仪器分析知识总结(改进版)

合集下载

《仪器分析》知识点整理

《仪器分析》知识点整理

《仪器分析》知识点整理仪器分析是能够通过测定和检测有机物质及其组分,为生产及生命细胞功能的研究奠定基础的科学技术。

它不仅可用于监控食品安全和分析工业产品的质量,还可以用于环境保护、司法活动、医学研究和生物制药等领域。

简言之,仪器分析能够深入解析物质结构,并能准确地测定出它们的组成成分和物理特性。

仪器分析可通过多种方式来完成,包括光谱分析、质谱分析、气相色谱分析、电化学分析、热分析等。

光谱分析是一种无需设备和物质剥离的测量方式,可用于识别及估算物质含量。

质谱分析主要用于对一般大小分子结构的分析,并可以提取物质的含量,直接检测有机物质的组成成分。

气相色谱分析是将混合物分别析出为独立的组分,可用于测定组成成分的含量、实现体积和结构分析。

而电化学分析则主要用于测定电解质,例如氯化物的含量等。

热分析是一种重点以获得热力学数据的分析方式,可以测定原料中的化合物,以确定温度不稳定的有机物的组成。

仪器分析的主要仪器有光谱仪、质谱仪、气体色谱仪、电化学仪器和热分析仪。

光谱仪可以用于测量和分析电磁波的电磁辐射,用来分析吸收信号以确定分子结构等。

质谱仪主要用于准确测定底物组成,也可用来分析有机物质的构造。

气体色谱仪通过将样品分解混合气体进行检测、定量和测定,用于分离具有不同碳同位素的分子,从而鉴定其组成。

而电化学仪器主要是通过测量电化学反应所产生的电流等反应的电化学势来确定含量,在对腐蚀性、腐蚀强度等进行分析时特别有效。

热分析仪是用于测量和分析物质受热时的物理和化学性质、热特性及微观结构变化的仪器。

仪器分析结果可以用于食品安全和食品质量的评估,也可以用于可靠性检测、分子诊断、污染检测、药物研究和化学研究、金属分析等多种检测领域。

仪器分析有利于将其结果与基于化学反应的分析结果结合起来,从而可以获得更精确的分析结果,扩大视野,找出新的可见物质和未知物质,以及研究它们的物理特性和化学属性。

仪器分析 知识点总结

仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。

其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。

2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。

在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。

在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。

在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。

二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。

其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。

红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。

其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。

质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。

3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。

其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。

气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。

4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。

其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。

离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。

三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。

仪器分析考试知识点总结

仪器分析考试知识点总结

仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。

2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。

3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。

二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。

2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。

3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。

四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。

2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。

五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。

仪器分析总结

仪器分析总结

仪器分析总结本文将从以下几个方面对仪器分析进行总结:仪器分类、常用技术、实验流程、数据分析、应用领域。

一、仪器分类仪器分类多种多样,常见的有光谱仪、色谱仪、质谱仪、电化学分析仪等。

光谱仪按照波长范围可分为紫外-可见分光光度计、红外光谱仪等;按照检测原理可分为吸收光谱、荧光光谱、旋光光谱等。

