山东省高中学业水平考试数学知识点总结
高中数学学业水平考知识点考点总结
高中数学学业水平考知识点考点总结高中数学学业水平考试的知识点和考点总结如下:
1. 函数与方程:
- 幂函数、指数函数、对数函数、三角函数的性质与图像
- 二次函数与一次函数的性质与图像
- 函数的性质与运算:复合函数、反函数、函数的比较与判定
- 一元二次方程的性质与求解方法
- 不等式的性质与求解方法
- 绝对值与不等式的关系与求解方法
2. 三角函数与解三角形:
- 三角函数的基本关系与恒等式
- 三角函数的定义域、值域与周期
- 三角函数的性质与图像
- 三角函数的运算与求解方法:合成角、单调性、方程与不等式等
- 解三角形的方法与性质:余弦定理、正弦定理、解直角三角形
3. 平面几何与向量:
- 平面几何中的基本性质与定理:线段、角、圆
- 平行线与垂直线的判定方法
- 平面向量的性质与运算:向量的模、方向、加减、数量积、向量积等- 向量的坐标表示、共线性与线性运算
- 点、直线、圆与向量的关系:点到直线的距离、点在直线上的投影、直线的方程与位置关系等
4. 概率与统计:
- 概率的基本概念与性质:样本空间、事件、概率的计算
- 组合与排列的计数原理
- 随机变量与概率分布:离散型随机变量、连续型随机变量的概率分布
- 统计数据的整理与分析:数据的收集、整理、描述性统计、统计量的计算
- 统计图表的绘制与解读:直方图、折线图、饼图等
这些知识点和考点都是高中数学学业水平考试中的重点内容,掌握了这些知识点,就能够在考试中取得较好的成绩。
除了理论的学习,还需要进行大量的习题训练,熟练掌握解题方法和技巧,提高解题的速度和准确性。
学考考前必备2 知识点归纳-备战2020年冬季山东省高中数学学业水平考试(考前全攻略)
⇒ ⇒ a,b 同为正数 a,b 同号,且不为 0
2.“三个二次”的关系 判别式 Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数 y=ax2+bx+c(a>0)
的图象
一元二次方程 ax2+ bx+c=0(a>0)的根
有两个相异实根 x1, x2(x1<x2)
有两个相等实根 x1=
x2=- b 2a
一元二次不等式 ax2 +bx+c>0(a>0)的
6.全称量词和存在量词 量词名称
常见量词
符号表示
全称量词 所有、一切、任意、全部、每一个等
∀
存在量词 存在一个、至少有一个、有些、某些等
∃
7.全称命题、特称命题及含一个量词的命题的否定
命题 名称
语言表示
符号表示
命题的否定
全称 命题
对 M 中任意一个 x,有 p(x) 成立
∀x∈M, p(x)
∃x0∈M, p(x0)
(1)单调函数的定义
增函数
减函数
定义 一般地,设函数 f(x)的定义域为 I:如果对于定义域 I 内某个区间 D 上
4
的任意两个自变量的值 x1,x2 当 x1<x2 时,都有 f(x1)<f(x2), 那么就说函数 f(x)在区间 D 上 是增函数
也都是集合 A 中的元素
空集
空集是任何集合的子集 空集是任何非空集合的真子集
3.集合的三种基本运算
文字语言
图形表示
A⊆B 或 B⊇A A B或 BA
A⊆B 且 B⊆A ⇔A=B ∅⊆A
∅ B 且 B≠∅
符号语言
集合的 所有属于集合 A 或者属于 并集 集合 B 的元素构成的集合
高中数学学业水平考知识点总结(8篇)
高中数学学业水平考知识点总结(8篇)高中数学学业水平考知识点总结(8篇)高中数学学业水平考知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(某+某',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”a=(某,y)b=(某',y')则a-b=(某-某',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;当λ当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ当∣λ∣0)或反方向(λ数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。
若a、b 不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
数学学业水平考高中知识点归纳
数学学业水平考高中知识点归纳高中数学学业水平考知识点1方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1、△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3、△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高中数学学业水平考知识点2二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
高中数学学业水平考试(合格考)知识点总结(最新最全)
