都平均分发完毕后,还剩3 个苹果,10 块饼干,5 块巧克力.这个班最多有位小朋友.10.如图,将长度为9 的线段AB 九等分,那么图中所有线段的长度的总和是.A B1 2 3 4 5A B C B CC.D.6 7 8 9 10D 64 54 26 165参考解析一、选择题(每小题10 分,满分60 分)1.45 与40 的积的数字和是().A9 B.11 C.13 D.15【考点】速算巧算——分清数字与数的概念.【难度】☆☆。
2013年第18届“华杯”总决赛北京赛区选拔考试(初二组第二汇总
2013年第18届“华杯”总决赛北京赛区选拔考试(初二组
第一试)
数学
(初二中第二试,90分钟)
所在中学年级姓名电话
一、填空题(每题10分,共30分)
1.
=________.
2.3572013
S=,则S的个位数字为____________.
2+4+6++2012
8
_____________.
3.
3
二、解答题(每题10分,共30分)
4.已知△ABC的三边长a、b、c满足()()2
,
2
2c
2
2
-
+
+
-
b
c
b
c
a=
a
求证:△ABC是等边三角形.
5. 如图ABCD 是矩形,满足AB=10,BC=12,E 是CD 中点,F 是BE 上一点满足DF AD =.求
四边形ABFD 的面积.
5820169,
倍长
BE ,AF 垂直BE
6. 证明:存在2013个连续正整数均不能表示成b a 形式,其中,a b 为整数且b 大于1.
考虑前42013个数,其中若一个数为整数的幂(非0、1次),显然底数最大为22013 指数小于2013(2013422013>),故这样的数少于32013个,
故将1~42013从小到大每2013个数分为一组,必有一组中所有数都不为整数的幂, 满足条件
F E D C
B A。
【数学】第十八届华杯赛初赛试卷_小学中年级组和高年级组试题各一套(带解析)
第十八届华罗庚金杯少年数学邀请赛初赛试卷C (小学高年级组) 第十八届华罗庚金杯少年数学邀请赛 初赛试卷C (小学高年级组) ( 时间: 2013 年3月23日8:00 ~ 9:00) 一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. ) 1. 如果m n =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029 2. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情: 最终,( )得到的糖水最甜. (A )甲 (B )乙 (C )丙 (D )乙和丙 3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )16 4. 已知正整数A 分解质因数可以写成235A αβγ=⨯⨯, 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么++αβγ的最小值是( ).(A )10 (B )17 (C )23 (D )31装订线总分第十八届华罗庚金杯少年数学邀请赛初赛试卷C(小学高年级组)5.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题 10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书.8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 如果小明上学与放学回家所用的时间比是n(其中m与m n是互质的自然数),那么m+n的值是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
【数学】第十八届华杯赛初赛试卷_小学中年级组
第十八届华罗庚金杯少年数学邀请赛初赛试卷A (小学中年级组)第十八届华罗庚金杯少年数学邀请赛 初赛试卷A (小学中年级组) (时间: 2013 年 3 月 23 日10:00 ~ 11:00) 一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 45与40的积的数字和是( ). (A )9 (B )11 (C )13 (D )15 2. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形. (A ) (B ) (C ) (D ) 3. 小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是( ). (A )小东 (B )小西 (C )小南 (D )小北 4. 2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份. 已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是( )岁.(A )16 (B )18 (C )20 (D )22装订线总分第十八届华罗庚金杯少年数学邀请赛初赛试卷A(小学中年级组)5.如右图, 一张长方形的纸片, 长20厘米, 宽16厘米. 如果从这张纸上剪下一个长10厘米, 宽5厘米的小长方形, 而且至少有一条边在原长方形的边上, 那么剩下纸片的周长最大是()厘米.(A)72 (B)82 (C)92 (D)1026.张老师每周的周一、周六和周日都跑步锻炼20分钟, 而其余日期每日都跳绳20分钟. 某月他总共跑步5小时, 那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一二、填空题(每小题 10 分, 满分40分)7.如右图, 一个正方形被分成了4个相同的长方形, 每个长方形的周长都是20厘米. 则这个正方形的面积是平方厘米.8.九个同样的直角三角形卡片, 拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.9.幼儿园的老师给班里的小朋友送来55个苹果, 114块饼干, 83块巧克力. 每样都平均分发完毕后, 还剩3个苹果, 10块饼干, 5块巧克力. 这个班最多有位小朋友.10.如下图, 将长度为9的线段AB九等分, 那么图中所有线段的长度的总和是.。
2013年第十八届华杯赛中年级组初赛试题
2013年第十八届华杯赛中年级组初赛试题
6.张老师每周的周一、周六和周日都跑步锻炼20分钟,而其余日期每日都跳绳20分钟.某月他总
共跑步5小时,那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一
二、填空题(每小题10分,满分40分)
7.如右图,一个正方形被分成了4个相同的长方形,每个长方形的周长都是20厘米.则这个正方形
的面积是________平方厘米.