色谱仪按照工作方式可分为气相色谱仪、液相色谱仪等;按照分离原理可分为固相微萃取、超临界流体色谱等。

质谱仪按照离子种类可分为电子轰击质谱仪、飞行时间质谱仪等;按照分离原理可分为气相质谱仪、液相质谱仪等。

二、常用技术1. 气相色谱-质谱联用技术:将气相色谱仪和质谱仪相结合,用于分析挥发性有机化合物、药物、天然产物等,具有高灵敏度和高分辨率的特点。

2. 变温核磁共振技术:在核磁共振技术的基础上,引入温度变化,探测材料在不同温度下的性质变化,可用于分析合金材料、聚合物、催化剂等。

3. 红外光谱技术:通过分析化学物质在特定波长范围内的吸收和散射,可确定样品的分子结构和化学键等特性,用于分析材料、生物样品、药物等。

三、实验流程1. 样品制备:将待分析的样品进行制备和处理,包括去除杂质、提取和纯化等步骤。

2. 仪器设置:根据待分析的物质和分析技术的要求进行仪器的设置和操作。

3. 实验操作:将样品加入到仪器系统中,进行分析和记录数据。

四、数据分析数据分析包括定量分析和定性分析。

定量分析通常使用标准曲线法和内标法,通过与标准样品和内部参考物的比较确定待分析物质的浓度。

定性分析则通过分析谱图、峰位和峰形等特征,结合相关知识和经验,确定待分析物质的结构和性质。

五、应用领域仪器分析广泛应用于材料科学、环境监测、药物研发等领域。

例如在材料科学中,通过分析多种多样的材料的成分和结构等性质,可以用于材料的研究和开发。

在环境监测中,通过检测大气、水、土壤等中的污染物质,可用于环境监测和管理。

在药物研发中,则通过对药物成分和性质的研究,结合药物分子与生物体互作的特性,用于药物的研究和开发。

(完整版)仪器分析重点知识点整理

(完整版)仪器分析重点知识点整理

仪器剖析要点知识点整理一,名词解说。

汲取光谱:指物质对相应辐射能的选择性汲取而产生的光谱吸光度( A):是指光芒经过溶液或某一物质前的入射光强度与该光芒经过溶液或物质后的透射光强度比值的以10 为底的对数A=abc =lg( I0/It )透光率 (T):透射光强度与入射光强度之比T=I0/It摩尔吸光系数 (ε ):物质对某波长的光的汲取能力的量度,(如浓度 c 以摩尔浓度(mol/L) 表示则 A=ε bc)物理意义:溶液浓度为1mol/L, 液层厚度为1cm 时的吸光度百分吸光系数(E1cm1%):物质对某波长的光的汲取能力的量度,(如浓度 c 以质量百分浓度(g/100ml), 则 A=E1cm1%bc)物理意义:溶液浓度为1g/100ml, 液层厚度为1cm 时的吸光度发色团:有机化合物分子构造中含有π→π * 或 n→π * 跃迁的基团,能在紫外可见光范围内产生汲取助色团:含有非键电子的杂原子饱和基团,自己不可以汲取波长大于200nm 的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的汲取峰向长波挪动,并使汲取强度增添的基团红移(长移):由代替基或溶剂效应等惹起的汲取峰向长波长方向挪动的现象蓝移(短移):由代替基或溶剂效应等惹起的汲取峰向短波长方向挪动的现象浓色效应(添色效应 ):使化合物汲取强度增添的效应浅色效应(减色效应):使化合物汲取强度减弱的效应汲取带:紫外 -可见光谱为带状光谱,故将紫外-可见光谱中汲取峰称为汲取带R 带: Radikal(基团 ) ,是由n →π * 跃迁惹起的汲取带K 带: Konjugation( 共轭作用 ),是由共轭双键中π→π* 跃迁惹起的汲取带B 带: benzenoid( 苯的 ),是由苯等芬芳族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π * 跃迁惹起的汲取带,芬芳族化合物特点汲取带E 带:也是芬芳族化合物特点汲取带,分为E1、E2紫外汲取曲线(紫外汲取光谱):最大汲取波长λmax:汲取曲线上的汲取峰所对应的波长最小汲取波长λmin: 汲取曲线上的汲取谷所对应的波长尾端汲取:汲取曲线上短波端只体现强汲取而不可峰形的部分试剂空白:指在同样条件下不过不加入试样溶液,而挨次加入各样试剂和溶液所获取的空白溶液试样空白:指在与显色同样条件下取同样量试样溶液,不过不加显色剂所制备的空白溶液溶剂空白 ;指在测定入射波长下,溶液中只有被测组分对光有汲取,而显色剂或其余组分对光没有汲取或有少量汲取,但所惹起的测定偏差在同意范围内,此时可用溶剂作为空白溶液荧光:物质分子汲取光子能量而被激发,而后从激发态的最低振动能级返回到基态时所发射出的光分子荧光:?荧光效率:激发态分子发射荧光的光子数与基态分子汲取激发光的光子数之比多普勒变宽:因为原子的无规则热运动而惹起的谱线变宽,用Δν D 表示谱线轮廓:原子光谱理论上产生线性光谱,汲取线应是很尖利的,但因为各种原由造成谱线拥有必定的宽度,必定的形状,即谱线轮廓半宽度(Δν):是指峰高一半( K0/2)时所对应的频次范围峰值汲取系数:汲取线中心频次所对应的峰值汲取系数?共振汲取线:原子的最外层电子从基态跃到第一激发态所产生的汲取谱线,最敏捷的谱线内标法:选择样品中不含有的纯物质作为比较物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对照,测定待测组分含量的方法外标法:用待测组分的纯品作标准品,在同样条件下以标准品和样品中待测组分的响应信号对比较进行定量的方法背景扰乱:主假如原子化过程中所产生的连续光谱扰乱,前方光谱扰乱中已详尽介绍,它主要包含分子汲取、光的散射及折射等,是光谱扰乱的主要原由物理扰乱:指试样在转移、蒸发和原子化过程中,因为试样任何物理特征(如密度、粘度、表面张力 )的变化而惹起的原子汲取强度降落的效应光谱扰乱:因为剖析元素的汲取线与其余汲取线或辐射不可以完整分别所惹起的扰乱原子汲取光谱:?保护剂:作用于与被测元素生成更稳固的配合物,防备被测元素与扰乱组分反响开释剂:作用于与扰乱组分形成更稳固或更难发挥的化合物,以使被测元素开释出来红外线 :波长为 0.76-500um 的电磁波红外光谱:又称分子振动转动光谱,属分子汲取光谱。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