高中数学学业水平考试(合格考)知识点总结2020.12.1第一章 集合与常用逻辑1. 常用数集N :自然数集或非负整数集; N * 或N +:正整数集; Z :整数集; Q :有理数集; R :实数集; C :复数集 2. 集合间的运算 并集:{,AB x x A =∈或}x B ∈;交集:{,A B x x A =∈且}x B ∈;补集:{,U C A x x U =∈且}x A ∉. 3. 包含关系A B A A B =⇔⊆; A B A B A =⇔⊆4. 空集()∅是任何集合的子集,是任何非空集合的真子集 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有(2n –1)个;非空子集有(2n –1)个;非空的真子集有(2n –2)个. 6. 充分、必要条件若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;若p q ⇒,q p ⇒,则p 是q 的充分必要条件,简称充要条件; (1)若p q ⇒,q p ≠>,则p 是q 的充分不必要条件; (2)若p q ≠>,q p ⇒,则p 是q 的必要不充分条件; (3)若p q ⇒,q p ⇒,则p 是q 的充要条件;(4)若p q ≠>,q p ≠>,则p 是q 的既不充分又不必要条件; 7. 含有一个量词的命题的否定全称命题p :(),x M q x ∀∈;p ⌝:()00,x M q x ∃∈⌝; 特称命题p :()00,x M q x ∃∈;p ⌝:(),x M q x ∀∈⌝.第二章 一元二次函数、方程和不等式1. 不等式的基本性质性质1:a b b a >⇔<; 性质2:,a b b c a c >>⇒>;性质3:a b a c b c >⇔+>+; 性质4:,0;,0a b c ac bc a b c ac bc >>⇒>><⇒<; 性质5:,a b c d a c b d >>⇒+>+; 性质6:0,0a b c d ac bd >>>>⇒>;性质7:()*0n n a b a b n >>⇒>∈N ; 性质8:)02a b n >>>≥. 2. 基本不等式:设0,0a b >>,则(1)a b +≥;(2)22a b ab +⎛⎫≤ ⎪⎝⎭;当且仅当a b =时,等号成立. 注:应用基本不等式的条件:一正,二定,三相等3. 二次函数()20y ax bx c a =++≠的性质(1)开口方向:a >0,开口向上;a <0,开口向下;(2)对称轴:2bx a=-; (3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭;(4)单调性: ①当a >0时,在,2b a ⎛⎤-∞- ⎥⎝⎦上递减,在,2b a ⎛⎤-+∞ ⎥⎝⎦上递增;②当a >0时,在,2b a ⎛⎤-∞- ⎥⎝⎦上递增,在,2b a ⎛⎤-+∞ ⎥⎝⎦上递减.4. 二次函数与一元二次方程、不等式的解的对应关系第三章 函数概念与性质1. 求函数定义域函数表达式()y f x =:①含分式:要求分母不为0; ②偶次方根:要求被开方数≥0;③含对数式:要求真数>0. 2. 函数()y f x =的单调性增函数:当12x x <时,()()12f x f x <;反映在图像上,从左往右图像上升; 减函数:当12x x <时,()()12f x f x >;反映在图像上,从左往右图像下降. 3. 证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <; ②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分, 分解因式, 配方等,要注意变形到底; ④判断符号,得出函数的单调性.4. 函数()y f x =的奇偶性奇函数:()()f x f x -=-,图像关于原点对称; 偶函数:()()f x f x -=,图像关于y 轴对称; 5. 奇、偶函数的性质(1)奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反; (2)若奇函数()y f x =在原点有定义,则()00f =; (3)奇、偶函数的运算①奇函数±奇函数=奇函数;②偶函数±偶函数=偶函数; ③奇函数×奇函数=偶函数;④偶函数×偶函数=偶函数; ⑤奇函数×偶函数=奇函数. 6. 幂函数(1)定义:形如()y x αα=∈R 的函数叫幂函数,其中x 是自变量; (2)五个幂函数的性质第四章 指数函数与对数函数1. 分数指数幂 (1)m na =(2)1m nm na a-=(0,,a m n N *>∈,且1n >).2.根式的性质(1na =. (2)当n a =; 当n ,0||,0a a a a a ≥⎧==⎨-<⎩.3.有理指数幂的运算性质(1)(0,,)r s r sa a a a r s Q +⋅=>∈;(2) r r s s a a a-=(0,,)a r s Q >∈;(3)()(0,,)r s rs a a a r s Q =>∈; (4)()(0,0,)r r r ab a b a b r Q =>>∈. 4. 指数式与对数式的互化:log b a N b a N =⇔= 5. 对数的换底公式(1)log lg ln log log lg ln m a m N N N N a a a === (0a >,且1a ≠,0m >,且1m ≠, 0N >);(2)log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >);(3) log log 1a b b a ⋅=; (4) log a ba b = 6.