8.九个同样的直角三角形卡片,拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大
的一个是________度.
9.幼儿园的老师给班里的小朋友送来55个
苹果,114块饼干,83块巧克力.每样都平均分发完毕后,
还剩3个苹果,10块饼干,5块巧克力.这个班最多有________位小朋友.
10.如下图,将长度为9的线段AB九等分,那么图中所有线段的长度的总和是________.。
第18届华杯赛决赛小中组卷及参考答案
第十八届华罗庚金杯少年数学邀请赛决赛(A)卷【小中组】一、填空题(每小题10分,共80分)1.计算:(2014×2014+2012)-2013×2013=________.2.将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=20°,那么∠2是________度.3.鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有________只.4.第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有________个正方形.图a图b图c5.右面的加法竖式中,相同的汉字代表1至9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有________个.6.大小两个正方体积木粘在一起,构成右图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是________.7.某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生________名.8.见右图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为________.二、简答题(每小题15分,共60分,要求写出简要过程)9.用4个数码4和一些加、减、乘、除号和小括号,写出值分别等于2、3、4、5、6的五个算式.10.右图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?11.某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次,商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?12.编号从1到10的10个白球排成一行,现按照如下方法涂红色:1)涂2个球;2)被涂色的2个球的编号之差大于2,求不同的涂色方法有多少种?第十八届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】一、填空题(每小题10分,共80分)1.解析:【知识点】运算律,平方差公式原式6039201240272012)20132014()20132014(20122013201422=+=+-⨯+=+-=2.解析:【知识点】平面几何o 201=∠=∠CDF ,DCF ∠与CDF ∠互余,则o o o 702090=-=∠DFC ,o 70=∠=∠DFC DFE ,o o o o 4070701802=--=∠。
2013年 第18届 华杯赛中年级复赛试卷分析_61
第十八届华杯赛中年级决赛试卷A 卷(时间:2013年4月20日10:00~11:30)一、填空题(每题10分,共80分)1. 计算:()20142014201220132013_______.⨯+-⨯= 【答案】6039 【考点】平方差公式【分析】原式=20142014201320132012(20142013)(20142013)201220142013201260392. 将长方形的纸片ABCD 按右图的方式折叠后压平,使三角形DCF 落在三角形DEF 的位置,顶点E 恰落在边AB 上.已知∠1=20°,那么∠2是 度.【考点】几何,角度 【答案】40【分析】902070DFC DFE ,218040DFC DFE3. 鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有 只. 【考点】鸡兔同笼 【答案】33【分析】补上8只兔脚(即2只兔),此时鸡兔共42只,那么兔脚数目是鸡脚数目的整10倍,兔的数量是鸡数量的5倍,则鸡有42(51)7 (只),兔有40733 (只).4. 第一次操作将图a 左下角的正方形分为四个小正方形,见图b ;第二次操作再将图b 左下角的小正方形分为四个更小的正方形,见图c ;这样继续下去,当完成第6次操作时,得到的图形中共有 个正方形.2B【考点】操作,找规律 【答案】29【分析】每次操作,将会增加4个小5. 右面的加法竖式中,相同的汉字中“数学”所表示的两位数共有【考点】数字谜 【答案】3【分析】易得 “学习”×3=“数学 “学”作为个位,“习 即17351 ;2436. 大小两个正方体积木粘在一起好是大积木的上底面各边的中点【考点】表面积 【答案】32【分析】大正方形面积是2×2=4;上面看不见处,可将大正方体是462432 .7. 某班学生人数大于20而小于图a个小正方形,所以6次操作后,共54629 的汉字代表1至9的相同数字,而不同的汉字代表不共有 个.”,所以“数学”是两位数,所以学=1、2、3; ”×3后得到学(1、2、3),所以习=7、4、1; 72 ;31393 共3种. 一起,构成右图所示的立体图形,其中小吉姆的下底的中点.如果大积木的棱长为2,那么这个立体图形的;小正方形面积是422 ;将小正方体的最上面方体6个面补全.所以,表面积是6个大正方形和小于30,其中女同学的人数是男同学的2倍.全班报名图c图b(个)正方形. 代表不同的数字.则竖式学习学习学习数学的下底面的四个顶点,恰图形的表面积是 .最上面平移至大正方题的形和4个小正方形的和,班报名参加“华杯赛”的人……数是未报名人数的3倍少1人.这个班有学生 名. 【考点】和差倍、数论 【答案】27【分析】女同学是男同学的2倍,说明总数是3的倍数;报名是未报名的3倍少1人,说明总数+1后是4的倍数; 20~30之间,符合上述两个条件的只有27.8. 见右图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为 .【考点】面积 【答案】9【分析】将三角形均补全为长方形,如右图,我们有“左上×右下=左下×右上”,即左上角长方形面积是30122018 ,阴影三角形面积是1829 .