仪器分析知识点总结

仪器分析知识点总结

仪器分析知识点总结一、仪器分析的基本原理1.1 光谱学光谱学是仪器分析中的一种常用分析方法,主要包括紫外-可见吸收光谱、红外光谱、荧光光谱、原子吸收光谱等。

它通过物质在特定波长的光线下产生的吸收、发射、散射等现象来分析物质的成分或性质。

在实际应用中,紫外-可见吸收光谱常用于药物、食品、环境样品的分析;红外光谱常用于有机物的鉴定;荧光光谱常用于生物分子的定量分析;原子吸收光谱常用于金属离子的测定等。

1.2 色谱法色谱法是利用物质在固定相和移动相之间的分配行为,通过在固定相上的运动速度差异分离物质的一种分析方法。

包括气相色谱、液相色谱、超高效液相色谱等。

这些方法在化学、食品、生物等领域广泛应用,如气相色谱常用于有机物的分析;液相色谱常用于生物样品的分离等。

1.3 电化学分析电化学分析是利用电化学原理进行分析的一种方法,主要包括电位法、伏安法、极谱法等。

它通过观察物质在电场中的行为来分析物质的成分或性质。

在实际应用中,电化学分析常用于金属腐蚀、电解制备等领域。

1.4 质谱法质谱法是利用物质在电场中的运动轨迹差异来对物质进行分析的一种方法,主要包括质谱仪、质子共振仪等。

在实际应用中,质谱法常用于有机物的结构鉴定、药物代谢产物的分析等。

1.5 分光光度法分光光度法是利用物质对光的吸收、散射、发射等现象来分析物质的成分或性质的一种方法。

它广泛应用于药物浓度测定、气体成分分析、紫外-可见吸收光谱仪、荧光光谱仪、原子吸收光谱仪等。

1.6 元素分析元素分析是对物质中元素成分进行定量或半定量分析的一种方法。

它主要包括原子吸收光谱、荧光光谱、质谱等。

在实际应用中,元素分析常用于环境、食品、医药等领域的元素含量分析。

1.7 样品前处理技术样品前处理技术是仪器分析中的一种重要过程,它通过溶解、萃取、浓缩、净化等手段对样品进行处理,使之适合于仪器分析。

在实际应用中,样品前处理技术广泛应用于环境样品、生物样品、食品样品等的准备。

仪器分析教程知识点总结

仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。

其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。

在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。

2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。

通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。

在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。

通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。

在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。

通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。

在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。

仪器分析重点知识点整理

仪器分析重点知识点整理

仪器分析重点知识点整理仪器分析是一门研究利用仪器设备进行物质化学成分和性质分析的学科。

在这门学科中,有一些重要的知识点需要掌握。

以下是仪器分析的重点知识点整理:1.仪器分析的基本原理和分类:-仪器分析的基本原理包括荧光原理、吸收光谱原理、质谱原理等。

-仪器分析可以分为光谱仪器、电离仪器、色谱仪器、电化学仪器等几个主要分类。

2.光谱仪器:-光谱仪器主要包括紫外可见分光光度计、红外光谱仪、核磁共振仪等。

-紫外可见分光光度计主要用于分析物质的吸收光谱特性,可以用于测量溶液的浓度。

-红外光谱仪用于分析物质的分子结构,可以鉴定有机物中的官能团。

-核磁共振仪用于分析物质的分子结构和分子运动,可以鉴定有机物中的官能团以及分析样品的纯度。

3.电离仪器:-电离仪器主要包括质谱仪、扫描电镜、电子显微镜等。

-质谱仪主要用于分析物质的分子结构和分子量,可以鉴定有机物的结构以及分析样品的纯度。

-扫描电镜和电子显微镜用于观察物质的形貌和微观结构,可以分析材料的成分和表面形态。

4.色谱仪器:-色谱仪器主要包括气相色谱仪、液相色谱仪等。

-气相色谱仪用于分析气体和挥发性液体中的成分,可以鉴定有机物中的化合物。

-液相色谱仪用于分析溶液和非挥发性样品中的成分,可以鉴定有机物中的化合物。

5.电化学仪器:-电化学仪器主要包括电位计、电导仪、极谱仪等。

-电位计用于测量电解质溶液中的电位,可以鉴定物质的氧化还原性质。

-电导仪用于测量电解质溶液的电导率,可以鉴定物质的导电性。

-极谱仪用于测量极微少量物质的浓度,可以鉴定有机物中的金属元素。

6.仪器分析中的质量控制:-仪器分析中需要进行质量控制,以保证分析结果的准确性和可靠性。

-质量控制包括标准品的制备与使用、内标法、质量控制图等方法。

-标准品的制备和使用是仪器分析的重要环节,可以通过标准曲线进行定量分析。

7.仪器分析的应用:-仪器分析广泛应用于科学研究、环境监测、药物检验、食品安全等领域。

-通过仪器分析可以分析物质的成分和性质,为科学研究和生产提供可靠的数据和依据。

仪器分析实验总结(精选5篇)