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则:(1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈.7. 指数函数0,1x y a a a =>≠的图像与性质8. 对数函数log 0,1a y x a a =>≠的图像与性质9.指数函数()0,1x y a a a =>≠与对数函数()log 0,1a y x a a =>≠互为反函数,它们的图像关于y =x 对称 10. 函数零点(1)定义:把使()0f x =成立的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程根的关系:方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(3)零点存在定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数y =f (x )在区间(a ,b )内有零点.第五章 三角函数1. 角度制与弧度制的互化:360°=2π 180°=π1 rad=π180°≈57.30°=57°18′ 1°=180πrad≈0.0174rad2. 特殊角的弧度与角度互化如下:3. 弧长及扇形面积公式弧长:l r α=,扇形面积:211=22S lr r α= (α是圆心角弧度数,r 是扇形半径)4. 任意角的三角函数设α是一个任意角,它的终边上一点(,)P x y ,22r x y =+.(1) 正弦 sinα=r y , 余弦cos x r α=, 正切tanα=xy.(2) 各象限的符号:一全正,二正弦,三正切,四余弦. 5. 同角三角函数的基本关系:平方关系:1cos sin 22=+αα; 商数关系:αααtan cos sin =(ππαk +≠2,Z k ∈)6. 诱导公式(1)sin(2k π+α)=sin α , cos(2k π+α)=cos α, tan(2k π+α)=tan α (Z k ∈) (2)sin(π+α)=-sin α , cos(π+α)=-cos α, tan(π+α)=tan α(3)sin(-α)=-sin α , cos(-α )=cos α , tan (-α )=-tan α (4)sin(π-α)=sin α, cos(π-α)=-cos α, tan(π-α)=-tan α (5)sin(2π-α)=cos α , cos(2π-α)=sin α (6)sin(2π+α)=cos α cos(2π+α)=-sin α口诀:奇变偶不变,符号看象限 7. 特殊角的三角函数值8. 正弦函数、余弦函数和正切函数的图像与性质 三角函数sin y α=cos y α=tan y α=图像定义域 (-∞,+∞)(-∞,+∞)(k π-2π,k π+2π)值域[]11-,[]11-,(-∞,+∞)最大(小)值(Z k ∈) 当x =2k π+2π时,max y =1;当x =2k π-2π时,m in y = -1当x =2k π时,max y =1;当x =2k π+π时,m in y = -1无奇偶性 奇函数 偶函数 奇函数 周期性T =2πT =2πT =π单调性(k ∈z )在⎥⎦⎤⎢⎣⎡+-22,22ππππk k 上增在⎥⎦⎤⎢⎣⎡++232,22ππππk k 上减在[2π-π,2π]k k 上增 在[2π,2ππ]k k +上减在⎪⎭⎫ ⎝⎛+-2,2ππππk k内增对称性 (k ∈z )对称中心:)0,(πk 对称轴:2ππ+=k x 对称中心:)0,2(ππ+k ,对称轴:πk x =对称中心:)0,(πk注:()sin y A x ωϕ=+或()cos y A x ωϕ=+的最小正周期为T πω=;()tan y A x ωϕ=+的最小正周期为T πω=. 9. 两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+;)(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a ; )(βα-C : βαβαβsin sin cos cos )cos(+=-a )(βα+T :βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-10. 辅助角公式:()22sin cos a x b x a b x ϕ+=++,其中:tan baϕ=11. 二倍角公式: α2S :αααcos sin 22sin =α2C :ααα22sin cos 2cos -=1cos 2sin 2122-=-=αα;α2T :ααα2tan 1tan 22tan -=12. 降幂公式: ααα2sin 21cos sin =,21cos 2sin 2αα-=,21cos 2cos 2αα+= 13.函数()ϕω+=x A y sin 的图象变换由函数y x =sin 的图象通过变换得到y A x =+sin()ωϕ的图象,有两种途径:法一:先平移后伸缩y x y x =−→−−−−−−−=+><sin sin()()()||向左或向右平移个单位ϕϕϕϕ00,1sin y x ωωϕ−−−−−−−−→=+横坐标变为原来的倍纵坐标不变()法二:先伸缩后平移y x =−→−−−−−−−sin 横坐标变为原来的倍纵坐标不变1ω纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ14. 