二、简答题(每小题15分,共60分,要求写出简要过程)9. 用4个数码4和一些加、减、乘、除号和小括号,写出值分别为2、3、4、5、6的五个算式. 【考点】巧填算符 【分析】44442 (444)43 4(44)44 (444)45 (44)446(此题答案不唯一,只要正确均可)10. 右图是U ,V ,W ,X 四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米??121030【考点】简单统计【答案】1950【分析】由图表,得U:100千米消耗20升油,5千米消耗1升油,50升可以跑450200(千米);V:100千米消耗25升油,4千米消耗1升油,50升可以跑450200千米);W:100千米消耗5升油,20千米消耗1升油,50升可以跑20501000(千米);X:100千米消耗10升油,10千米消耗1升油,50升可以泡1050500(千米);总计:25020010005001950(千米).11.某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次,商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?【考点】组合,最值【答案】226【分析】要让卖出钢笔数多,则每支钢笔的获利要尽量少.如果不促销,每支钢笔获利9元,4支钢笔获利9436(元);如果促销,4支钢笔获利94234(元);34<36,所以应采取促销方式可以尽量多卖出钢笔.1922345618最多可以卖出5642226(支).12.编号从1到10的10个白球排成1行,现按照如下方法涂红色:1)涂2个球;2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?【考点】字典排列【答案】28【分析】按字典排列法分类讨论:(1)如果较小号球为1,则有14,15,16,17,18,19,1 10共7种;(2)如果较小号球为2,则有25,26,27,28,29,2 10共6种;(3)如果较小号球为3,则有36,37,38,39,3 10共5种;(4)如果较小号球为4,则有47,48,49,4 10共4种;(5)如果较小号球为5,则有58,59,5 10共3种;(6)如果较小号球为6,则有69,6 10共2种;(7)如果较小号球为7,则有7 10共1种.总计765432128(种).。
第十八届华杯赛决赛中年级(A)卷-试题及解析word版.docx
文档仅供参考总分第十八届华罗庚金杯少年邀请赛决赛试题 A (小学中年级组)(时间 2013年4月20日10:00~11:30)一、填空(每小10分, 共 80分)1.算 : (2014 × 2014+2012)-2013 × 2013________.解析: (2014 × 2014+2012)-2013 × 2013=( 2013+1)×( 2013+1 )+2013— 1-2013 × 2013=2013×2013+2013+2013+1+2013-1-2013 × 2013=6039考中最直接的方法,死算也OK。
2.将方形的片 ABCD按右的方式折叠后平 , 使三角形 DCF 落在三角形DEF 的位置 , 点 E恰落在 AB上 . 已知∠ 1= 20°, 那么∠2是 ________度.解析:因翻折,∠CFD= ∠ EFD=90°-20 °=70°∠2=180°-70 °-70 °=40°3.兔同 , 共有 40个 , 兔脚的数目比脚的数目的10倍少 8只 , 那么兔有 ________只 .解析:逼近法列表枚,由于兔脚是脚的 9倍多,而兔数量相同,兔脚是脚两倍,因此兔比多,我可以假兔有 35只,上下整,得答案兔子353433兔脚140136132脚101214兔脚与脚的倍数>10倍>10 倍可列方程求解。
兔有x只,有( 40-x )只,根据脚的倍数关系可列方程:4x+8=10 × 2×( 40-x )解得 x=33。
4.第一次操作将 a左下角的正方形分四个小正方形 , b; 第二次操作再将 b左下角的小正方形分四个更小的正方形 , c; 下去 , 当完成第六次操作 , 得到的形中共有________个正方形 .⋯a b c解析:找律。
第十八届华杯赛总决赛试题
第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。
求三角形ABC 的面积。
的面积。
等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。
问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。
写出这样的三个连续自然数。
被5整除,最大的能被7整除。
写出这样的三个连续自然数。
必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。
2013年华杯赛初一试题(A)卷详细解析word版
第十八届华罗庚金杯少年邀请赛初赛试题A (初一组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1. 下列的结论中, 正确的有( )个:① 两个正数的和一定是正数; ② 两个正数的差可以是正数; ③ 两个负数的和一定是负数; ④ 两个负数的差可以是负数。
A .1 B .2 C .3 D .4解析:①、③正确, ②两个正数的差可以是正数、0、负数;④ 两个负数的差可以是负数,也可以是正数,如-1-(-2)=1。
所以答案为D 。
2. 从—6,—4,—3,—2,—1,3,6中任取两个数相乘, 所得积中的最大值记为a , 最小值记为b , 那么b a的值为( )。
A .32- B .43-C .-1D .32解析:积中的最大值记为(-6)×(-4)=24, 最小值记为(-6)×6=-36, 那么b a 的值为32-。
答案为A 。
3.将∙∙∙∙⨯352323.0342.0乘积化为小数, 小数点后第2014位数字是( )。
A .0 B .7 C .9D .1解析:分数与循环小数的互化,周期问题。
,379999243342.0==∙∙==∙∙9999903-325233352323.03333310841,∙∙∙∙⨯352323.0342.0=379×3333310841=∙∙=17910.011111897 2014÷5=402…4,所以第2014位的数字是1。
4.如果a 、b 、c 都是大于21-的负数, 那么下列式子成立的是( )。