仪器分析实验总结(精选5篇)

仪器分析实验总结(精选5篇)第一篇:仪器分析实验总结仪器分析实验总结1014061525 虞梦娜一、红外光谱仪实验报告 1.仪器结构仪器设备:SHIMADZU IRPresting-21型傅立叶变换红外光谱仪SHIMADZU IRPresting-21 仪器结构:傅傅立叶变换红外光谱仪的工作原理图固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部件-迈克尔干涉仪。

由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。

可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。

IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40000∶1(4cm-1,1分钟,2100cm-1附近,P—P),具有自诊断功能和状态监控器。

可收集中红外、近红外、远红外范围光谱。

常用红外光谱-红外光谱仪①棱镜和光栅光谱仪光栅光谱仪属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。

转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。

随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息。

②傅里叶变换红外光谱仪它是非色散型的,核心部分是一台双光束干涉仪,常用的是迈克耳孙干涉仪。

当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。

傅里叶变换红外光谱仪傅里叶变换光谱仪的主要优点是:①多通道测量使信噪比提高;②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1;④增加动镜移动距离就可使分辨本领提高;⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

仪器分析必考知识点总结

仪器分析必考知识点总结

仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。

在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。

2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。

它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。

仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。

3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。

它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。

二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。

主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。

主要包括气相色谱、液相色谱、超高效液相色谱等。

3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。

主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。

4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。

主要包括电化学电位法、极谱法、循环伏安法等。

5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。

主要包括热重分析、差示扫描量热分析、热膨胀分析等。

6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。

主要包括激光诱导击穿光谱、激光诱导荧光光谱等。

三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。

在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。

2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。

仪器分析专科知识点总结

仪器分析专科知识点总结

仪器分析专科知识点总结一、基础仪器分析知识点:1. 仪器分析的概念:仪器分析是利用各种仪器设备来对化学样品进行分析的一种方法,它包括定性分析、定量分析和结构分析等内容。

2. 仪器分析的原理:仪器分析主要依靠物理、化学、光学、电磁等原理进行样品的测定和分析。

3. 仪器分析的分类:仪器分析根据原理和功能的不同可分为光谱仪器、色谱仪器、质谱仪器、电化学仪器、分子光谱仪器等。

4. 仪器分析的应用:仪器分析在化学研究、环境监测、生命科学、材料科学等领域都有广泛的应用,在药物研发、食品安全、环境保护等方面有着重要的作用。

二、光谱仪器分析知识点:1. 紫外-可见光分光光度计:紫外-可见光分光光度计是通过测定样品对紫外、可见光的吸收和透射来确定样品的组成和浓度的一种仪器。

2. 红外光谱仪:红外光谱仪是利用样品对红外光的吸收和散射来确定样品的结构和组成的一种仪器。

3. 核磁共振仪:核磁共振仪是通过测定样品在外加磁场下的核磁共振频率来确定样品的结构和组成的一种仪器。

4. 质谱仪:质谱仪是通过测定样品中离子的质量-电荷比来确定样品的组成和结构的一种仪器。

5. 光谱仪器的应用:光谱仪器在化学分析、药物研发、材料科学等领域都有着广泛的应用,在确定样品组分、结构、浓度、纯度等方面都有重要的作用。

三、色谱仪器分析知识点:1. 气相色谱仪:气相色谱仪是通过样品在气相载气流动相中的分离来确定样品的组分和浓度的一种仪器。

2. 液相色谱仪:液相色谱仪是通过样品在液相载液流动相中的分离来确定样品的组分和浓度的一种仪器。

3. 色谱质谱联用仪:色谱质谱联用仪是通过将色谱和质谱仪器联合使用来确定样品的组分和结构的一种仪器。

4. 色谱仪器的应用:色谱仪器在食品安全、环境监测、药物研发等领域都有着广泛的应用,在分离和分析样品中的组分、杂质、残留物等方面有重要的作用。

四、电化学仪器分析知识点:1. pH计:pH计是通过测定样品的pH值来确定样品的酸碱性质的一种仪器。

仪器分析(考点总结)

仪器分析(考点总结)