函数()ϕω+=x A y sin 的物理意义当函数()[)()sin 0,0,0,y A x A x ωϕω=+>>∈+∞表示一个振动量时, 振幅A :表示这个量振动时离开平衡位置的最大距离; 周期ωπ2=T :往复振动一次所需要的时间;频率ωπ21==T f :单位时间内往复振动的次数; 相位:ωϕx +;初相:ϕ(即当x =0时的相位).第六章 平面向量及其应用1. 平面向量的相关概念:(1)平面向量:在平面内,具有大小和方向的量称为平面向量.向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量a 的大小称为向量的模(或长度),记作a .(2)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. (3)与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. (4)方向相同且模相等的向量称为相等向量.y x y x =−→−−−−−−−=+><sin sin()()()||ωωϕϕϕϕω向左或向右平移个单位00纵坐标变为原来的倍横坐标不变A y A x −→−−−−−−−=+sin()ωϕ(5)平行向量(或共线向量):方向相同或相反的两个向量,规定:零向量与任意向量平行2. 向量的加法运算:(1)三角形法则:首尾相连,连首尾,如AB BC AC +=; (2)平行四边形法则:公共起点,对角线3. 向量的减法运算:三角形法则,要求共起点,指向被减向量,如AB AC CB -=4. 数乘向量:实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘向量. 当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反; 当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.5. 实数与向量的积的运算律:设λ、μ为实数,那么(1) λ(μa )=(λμ)a ; (2) (λ+μ)a =λa +μa ; (3) λ(b a +)=λa+λb . 6. 共线向量定理:向量a ,()0b b ≠,//a b ⇔存在实数λ,使a b λ=. 7. 两向量的夹角:已知两个非零向量a 和b ,在平面任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉,[],0,a b π〈〉∈.8. 向量垂直:对于两个非零向量a 和b ,若,2a b π〈〉=,则a ,b 垂直,记作a b ⊥.9. 数量积:已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.规定:零向量与任何向量的数量积为0. 10. 投影向量: 在上的投影向量等于cos θ (其中为与同向的单位向量)11. 数量积的性质:(1)22a a a a a a a =⋅=⇔=⋅;(2)0a b a b ⊥⇔⋅=;(3)cos ,a b a b a b⋅=12. 向量的数量积的运算律:(1) a ·b=b ·a (交换律);(2)(λa )·b =λ(a ·b )=λa ·b =a·(λb ); (3)(b a +)·c =a ·c +b ·c ; (4)()2222+a ba ab b ±=±⋅,()()22+a b a b a b ⋅-=-.13. 平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ11e +λ22e . 不共线的向量1e 、2e叫做表示这一平面内所有向量的一组基底.14. 坐标运算:(1)设()()2211,,,y x b y x a ==→→,则:()2121,y y x x b a ±±=±→→,λ()()1111,,y x y x a λλλ==→;2121y y x x b a +=⋅→→(2)设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终 点减起点),||AB AB AB =⋅222121()()x x y y =-+- (3)向量a 的模|a |:2||a a a =⋅2222x y a x y =+⇔=+ (4)向量()()2211,,,y x b y x a ==→→的夹角θ,则121222221122cos x x y y x yx y θ+=++.15. 向量平行与垂直的坐标表示:(1)两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)两个非零向量垂直:02121=+⇔⊥→→y y x x b a 16.