A .a+c-b<0B .a 2-b 2-c 2>0 C .abc>81- D .∣abc ∣81>解析:,)()(030152--301-31->=+A 错;,041--31--101-222<⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ B 错;︳a ︱<21, ︳b ︱<21,︳c ︱<21,︳abc ︱<81,因为a 、b 、c 都是负数,所以abc>81-;D 错,答案为C 。
a2013年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版
总分第十八届华罗庚金杯少年邀请赛决赛试题 A (小学高年级组)(时间 2013年4月20日10:00~11:30)一、填空(每小10 分,共80分)1.算 : 19 × 0.125+281 ×1-12.5=________.8分析:原式 =( 19+281-100 )× 0.125=200×0.125=252.‘逢冬数九’ 的是,从冬至之日起,每九天赋一段,挨次称之一九,二九,⋯⋯ ,九九 ,冬至那一天是一九的第一天. 2012年 12月 21日是冬至 ,那么2013年的元旦是________九的第________天 .分析: 31-21+1+1=12,12 ÷9=1⋯ 3, 2013年的元旦是二九的第3天.3.某些整数分被3579所得的商化作分数, 分数部分分是22225,,,除后 ,3,,, , 7911579足条件且大于1的最小整数是 ________.分析:整数 A,分被3579所得的商分579115,,,除后 ,3A, A,A, A ;79115795257A 12792911211A 1(A 1),5( A 1), A 17( A 1), A 19( A 1)333557799然,当 A-1 是 [3 , 5, 7,9] 的候足意。
因此A-1=315 , A=316。
4.如右 , 在 12厘米的正方形ABCD中 ,以 AB底作腰10厘米的等腰三角形. 三角形的面等于 ________平方厘米 .PAB PAC分析 : P点做 PE⊥ AB, 因为三角形PAB为等腰三角形,因此AE=EB=6cm。
依据勾股定理: PE2=102-6 2=64=82,因此 PE=8cm。
S△ PAB=12× 8÷2=48cm2,S△ PCB=12× 6÷ 2=36cm2,ES△ PAC=48+36-12× 12÷ 2=12 cm2。
【数学】第十八届华杯赛初赛试卷_小学中年级组
第十八届华罗庚金杯少年数学邀请赛初赛试卷A (小学中年级组)第十八届华罗庚金杯少年数学邀请赛 初赛试卷A (小学中年级组) (时间: 2013 年 3 月 23 日10:00 ~ 11:00) 一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 45与40的积的数字和是( ). (A )9 (B )11 (C )13 (D )15 2. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形. (A ) (B ) (C ) (D ) 3. 小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是( ). (A )小东 (B )小西 (C )小南 (D )小北 4. 2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份. 已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是( )岁.(A )16 (B )18 (C )20 (D )22装订线总分第十八届华罗庚金杯少年数学邀请赛初赛试卷A(小学中年级组)5.如右图, 一张长方形的纸片, 长20厘米, 宽16厘米. 如果从这张纸上剪下一个长10厘米, 宽5厘米的小长方形, 而且至少有一条边在原长方形的边上, 那么剩下纸片的周长最大是()厘米.(A)72 (B)82 (C)92 (D)1026.张老师每周的周一、周六和周日都跑步锻炼20分钟, 而其余日期每日都跳绳20分钟. 某月他总共跑步5小时, 那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一二、填空题(每小题 10 分, 满分40分)7.如右图, 一个正方形被分成了4个相同的长方形, 每个长方形的周长都是20厘米. 则这个正方形的面积是平方厘米.8.九个同样的直角三角形卡片, 拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.9.幼儿园的老师给班里的小朋友送来55个苹果, 114块饼干, 83块巧克力. 每样都平均分发完毕后, 还剩3个苹果, 10块饼干, 5块巧克力. 这个班最多有位小朋友.10.如下图, 将长度为9的线段AB九等分, 那么图中所有线段的长度的总和是.。
第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组a卷)
2013年第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)一、填空题(每小题10分,共80分)1.(10分)计算:(2014×2014+2012)﹣2013×2013 .2.(10分)将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF 落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=22°,那么∠2是度.3.(10分)鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有只.4.(10分)第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有个正方形.5.(10分)如图加法竖式中,相同的汉字代表1至 9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有个.6.(10分)大小两个正方体积木粘在一起,构成如图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是.7.(10分)某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生名.8.