常用方法色谱分析法,电化学分析法,光学分析法,核磁共振波谱法,质谱分析法 (多)2 .气相载气: N2,H2 和 He (多)3.基线:当色谱柱没有组分进入检测器时,反应检测器噪声随时间变化的线。

(名,判)4.基线漂移:基线随时间定向的缓慢变化。

(名)5.基线噪声:由各种因素所引起的基线起伏。

(名,判)6.保留时间:指被测组分从进样开始到柱后出现浓度最大值所需的时间。

(名,判)指扣除死时间后的保留时间。

(名,判)7.调整保留时间:峰高为一半处的宽度。

(名,判,单)8.半峰宽度9.分配系数 K:在一定温度下组分在两相之间分配达到平衡时的浓度比。

(名,判,单)10.气相色谱分析色谱柱:分配系数大的组分需要流出色谱柱的时间较迟。

(填,判 )11.气相色谱分析原理:不同物质在两相间具有不同的分配系数。

(判)12.分配比 k :容量因子或容量比,在一定温度、压力下,在两相间达到分配平衡时,组分在两相中的质量比。

(名,判,单):包括气相传质阻力系数 C g 和液相传质阻力系数 C1 。

(单)13.传质项14.分离度若两组峰高相近,峰形对称且满足正态分布,当 R=1 时,分离程度可达98%:当 R=1.5 时,相邻两峰已完全分开的标志,分离程度可达 99.7%。

(单)15.柱温对于沸点范围较宽的试样,宜采用程序升温。

(填,判,单)16.气相分离非极性物质,一般选用非极性固定液。

(单)17.气相检测器原理分类:浓度型检测器和质量型检测器。

(填,多,单)18.气相检测器分类:热导检测器 ( TCD ),氢火焰离子化检测器 ( FID ) ,电子俘获检测器( ECD ) ,火焰光度检测器( FPD ,单)。

(多)19.气相检测器性能指标:灵敏度 S ,检出限 D,最小检出量 Q0 ,响应时间,线性范围。

(多)20.气相色谱定性根据色谱保留值进行的。

(判)21. 气相色谱分析的特点:高效能,选择性好,灵敏度高,操作简单,应用广泛的分析、分离方法。

仪器分析知识总结(改进版)

仪器分析知识总结(改进版)
欢迎下载
、极性溶剂为什么会使π→π*跃迁的吸收峰长移(红移),却使n→π*跃迁的吸收峰短移(蓝移)?
*跃迁中,激发态极性大于基态,当使
*比基态π能量下降更多,因而使基态与激发态间能量差减小,
n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增
3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。
180nm到400nm波长处,测定紫外区域的时候采用石英。
T
0.5%。
T和A进行显示
紫外-可见吸收光谱
影响紫外-可见光谱的因素:溶剂的影响
>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚
光的吸收定律
定律:在一定条件下物质的吸光度与溶液的浓度和厚度的乘积成正比关系(使用条件:入射光为单色
,以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。
差值同标准物质的理论值只比即加标回收率。
100%越好)
0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。加标
1%
9组,分浓度的高,中,低三个浓度。
待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。(从测定的最低浓度扩展到校正曲线
分子发光分析法(P88)
荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。
激发光谱和发射光谱:
激发光谱:将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F),以F做纵坐标,激发
F做纵坐
.
-π*跃迁,分子共轭体系越大荧

仪器分析课程知识点总结

仪器分析课程知识点总结

仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。

其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。

其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。

3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。

其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。

二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。

其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。

2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。

其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。

3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。

其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。

4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。

其原理是根据核磁共振现象来对化合物进行定性和定量分析。

5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。

其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。

6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。

其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。

仪器分析重要知识点总结

仪器分析重要知识点总结

仪器分析重要知识点总结一、基本原理1. 仪器分析的基本原理是什么?仪器分析的基本原理是通过分析仪器对样品进行一系列物理化学性质的测定,然后通过数据处理和分析得出样品的成分或性质。

根据所测定的物理化学性质不同,仪器分析可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的特点是什么?仪器分析具有高灵敏度、高精度、高选择性、高分辨率等特点。

而且,仪器分析方法还可以实现自动化、高通量和在线分析,大大提高了分析的效率和准确性。

3. 仪器分析的应用领域有哪些?仪器分析的应用领域非常广泛,主要包括环境监测、食品安全检测、药物质量分析、生物医学研究、地质勘探、材料分析等。

4. 仪器分析的分类有哪些?仪器分析根据测定的物理化学性质不同,可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

二、常见的分析仪器1. 分光光度计分光光度计是一种常用的光谱分析仪器,它可以测定物质在不同波长光照射下的吸光度或透射率,进而测定样品中所含的物质的浓度。

分光光度计的应用非常广泛,包括药物分析、环境监测、食品安全检测等领域。

2. 气相色谱仪气相色谱仪是一种色谱分析仪器,它通过气相色谱柱对气体混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