向量中一些常用的结论:(1)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭; ②1()3PG PA PB PC =++⇔G 为ABC ∆重心;特别地,0PA PB PC P ++=⇔为ABC ∆的重心; ③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心;④向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(2)A 、B 、C 共线⇔存在实数、μ使得且+μ=1.17.三角形的四心垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点 18.三角形中的重要结论(1) 在三角形中,大边对大角,小边对小角()B A B A b a sin sin >⇔>⇔> (2) 三角形内角的正弦值一定大于0,锐角的余弦值大于0,直角的余弦值等于0,钝角的余弦值小于0. 19.三角形中的诱导公式()()()C B A B C A AC B sin sin sin sin sin sin =+=+=+ ()()()B C A C B A AC B cos cos cos cos cos cos -=+-=+-=+ ()()()BC A C B A AC B tan tan tan tan tan tan -=+-=+-=+20.正弦定理和余弦定理定理 正弦定理 余弦定理内容2R( R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A , b 2=a 2+c 2﹣2ac cos B , c 2=a 2+b 2﹣2ab cos C变形形式 ① a =2R sin A ,b =2R sin B ,c =2R sin C ; ② sin A,sin B,sin C;③ a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A④ a :b :c =sin A :sin B :sin Ccos A , cos B , cos CS =12ab sin C =12ac sin B =12bc sin A =4abc R =12(a +b +c )r (,R r 分别为△ABC 外接圆,内切圆半径)第七章 复数1. 复数的概念形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做实部,b 叫做虚部。
高中数学学业水平考知识点总结
高中数学学业水平考知识点总结高中数学学业水平考试中的常见知识点总结如下:
1. 代数与函数
- 方程与不等式
- 函数与图像
- 指数与对数
- 三角函数与图像
- 复数与复平面
2. 数列与数学归纳法
- 等差数列与等比数列
- 递推公式与通项公式
- 数学归纳法的应用
3. 平面几何与向量
- 平面图形的性质
- 平行线与垂直线
- 圆与圆的性质
- 向量的表示与运算
- 向量的共线与垂直
4. 空间几何与解析几何
- 空间图形的性质
- 空间坐标系与坐标计算
- 空间直线与平面的性质
- 空间几何问题的解析几何方法
5. 三角学
- 三角函数的定义与性质
- 三角函数的图像与变换
- 三角函数的应用问题
6. 概率与统计
- 随机事件的概率
- 统计与频率分布
- 统计图表的分析
- 概率与统计的应用问题
这些知识点主要涵盖了高中数学学业水平考试中的大部分内容。
建议你结合自己的教材和学校的教学大纲进行复习,重点掌握这些知识点的定义、性质和应用。
同时,还可以做一些相关的练习题和模拟考试来提升自己的解题能力。
高中学业水平考试数学知识点总结(一)
高中学业水平考试数学知识点总结(一)
高中学业水平考试数学知识点总结
前言
高中学业水平考试是对学生全面素质的评价,其中数学是考试科目中的一项重要内容。
本文将对高中学业水平考试数学知识点进行全面总结,帮助学生理清思路,提高备考效率。
正文
1. 数与式
•实数的概念与性质
•等式与方程的性质
•级数与公式的运算
2. 函数与图像
•一次函数与二次函数
•反比例函数与指数函数
•正弦函数与余弦函数
3. 三角函数
•任意角与弧度制
•三角函数的基本关系式
•几种特殊角的正弦、余弦、正切值
4. 解析几何
•直线与圆的方程
•二次曲线的方程
•坐标系变换与平移
5. 空间几何
•空间直线与平面
•空间向量及运算
•空间几何定理与性质
6. 概率统计
•随机事件与概率
•随机变量与分布
•统计指标与抽样调查
结尾
通过对高中学业水平考试数学知识点的总结,我们可以清晰地看到数与式、函数与图像、三角函数、解析几何、空间几何以及概率统计等重要知识点。
熟练掌握这些知识点,将有助于学生在考试中取得
好成绩。
希望学生们认真学习,不断巩固基础,做好备考准备,相信你们能取得优异的成绩!。
高中数学学业水平考知识点考点总结
高中数学学业水平考知识点考点总结高中数学的考试知识点和考点主要包括以下内容:
1. 数与式
- 整式的加减乘除运算
- 整式化简
- 分式的加减乘除运算
- 分式的化简
- 均等式
2. 带字母的式子
- 一元一次方程
- 一元一次不等式
- 分离变量法解微分方程
- 二元一次方程组
- 幂及其运算
- 指数函数与对数函数
3. 几何图形的认识和运用
- 长方形、正方形、三角形等几何图形的面积与周长计算
- 圆的面积与周长计算
- 三角形的性质和判定条件
- 相似三角形和比例
- 三角函数和三角恒等式
4. 函数的性质与运算
- 函数的定义域和值域
- 函数的图像与性态
- 初等函数的运算
- 反函数和复合函数