(10分)如图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)用四个数字4和一些加、减、乘、除号和括号,写出四个分别等于3、4、5和6的算式.10.(15分)如图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?11.(15分)某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?12.(15分)编号从1到10的10个白球排成一行,现按照如下方法涂红色:(1)涂2个球;(2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?2013年第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:(2014×2014+2012)﹣2013×2013 6039 .【分析】把2014看作2013+1,把2012看作2013﹣1,进行简算即可.【解答】解:(2014×2014+2012)﹣2013×2013=[(2013+1)×(2013+1)+(2013﹣1)]﹣2013×2013=(2013+1)×(2013+1)+2013﹣1﹣2013×2013=2013×2013+2013+2013+1+2013﹣1﹣2013×2013=(2013×2013﹣2013×2013)+(1﹣1)+(2013+2013+1+2013)=6039.故答案为:6039.2.(10分)将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF 落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=22°,那么∠2是44 度.【分析】由题意可知:因为是翻折,∠CFD应该和∠EFD相等,又因∠DEF 等于90°,∠1=22°,于是利用三角形的内角和定理即可求出∠DFE的度数,又因∠CFD和∠EFD和∠2构成了一个平角,平角是180°,据此即可求出∠2的度数.【解答】解:因为翻折,∠CFD=∠EFD=90°﹣22°=68°,∠2=180°﹣68°﹣68°=44°.故答案为:44.3.(10分)鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有33 只.【分析】设兔有x只,则鸡有(40﹣x)只,根据脚的倍数关系:兔脚的数=鸡脚的数×10倍+8只,可列方程解答即可.【解答】解:设兔有x只,则鸡有(40﹣x)只,根据脚的倍数关系可列方程:4x+8=10×2×(40﹣x)4x+8=800﹣20xx=33答:兔子有33只.故答案为:33.4.(10分)第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有29 个正方形.【分析】图a有5个正方形,以后每次操作将一个正方形数目变成四个小正方形,每次增加4个正方形.所以答案为5+6×4=29.【解答】解:5+6×4=29.故答案为:29.5.(10分)如图加法竖式中,相同的汉字代表1至 9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有 3 个.【分析】根据“学+学+学”没有进位,可知“学”只有3种可能.“学”=1,“学习”=17,“数学”=51;“学”=2,“学习”=24,“数学”=72;“学”=3,“学习”=31,“数学”=93.竖式中的“数学”所表示的两位数共有3个.【解答】解:根据题干分析可得:所以数学表示的两位数是51或72或93,一共有3个.答:竖式中的“数学”所表示的两位数共有 3个.故答案为:3.6.(10分)大小两个正方体积木粘在一起,构成如图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是32 .【分析】如图,因为小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点,所以大正方体一个面的面积是小正方体一个面的面积的2倍.因此,这个立体图形的表面积是大正方体的表面积加上小正方体四个面的面积.据此解答.【解答】解:6×2×2+4×(2×2÷2)=24+4×2=24+8=32.答:这个立体图形的表面积是32.故答案为:32.7.(10分)某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生27 名.【分析】女同学的人数是男同学的2倍,所以全班人数是3的倍数,全班人数只能是21,24,27;全班报名参加“华杯赛”的人数是未报名人数的3倍少1人,所以全班人数加1人,是4的倍数;检验的全班人数为27人.【解答】解:根据分析知:全班人数是3的倍数,全班人数只能是21,24,27;全班报名参加“华杯赛”的人数是未报名人数的3倍少1人,所以全班人数加1人,是4的倍数;检验的全班人数为27人.故答案为:27.8.(10分)如图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为9 .【分析】如下图所示:OA×OC=30,OD×OF=12,将两个式子的等号的两边分别相乘,得出OA×OC×OD×OF=30×12,而OC×OD=10×2=20,由此得出OA×OF,进而求出阴影三角形的面积.【解答】解:因为OA×OC=30,OD×OF=12,所以OA×OC×OD×OF=30×12=360.又因为OC×OD=10×2=20,所以OA×OF=360÷20=18.所以S△AGF=GF•AG=OA•OF=×18=9;答:阴影三角形的面积为9.故答案为:9.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)用四个数字4和一些加、减、乘、除号和括号,写出四个分别等于3、4、5和6的算式.【分析】因为12÷4=3,4+4+4=12,所以可以写成(4+4+4)÷4=3;因为4×(4﹣4)=0,4﹣0=4,所以可以写成4﹣(4﹣4)×4=4;因为4×5=20,20÷4=5,所以可以写成(4×4+4)÷4=5;因为2+4=6,(4+4)÷4=2,所以可以写成(4+4)÷4+4=6.【解答】解:(4+4+4)÷4=3;4﹣(4﹣4)×4=4;(4×4+4)÷4=5;(4+4)÷4+4=6;10.(15分)如图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?【分析】根据统计图所提供的信息,可以看出每种车每百千米的耗油量,用50(升)除以每种车的百千米耗油量(升),就是每种车行驶的路程,把四辆车行驶的路程相加即可.