气相色谱仪在食品安全检测、环境监测、医药行业等领域得到广泛应用。

3. 液相色谱仪液相色谱仪是一种色谱分析仪器,它通过液相色谱柱对溶液混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

液相色谱仪在食品安全检测、环境监测、药物分析等方面有着重要的应用价值。

4. 质谱仪质谱仪是一种质谱分析仪器,它通过将分子在电离后的质荷比进行分析,可以对样品中的化合物进行定性和定量分析。

质谱仪在生物医学研究、环境监测、化学合成等方面有着广泛的应用。

5. 电化学分析仪电化学分析仪是一种电化学分析仪器,它通过测定电流、电压等电化学参数来分析样品的化学性质。

电化学分析仪在化学合成、药物质量分析、环境监测等方面得到广泛应用。

仪器分析学知识点总结

仪器分析学知识点总结

仪器分析学知识点总结仪器分析学是研究和应用分析仪器的原理、方法、技术和设备的学科。

在化学、生物、药学、环境科学、材料科学等领域中,仪器分析学起着不可替代的作用,其研究和应用对于提高实验分析的准确性、灵敏度和快速性具有重要意义。

仪器分析学的主要内容包括:仪器分析学的基本原理、仪器分析学的基本方法、现代仪器分析学技术、仪器分析学的应用等方面的内容。

下面就仪器分析学的相关知识点做一些总结:一、仪器分析学基本原理1. 仪器分析学的基本原理仪器分析学的基本原理是指仪器分析学所依据的一些基本理论或规律。

这些基本原理是仪器分析学的基础和起点,它包括了电化学原理、理论光谱学、质谱学基本原理、核磁共振原理等等。

这些原理是仪器分析学研究和应用的基础。

2. 电化学原理电化学原理是仪器分析学的重要基础之一,它主要包括电解质溶液的电导性、电解质在电场中的迁移速度、电解过程的动力学过程和电化学动力学过程等内容。

电化学原理在仪器分析学中有广泛的应用。

3. 理论光谱学理论光谱学是仪器分析学中的重要内容之一,它主要包括了光谱学的基础知识、光的吸收、发射和散射等。

理论光谱学是仪器分析学研究和应用的基础。

4. 质谱学基本原理质谱学基本原理包括了质谱仪的结构、工作原理、质谱仪的分辨能力和精确度等内容。

质谱学是一种非常重要的仪器分析学方法,广泛应用于各种领域。

5. 核磁共振原理核磁共振原理是指核磁共振现象的基本原理,它包括了核磁共振谱仪的结构、核磁共振现象的基本原理、核磁共振实验的原理等内容。

核磁共振原理是现代高分辨率核磁共振方法的基础。

二、仪器分析学基本方法1. 仪器分析学的基本方法仪器分析学的基本方法是指仪器分析学中常用的一些分析方法。

这些方法包括电化学法、分光光度法、火焰原子吸收光谱法、色谱法、质谱法、核磁共振法等。

这些方法在仪器分析学中有着广泛的应用。

2. 电化学法电化学法是指利用电化学原理对物质进行分析的一种方法。

常用的电化学方法包括电解法、极谱法、电化学发光法等。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析领域中重要的分支,它借助各种仪器设备对物质进行定性、定量和结构分析。