- 一次函数、二次函数和指数函数的图像与性质
5. 空间几何与立体几何
- 空间直角坐标系
- 空间中点和向量的运算
- 空间直线的方程
- 空间平面的方程
- 空间几何体的体积和表面积计算
- 空间几何体的相交关系和判定条件
6. 统计与概率
- 数据的收集、整理和描述
- 统计指标的计算
- 概率的计算和应用
- 排列与组合的计算
- 随机变量和概率分布
以上是高中数学学业水平考试的主要知识点和考点总结,希望可以帮到你。
高中数学学业水平考试知识点总结
高中数学学业水平考试知识点总结一. 代数与函数1.1 一次函数- 基本概念:函数的一种,表达式为 $y = kx + b$- 相关概念:斜率、截距- 线性关系:关系图像是一条直线- 相关题型:求斜率、截距、函数值等1.2 二次函数- 基本概念:函数的一种,表达式为 $y = ax^2 + bx + c$ - 相关概念:抛物线、顶点、对称轴、判别式- 相关题型:求顶点、对称轴、判别式值、求解方程等1.3 指数与对数- 基本概念:指数和对数是互为逆运算的概念- 相关概念:指数函数、对数函数、指数规律、对数规律- 相关题型:变底数相同求值、指数与对数的运算等二. 几何与三角学2.1 平面几何- 基本概念:平面内的形状、位置等属性- 相关概念:直线、线段、角等- 相关题型:直线与角的性质、线段的相交关系等2.2 空间几何- 基本概念:三维空间内的形状、位置等属性- 相关概念:平面、直线、线段等- 相关题型:平面与直线的相交关系、线段的长度等2.3 三角学- 基本概念:研究三角形及其性质的学科- 相关概念:正弦、余弦、正切等三角函数- 相关题型:三角函数的计算、三角形的性质等三. 概率与统计3.1 概率- 基本概念:研究事物发生可能性的学科- 相关概念:随机事件、样本空间、概率等- 相关题型:概率的计算、事件的关系等3.2 统计- 基本概念:收集、整理、分析和解释数据的学科- 相关概念:样本、频数、频率等- 相关题型:收集数据、绘制统计图表等以上是高中数学学业水平考试的基本知识点总结,包括代数与函数、几何与三角学、概率与统计等内容。
通过了解这些知识点,你将更好地准备考试,并取得好成绩。
高中数学学业水平考试知识点
高中数学学业水平考试知识点(必修一)第一章集合与函数概念 1. 集合的含义(1)元素:。
(2)集合:。
2. 集合的表示方法 a.列举法: 。
b.描述法: 。
3. 集合之间的包含与相等的含义(1)子集:。
(2)A=B:。
4. 全集与空集的含义(1)空集:,记为:。
(2)全集:,记为:。
5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。
(2)交集:,记为:。
6. 补集的含义及求法补集:,记为:。
7. 用Venn图表示集合的关系及运算运算交集并集补集类型韦AABB恩 S A 图2图1图示 18. 函数的概念函数:。
9.映射的概念映射:。
10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是: a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义. (2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。
11. 函数的表示法(1)解析法:;(2)图象法:; (3) 列表法: . 12. 简单的分段函数 (1) 定义:; (2) 定义域:;(3) 值域:; 13. 分段函数的简单应用(略) 214. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I, a.如果对于定义域I内的某个区间D内的任意两个自变量x、x,当时,12都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间; b.如果对于区间D上的任意两个自变量的值x、x,当,都12 有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的. (3). 函数最大(小)值 a. 最大值:。
(完整版)高中数学会考知识点总结(超级经典)
没有实数根 R
含参数的不等式 ax 2 +b x+c>0 恒成立问题 含参不等式 ax 2 +b x+c>0 的解集是 R; 其解答分 a=0(验证 bx+c>0 是否恒成立)、a≠0(a<0 且△<0)两种情况。 7、绝对值不等式的解法:(“>”取两边,“<”取中间)
(1)、当 a 0 时,| x | a 的解集是{x | x a, x a} ,| x | a 的解集是{x | a x a}
关系
5
第三章 数列
(一)、数列:(1)、定义:按一定次序排列的一列数叫数列;每个数都叫数列的项;
数列是特殊的函数:定义域:正整数集 N (或它的有限子集{1,2,3,…,n}),
值域:数列本身,对应法则:数列的通项公式;
(2)、通项公式:数列{ an }的第 n 项 an 与 n 之间的函数关系式;例:数列 1,2,…,n 的通项公式 an = n
三种形式:p 或 q、p 且 q、非 p;
原命题
互逆
逆命题
判断复合命题真假: [1]、思路:①、确定复合命题的结构, ②、判断构成复合命题的简单命题的真假, ③、利用真值表判断复合命题的真假;