【解答】解:(50÷20+50÷25+50÷5+50÷10)×100=(2.5+2+10+5)×100=19.5×100=1950(千米)答:这四辆车最多可行驶的路程总计是1950千米.11.(15分)某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?【分析】根据题意,“买4支钢笔赠送一个小熊玩具”这样卖4支钢笔实得利润9×4﹣2=34元,要这次促销钢笔卖出最多,则要求尽量打包销售.由此可以求出1922是34的多少倍就是打包卖出多少个4支,进而求出最多卖出多少支钢笔.据此解答.【解答】解析:要这次促销钢笔卖出最多,则要求尽量打包销售.1922÷(4×9﹣2)=1922÷34=56(倍)…18(元);18÷9=2(支);56×4+2=224+2=226(支).答:这次促销最多卖出了226支钢笔.12.(15分)编号从1到10的10个白球排成一行,现按照如下方法涂红色:(1)涂2个球;(2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?【分析】本题采用枚举法,令被涂色的第一个球的编号小于第二个球的编号,由于8+2=10,要使编号之差大于2,所以第二个球编号最大是7,那么第一个球可以是1~7号中的任意一个,由此进行逐个情况讨论,最后再把各种情况的种数相加即可.【解答】解:第一个球涂1号,则另一个球可涂4~10;有7种不同的情况;第一个球涂2号,则另一个球可涂5~10;有6种不同的情况;第一个球涂3号,则另一个球可涂6~10;有5种不同的情况;第一个球涂4号,则另一个球可涂7~10;有4种不同的情况;第一个球涂5号,则另一个球可涂8~10;有3种不同的情况;第一个球涂6号,则另一个球可涂9~10;有2种不同的情况;第一个球涂7号,则另一个球可涂10;有1种不同的情况;所以,不同的涂色方法有:7+6+5+4+3+2+1=28(种).答:不同的涂色方法有28种.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:52:49;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
第十八届华杯赛决赛答案小中A
第十八届华罗庚金杯少年数学邀请赛决赛试题A参考答案(小学中年级组)一、填空题(每题10 分, 共80分)二、简答题(每题15 分, 共60分, 要求写出简要过程)9.解答. 例如++÷=;44442÷+÷=; (444)43⨯+÷=4(44)46++÷=.+-⨯=;(444)4 5.4(44)44(说明:答案不惟一, 每个式子3分).10.答案:1950解答.U车行驶(5020)100250÷⨯=(千米),V车行驶(5025)100200÷⨯=(千米),W车行驶(505)1001000÷⨯=(千米),X 车行驶(5010)100500÷⨯=(千米).4辆车最多可行驶的路程总计是250+200+1000+500=1950(千米). (说明:本题共5步, 每个式子做对得3分).11.答案:226解答. 卖出一个打包促销, 可赚 94234⨯-=元, 而1922÷34=56……余18, 说明, 钢笔有按每支9元利润单支零售的. ……(5分)即 1922345692=⨯+⨯, 即最多可卖出56包外加零售2支钢笔, 共计4562226⨯+=支钢笔. ……(10分)如果少买1包(4只)钢笔, 即少赚34元, 这时零售多4支可赚36元, 要保持1922这个定值, 零售就要不足4支(739支), 总支数就要减少724399-=支. 当打包减少9包时, 要保持1922这个定值, 零售总支数就要减少2支.……(13分)因此, 打包销售最多为56包时, 销售出钢笔的总支数最多, 为226支.……(15分)12. 答案:28解答. 设被染色的每两个球中的小号码为k , 则k 取值1, 2, 3, 4, 5, 6, 7. 另一个被染色的球的号码可能是 3,4,,10.k k ++ ……(3分)采用列举法:k =1时, (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), 共7种;k =2时, (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), 共6种;k =3时, (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), 共5种;k =4时, (4, 7), (4, 8), (4, 9), (4, 10), 共4种;k =5时, (5, 8), (5, 9), (5, 10), 共3种;k =6时, (6, 9), (6, 10), 共2种;k =7时, (7, 10). 共1种.不同的染法数为1+2+3+4+5+6+7 = 28 (种). ……(15分)。
【数学】第十八届华杯赛初赛试卷_小学中年级组
第十八届华罗庚金杯少年数学邀请赛初赛试卷A (小学中年级组)第十八届华罗庚金杯少年数学邀请赛初赛试卷A (小学中年级组) (时间: 2013 年 3 月 23 日10:00 ~ 11:00) 一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 45与40的积的数字和是( ). (A )9 (B )11 (C )13 (D )15 2. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形. (A ) (B ) (C ) (D ) 3.小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是( ).(A )小东 (B )小西 (C )小南 (D )小北4.2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份. 已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是( )岁.(A )16 (B )18 (C )20 (D )22装订线总分第十八届华罗庚金杯少年数学邀请赛初赛试卷A(小学中年级组)5.如右图, 一张长方形的纸片, 长20厘米, 宽16厘米. 如果从这张纸上剪下一个长10厘米, 宽5厘米的小长方形, 而且至少有一条边在原长方形的边上, 那么剩下纸片的周长最大是()厘米.(A)72 (B)82 (C)92 (D)1026.张老师每周的周一、周六和周日都跑步锻炼20分钟, 而其余日期每日都跳绳20分钟. 某月他总共跑步5小时, 那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一二、填空题(每小题 10 分, 满分40分)7.如右图, 一个正方形被分成了4个相同的长方形, 每个长方形的周长都是20厘米. 则这个正方形的面积是平方厘米.8.九个同样的直角三角形卡片, 拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.9.幼儿园的老师给班里的小朋友送来55个苹果, 114块饼干, 83块巧克力. 每样都平均分发完毕后, 还剩3个苹果, 10块饼干, 5块巧克力. 这个班最多有位小朋友.10.如下图, 将长度为9的线段AB九等分, 那么图中所有线段的长度的总和是.。