以下是对仪器分析中一些关键知识点的详细总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的方法。

关键知识点:1、锐线光源:通常使用空心阴极灯,能发射出半宽度很窄的特征谱线。

2、原子化器:常见的有火焰原子化器和石墨炉原子化器。

火焰原子化器操作简便、重现性好;石墨炉原子化器灵敏度高,但精密度稍差。

3、定量分析方法:常用的有标准曲线法和标准加入法。

(二)原子发射光谱法(AES)原子发射光谱法是通过测量原子由激发态回到基态时发射的特征谱线来定性和定量分析元素的方法。

重点内容:1、激发源:如电弧、火花和电感耦合等离子体(ICP)等。

ICP 具有温度高、稳定性好、自吸效应小等优点。

2、定性分析:依据元素的特征谱线进行。

3、定量分析:内标法是常用的定量方法,选择合适的内标元素很关键。

(三)紫外可见分光光度法(UVVis)这是基于物质分子对紫外可见光区的电磁辐射的吸收特性而建立的分析方法。

知识点包括:1、吸收光谱:物质对不同波长光的吸收程度不同,形成吸收光谱。

2、朗伯比尔定律:A =εbc,其中 A 为吸光度,ε 为摩尔吸光系数,b 为光程,c 为物质浓度。

3、显色反应:为了提高测定的灵敏度和选择性,常需要进行显色反应。

二、电化学分析法(一)电位分析法通过测量电池电动势来确定溶液中被测物质浓度的方法。

要点如下:1、指示电极和参比电极:指示电极的电位随被测离子浓度变化而变化,参比电极的电位恒定。

2、 pH 玻璃电极:对氢离子有选择性响应。

3、离子选择性电极:选择性地响应特定离子。

(二)电解与库仑分析法电解分析法是通过电解使被测物质在电极上析出,然后称重求得其含量。

库仑分析法是依据电解过程中消耗的电量来进行定量分析。

仪器分析知识点总结各章

仪器分析知识点总结各章

仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。

1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。

1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。

常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。

第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。

2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。

原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。

2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。

2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。

第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。

3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。

3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。

3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。

《仪器分析》知识点整理

《仪器分析》知识点整理

《仪器分析》知识点整理一、仪器分类1.按测量原理分类:光学仪器、电子仪器、热力学仪器等;2.按测量对象分类:物理性质测量仪器、化学性质测量仪器、生物性质测量仪器等;3.按测量方法分类:分光法仪器、电化学法仪器、色谱法仪器等。

二、分析方法1.光谱法:包括紫外可见光谱、红外光谱、原子吸收光谱等,用于物质的结构分析和定量测定;2.色谱法:包括气相色谱、液相色谱等,用于物质分离和定性定量分析;3.电化学法:包括电位滴定法、电解析法等,用于物质的电化学性质测定;4.波谱法:包括质谱、核磁共振等,用于物质的分子结构和成分的测定;5.色度法:用于物质颜色的测定。

三、仪器操作与调试1.仪器的安装:包括设备摆放、电源接线和设备连接等操作;2.仪器的调零:如光谱仪进行零点调整,使其读数归零,保证测量的准确性;3.分析曲线的绘制:通过构建标准曲线来进行定量分析,提高测量精度;4.仪器的正确使用:如熟练掌握仪器的各个功能键和参数设定方法,避免误操作;5.仪器的维护与保养:包括定期清洁、维修和更换零部件,延长仪器寿命。

四、仪器的应用领域1.化学分析:如水质分析、土壤分析、食品质量检测、药物分析等;2.聚合物材料:如塑料、合成树脂等材料的成分分析和性能表征;3.环境监测:包括大气污染、水质污染、土壤污染等环境问题的分析与监测;4.制药工业:用于药物质量控制和药物成分分析等;5.生命科学:如生物材料分析、基因测序、蛋白质组学研究等。

五、仪器的发展趋势1.近红外光谱技术的应用与发展;2.微纳技术和生物芯片技术的应用;3.便携式仪器设备的发展;4.互联网和大数据技术在仪器分析中的应用;5.仪器的自动化和智能化发展。

通过对以上知识点的整理,可以更好地理解《仪器分析》的基本概念、分类和应用领域,了解仪器的操作和调试方法,了解仪器分析领域的未来发展趋势。

同时,了解《仪器分析》的知识也有助于提高我们在实验室工作中的科学素养和操作技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器分析复习资料(改进版)绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

校准曲线包括工作曲线和标准曲线:工作曲线:配置4到6个不同浓度的标准溶液,加入与实际样品类似的基体中制成加标模拟样品采用和实际样品相同的分析方法测定(经过预处理的),以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。

没有经过预处理的为标准曲线标准参考物质法:取与待测试样相似的一定量标准参考物质,在规定的实验条件下进行检测根据测量值与给定的标准参考量值计算相对误差,越小越准确。

加标回收法:没有标准参考物质的条件下,向样品中加入一定量的被测成分的纯物质或者已知量的标准物质,两份试样同时按照相同的分析步骤加标的一份所得结果减去未加标的一份,差值同标准物质的理论值只比即加标回收率。

(越接近100%越好)注意事项:加标物质不能过多,一般为测量物含量的0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。

加标物质的浓度应该高,体积小,不超过原始试样体积的1%标准方法比较法:和国标(已知方法)得到的结果比较。

至少设计9组,分浓度的高,中,低三个浓度。

线性:被测物信号值与试样中被测物浓度直接呈正比关系的程度线性范围:待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。

(从测定的最低浓度扩展到校正曲线偏离线性浓度的范围。

)⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv 的关系时,将产生吸收光谱。

M+hv→M*发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。

M*→M+hv2、带光谱和线光谱带光谱:是分子光谱法的表现形式。

分子光谱法是由分子中电子能级、振动和转动能级的变化产生。

线光谱:是原子光谱法的表现形式。

原子光谱法是由原子外层或内层电子能级的变化产生的。

第6章原子吸收光谱法(P130)1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。

基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。

原子吸收光谱位于光谱的紫外区和可见区。

优点:灵敏度高,准确度高,选择性好,分析速度块,试样用量少,应用范围光缺点:换等频率频繁,不可同时测定多个元素,对于难溶解元素有困难。

2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。

3、谱线变宽的因素(P-131):自然宽度:由原子本身性质引起,在无外界因素影响情况下谱线仍有一定宽度,这种宽度为自然宽度△VN⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。