若p则q
互 否
若q则p
互
否
为逆
互
为逆
否
互
否
[2]、真值表:p 或 q,同假为假,否则为真;
否命题
p 且 q,同真为真;非 p,真假相反。 若 p 则 q
互逆
逆否命题 若q 则p
(2)、四种命题:
2
原命题:若 p 则 q; 逆命题:若 q 则 p; 否命题:若 p 则 q; 逆否命题:若 q 则 p; 互为逆否的两个命题是等价的。 原命题与它的逆否命题是等价命题。 (3)、反证法步骤:假设结论不成立→推出矛盾→否定假设。 (4)、充分条件与必要条件:
山东省高中学业水平考试数学重点及公式
高中数学会考复习必背知识点(本知识点不完全,请同学们再翻阅相关知识点)第一章集合与简易逻辑1、含n 个元素的集合的所有子集有n2个 第二章函数对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=,幂的对数:M n M a n a log log =;b mnb a n a m log log =, 第三章数列1、数列的前n 项和:n n a a a a S ++++= 321;数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列:(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)通项公式:d n a a n )1(1-+=(其中首项是1a ,公差是d ;)(3)前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)通项公式:11-=n nq a a (其中:首项是1a ,公比是q )(3)前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S n n n 第四章三角函数 1弧度制:(1)π=180弧度,1弧度'1857)180( ≈=π;弧长公式:r l ||α=(α是角的弧度数)2、三角函数(1)、定义:r y =αsin r x =αcos xy=αtan 3、 特殊角的三角函数值α的角度 α的弧度—4、同角三角函数基本关系式:1cos sin22=+αααααc o ss i nt a n =5、诱导公式:(奇变偶不变,符号看象限)正弦上为正;余弦右为正;正切一三为正 公式二:公式三:公式四:公式五:6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 8、二倍角公式:(1)α2S :αααcos sin 22sin =α2C : ααα22sin cos 2cos -=1cos 2sin 2122-=-=ααα2T :ααα2t a n 1t a n22t a n -=(2)、降幂公式:(多用于研究性质)9、三角函数:函数定义域值域 周期性奇偶性 递增区间递减区间[-1,1] 奇函数[-1,1]偶函数函数定义域值域 振幅 周期频率相位初相图象[-A ,A]A五点法10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 21sin 21sin 21===∆(2)正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示:(3)余弦定理:求角: 第五章、平面向量 1、坐标运算:(1)设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x aλλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积:θcos →→→→⋅=⋅b a b a ,注意:00=⋅→→a,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行:→→→→=⇔b a b a λ//)(R ∈λ,⇔→→b a //01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a,02121=+⇔⊥→→y y x x b a中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 第六章:不等式1、 均值不等式:(1)、ab b a 222≥+(222b a ab +≤)(2)、a >0,b >0;ab ba 2≥+或2)2(b a ab +≤一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程 1、斜率:αtan =k,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=;(3)、一般式:0=++C By Ax (A 、B 不同时为0)斜率BAk -=,y 轴截距为B C -3、两直线的位置关系 (1)、平行:212121//b b k k l l ≠=⇔且212121C C B B A A ≠=时,21//l l ;垂直:21211l l k k ⊥⇔-=⋅2121210l l B B A A ⊥⇒=+;(2)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程: (2)圆的一般方程022=++++F Ey Dx y x0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第九章直线平面简单的几何体 1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式:334R π,球的表面积公式:24R S π=3、柱体h s V⋅=,锥体h s V ⋅=31第十一章:概率:1、概率(范围):0≤P(A)≤1(必然事件:P(A)=1,不可能事件:P(A)=0)2、等可能性事件的概率:()mP A n=. 3、互斥事件有一个发生的概率:A ,B 互斥:P(A +B)=P(A)+P(B);A 、B 对立:P (A )+P(B)=1。