第十八届华杯赛决赛答案_初二A
第十八届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(初二组)一、填空(每题 10 分, 共80分)二、解答下列各题(每题 10 分, 共40分, 要求写出简要过程)解答. 例如 74444=++÷, 74444=++÷,74444=÷-+, 74444=-÷, 74444=÷-⨯.9. 答案:61解答. 设成活a 棵, 没有成活b 棵, 未完成植树c 棵. 则⎩⎨⎧=+--=+)2(27113023)1(27125 c b a b a 由(1)可知, a 是奇数, 且54≤a ; 由(2)可知, 47≥a . 下面对 53,51,49,47=a 进行试算, 求得整数解:9,18,47-===c b a ,(不合要求);5.3,13,49-===c b a ,(不合要求);;612851,2,8,51=++=++===c b a c b a 5.7,3,53===c b a ,(不合要求).可见, 植树任务数是61.10. 答案:83 解答. 作BC 边上的高AD , AD 也是A ∠的平分线. AD 交EF 于P . 于是,9030=∠=∠=∠=∠EHB APE BEH EAP设x AE =, 则x AP x EP x EB 23,21,1==-=. 因此, )1(23)1(212321x x x x S FGC EHB AEF --+⨯=∆+∆+∆ []⎥⎦⎤⎢⎣⎡+-=+-=-+=41)21(23)21(23)1(432222x x x x x 由此可见, 当21=x 时, 上述三角形面积和最小, 从而内接矩形EFGH 的面积最大. 此时, 1:=EB AE . 连结ED 和FD , 容易知道,S □EFGH =8323141212121=⨯⨯=⨯⨯⨯=∆AD BC S ABC . 11. 答案:1003解答. 将2013个数分成如下1009组:(2013,35), (2012,36), …, (1025,1023), (1024),(34,30), (33,31), (32), (29,3), (28,4), …, (17,15), (16), (2), (1),其中有1004组中每组都有两个数, 且这两个数之和是2的幂次, 若擦剩下的数的个数大于等于1010, 由抽屉原理知, 必然有一组中两个数都被剩下了, 那么这两数和为2的幂次, 所以擦去1003个数满足题目要求. 如果擦去1004个数, 即剩下1009个数, 我们取这1009组中每一组的较大数, 那么显然这些数的任意两个之和都不是2的幂次, 故不满足题意, 所以最多擦去1003个数.三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)12. 解答. 连接AK. 先证 AM=CK .CK ACK ACN CD ACD ABD ∆∆==∆∆的面积的面积的面积的面积ABN AMD AM ABD ABD AB∆∆===∆∆的面积的面积的面积的面积. 因为CD=AB ,所以AM=CK . 连接OM ,OK ,ON . 则 △OMA ≌△OKC. 所以 .MOA KOC ∠=∠ 因此180,MOA AOK KOC AOK ∠+∠=∠+∠=所以M ,O ,K 共线,ON 是 △KNM 的中线,所以△ONM 的面积=△OKN 的面积.但△NMB 的面积=△ONM 的面积,△NKC 的面积=△ONK 的面积.所以△ONM 的面积=△OKC 的面积. 因此,三角形NMB 与NKC 等积.13. 87,841,833,81 解答. 若0≤x , 则0878878281][02>+=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++≥x x x x x , 矛盾. 所以 0>x .由带余除法,)70(,181]8[88]8[≤≤++=+<≤+=r r q x x r q x .所以818++<≤+r q x r q . 对于70≤≤i , 8188+++<+≤++i r q i x i r q . 当r i -≤7时,即 181≤++i r . 有q i x =⎥⎦⎤⎢⎣⎡+8.当18≥+i r 时,即 r i -≥≥87, 有18+=⎥⎦⎤⎢⎣⎡+q i x . 所以 ].8[8)1()8(87888781][x r q q r q r x r x r x x x =+=++-=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡++因此 878]8[2+=x x . (*) 因为 ()7}8{]8[7)8(764]8[8222++=+=+=x x x x x ,()8]8[2]8[71]8[]8[87]8[222++=++<≤+x x x x x , 所以 07]8[8]8[2≤+-x x , 08]8[6]8[2<+-x x . 由上面第一个式子得到, 0)7]8)([1]8([≤--x x , 7]8[1≤≤x ;由上面第二个式子得到, 0)3]8)([2]8([>--x x , 2]8[<x 或 4]8[>x . 因此7,6,5,1]8[=x .将]8[x 可以取的四个值分别代入 (*) 式, 解得大于0的x 分别为87,841,833,81.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1922÷(4×9-2)=56…18;18÷9=2;56×4+2=226。
.编号从1到10的10个白球排成一行,现按照如下方法涂红色: 1)涂2个球; 2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?