故又称热变宽。

Doppler宽度随温度升高和相对原子质量减小而变宽。

⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起外界压力愈大,浓度越高,谱线愈宽。

4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。

锐线光源:指发射线的半宽度比吸收线半宽度窄得多,且发射中心频率与吸收线中心频率相一致的光源。

石墨炉原子化法的过程:干燥,灰化,原子化,净化1.测量条件选择⑴分析线:一般用共振吸收线。

⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。

⑶灯电流:按灯制造说明书要求使用⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值⑸进样量:(主要指非火焰方法)2.分析方法(1).工作曲线法最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。

⑵. 标准加入法标准加入法能消除基体干扰,不能消背景干扰。

使用时,注意要扣除背景干扰。

Boltman分布定律:(Nj,N0分别代表单位体积内激发态原子数和基态原子数)1,Nj/N0值温度越高,比值越大2,在同一温度下,不同元素电子跃迁的能级Ej值越小,共振波长越长,比值越大。

习题⒈引起谱线变宽的主要因素有哪些?⑴自然变宽:无外界因素影响时谱线具有的宽度⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。

故又称热变宽。

⑶.压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。

⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman变宽(磁场)⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰,温度高、稳定、干扰小背景低,适合于许多元素的测定。

②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。

③富燃火焰:指燃气大于化学元素计量的火焰。

其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。

⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰?一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。

消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。

二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。

消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。

(2)加入释放剂(广泛应用)(3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。

(4)加基体改进剂(5)分离法三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。

负误差消除方法:加入过量消电离剂。

(所谓的消电离剂, 是电离电位较低的元素。

加入时, 产生大量电子, 抑制被测元素电离。

)四.光谱干扰:吸收线重叠:①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线②谱线重叠干扰--选其它分析线五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。

(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。

光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。

背景干扰,一般使吸收值增加。

产生正误差。

)消除方法:第3章紫外-可见分光光度法(P21)UV-Vis:根据物质分子对200~800 nm 光谱区域内辐射能的吸收来研究物质的性质、结构和含量的方法。

仪器:光源,单色器,吸收池,检测器,显示系统灯:氘灯,氢灯,用于180nm到400nm波长处,测定紫外区域的时候采用石英。

单色器:将光源发出连续光谱分离吸收池:盛装待测溶液。

紫外区使用石英吸收池,可见光区使用玻璃吸收池,在进行挑选比色皿时一组比色皿的T之差小于0.5%。

检测器:检测信号,将通过比色皿的光强度变化,光信号转变成电信号。

显示系统:将检测器输出的信号经处理后转换成T和A进行显示3.1 紫外-可见吸收光谱3.1.5 影响紫外-可见光谱的因素:溶剂的影响极性:水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚3.2光的吸收定律Lambert-Beer定律:在一定条件下物质的吸光度与溶液的浓度和厚度的乘积成正比关系(使用条件:入射光为单色光,溶液为稀释溶液)T(透光率)=It/I0A(吸光度)=lgI0/ItA=Kbc,K随溶液的浓度单位不同而分别用ε或者a表示,当浓度c以mol/L,厚度b以cm为单位表示时,其单位为L/(mol*cm)当浓度以g/L,厚度以cm为单位时,K为aε的定义和物理学意义:摩尔吸光系数(a为吸光系数),ε的大小与溶液的浓度和厚度无关,与吸光物质的性质,入射光波长,溶剂等因素有关。

1,物质性质不同ε值大小不同,所以ε为物质的特征常数。

2,溶剂不同,同种物质的ε不同,因此必须指明溶剂。

3,入射光波长不同ε不同,所以应该指明波长。

ε,和a都可以评价方法的灵敏度,因此可以优化实验条件来增大ε值。

A(吸光度)具有加和性。

A=εbc或A=abc3.4 分析条件的选择溶剂:1,溶剂可以良好溶解待测样品,2溶剂对于溶质为惰性,有良好的化学,光合稳定性。

3选择极性较小的溶剂,4溶剂在样品的吸收光谱区域无明显的吸收。

显色反应和条件:1,待测组分定量变成了有色化合物,2,有色化合物组成恒定,有足够的稳定性,摩尔吸光系数大,使测量的灵敏度高,重现性好,误差小。

相关文档
最新文档