解析:枚举法。
第一个球涂1号,则另一个球可涂4~10;第一个球涂2号,则另一个球可涂5~10;
(3பைடு நூலகம்÷2)×(12÷2)÷10=9
二、简答题(每小题15分,共60分,要求写出简要过程)
.用4个数码4和一些加、减、乘、除号和小括号,写出值分别等于2、3、4、5、6的五个算式.
解析:4÷4+4÷4=2,(4+4+4)÷4=2,4+(4-4)÷4=4,(4×4+4)÷4=5,4+(4+4)÷4=6
解析:女同学的人数是男同学的2倍,所以全班人数是3的倍数,全班人数只能是21,24,27;全班报名参加“华杯赛”的人数是未报名人数的3倍少1人,所以全班人数加1人,是4的倍数;检验的全班人数为27人。
.见右图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为________.
解析:如图,根据交叉相差积相等,阴影三角形的面积为
总分
第十八届华罗庚金杯少年邀请赛
决赛试题A(小学中年级组)
(时间2013年4月20日10:00~11:30)
一、填空题(每小题10分,共80分)
.计算:(2014×2014+2012)-2013×2013________.
解析:(2014×2014+2012)-2013×2013
=(2013+1)×(2013+1)+2013—1-2013×2013
=2013×2013+2013+2013+1+2013-1-2013×2013
=6039
考试中最直接的方法,死算也OK。
.将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF落
在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=20°,那么
∠2是________度.
解析:因为翻折,∠CFD=∠EFD=90°-20°=70°
解析:找规律。图a有5个正方形,以后每次操作将一个正方形数目变成四个小正方形,每次增加4个正方形。所以答案为5+6×4=29。
本题略有点歧义。如果图a中认为有4个正方形,则答案为4+6×3=22。题意在两种理解都合理的情况下,竞赛不能让学生去猜题意应该是那种理解。
.右面的加法竖式中,相同的汉字代表1至9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有________个.
解析:如右图,因为小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点。大正方体一个面的面积是小正方体一个面的面积的2倍。
这个立体图形的表面积是大正方体的表面积加上四个小正方体一个面的面积。
所以答案为:6×2×2+4×(2×2÷2)=32。
.某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生________名.
第一个球涂3号,则另一个球可涂6~10;第一个球涂4号,则另一个球可涂7~10;
第一个球涂5号,则另一个球可涂8~10;第一个球涂6号,则另一个球可涂9~10;
第一个球涂6号,则另一个球可涂10;
所以,不同的涂色方法有7+6+5+4+3+2+1=28种。
∠2=180°-70°-70°=40°
.鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有________只.
解析:逼近法列表枚举,由于兔脚是鸡脚的9倍多,而鸡兔数量相同时,兔脚是鸡脚两倍,因此兔比鸡多,我们可以假设兔有35只,上下调整,检验得答案
兔子
35
34
33
兔脚
140
136
.右图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?
解析:(50÷20)×100+(50÷25)×100+(50÷5)×100+(50÷10)×100
=250+200+1000+500
=1950
.某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?
132
鸡脚
10
12
14
兔脚与鸡脚的倍数
>10倍
>10倍
可列方程求解。设兔有x只,则鸡有(40-x)只,根据脚的倍数关系可列方程:
4x+8=10×2×(40-x)
解得x=33。
.第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有________个正方形.
解析:根据“学+学+学”没有进位,可知“学”只有3种可能。
“学”=1,“学习”=17,“数学”=51;
“学”=2,“学习”=24,“数学”=72;
“学”=3,“学习”=31,“数学”=93。
竖式中的“数学”所表示的两位数共有3个.
.大小两个正方体积木粘在一起,构成右图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是________.