山东高一数学合格考知识点
山东高一数学合格考知识点首先,在我们开始之前,需要明确一点,高一数学是高中数学的开端,也是高考数学的基础。
因此,山东高一数学合格考知识点将在以下几个方面展开:代数、几何、概率与统计。
第一部分:代数知识点代数是数学的基础,也是高一数学的重要组成部分。
在山东高一数学合格考中,常见的代数知识点有:1.1 一次函数:了解函数的概念和性质,能够识别一次函数的图像和方程,并能够根据给定的条件进行解题。
1.2 二次函数:熟悉二次函数的图像和方程,并能够通过解析法和图像法求解问题。
1.3 幂函数:理解幂函数的概念和性质,能够根据给定的条件求解幂函数的方程。
1.4 对数函数:了解对数函数的概念和性质,能够运用对数的性质解决问题。
1.5 不等式:熟悉一元一次不等式、一元二次不等式和绝对值不等式的解法,能够根据不等式的性质解决实际问题。
第二部分:几何知识点几何是数学的重要分支之一,也是高一数学的重点内容。
在山东高一数学合格考中,常见的几何知识点有:2.1 平面几何:包括点、线、面的基本概念和性质,熟悉平行线的判定与性质,了解三角形和四边形的性质,掌握正方形、长方形、菱形等多边形的特征。
2.2 立体几何:熟悉空间几何体的基本概念和性质,了解球、柱、锥、棱柱、棱锥等几何体的特征,能够计算其面积和体积。
2.3 向量:掌握向量的基本概念和性质,了解向量的线性运算、数量积和向量积的定义和性质,并能够运用向量解决相关问题。
第三部分:概率与统计知识点概率与统计是高中数学中的实用部分之一,在山东高一数学合格考中也是一个重要的知识点。
常见的概率与统计知识点有:3.1 概率:了解概率的基本概念和性质,能够计算简单事件的概率,掌握排列组合的基本思想和方法,能够计算简单排列组合问题的概率。
3.2 统计:了解统计学的基本概念和方法,能够制作数据表、频率分布表和绘制各种统计图表,能够计算数据的平均值、中位数、众数等统计量,并能够根据问题进行正确的统计分析。
山东高二会考数学知识点
山东高二会考数学知识点1. 数列与函数1.1 等差数列与等差数列求和公式等差数列是指相邻两项之差相等的数列,常用求和公式为Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项。
1.2 等比数列与等比数列求和公式等比数列是指相邻两项之比相等的数列,常用求和公式为Sn = a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1表示首项,q表示公比。
1.3 正弦函数与余弦函数正弦函数sin(x)和余弦函数cos(x)是三角函数中的基本函数,它们在周期为2π内的图像具有规律性。
正弦函数的图像可表示为y = A * sin(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D 为纵坐标平移量。
2. 几何与三角2.1 相似三角形相似三角形是指两个或多个三角形的对应角相等,对应边成比例。
相似三角形的性质包括比例定理、高线比定理等。
2.2 三角恒等式三角恒等式是指在三角函数中成立的等式。
常用的三角恒等式包括正弦定理、余弦定理、正切定理等,它们是解决三角形相关问题的基本工具。
2.3 圆的性质圆是平面几何中的基本图形,其性质包括周长、面积的计算公式,弧度与角度之间的转换关系等。
3. 微积分3.1 导数与微分导数表示函数在某一点的变化率,常用符号表示为f'(x)或dy/dx。
微分表示函数的微小变化,常用符号表示为df,dx。
导数与微分在求解函数的极值、函数的图像特性等方面具有重要作用。
3.2 积分与定积分积分是导数的逆运算,表示函数在给定区间上的面积或曲线长度。
定积分是积分的一种特殊形式,表示曲线下方的面积。
3.3 微分方程微分方程是包含未知函数及其导数的方程,常用来描述变化的过程。
常见的微分方程包括一阶线性微分方程、二阶线性微分方程等。
4. 概率与统计4.1 概率基本概念概率是事件发生的可能性,在数学中通过一个介于0和1之间的数来表示。
山东省高中学业水平考试数学知识点总结
山东省2010年高中学业水平考试数学知识点总结老师的话:同学们,学业水平考试快到了!如何把数学复习好?老师告诉你:回到课本中去!翻开课本,可以重温学习的历程,回忆学习的情节,知识因此被激活,联想由此而产生。
课本是命题的依据,学业水平考试试题难度不大,大多是在课本的基础上组合加工而成的。
因此,离开书本的复习是无源之水,那么如何运用课本呢?复习不是简单的重复,你们应做到以下6点:1、在复习每一专题时,必须联系课本中的相应部分。
不仅要弄懂课本提供的知识和方法,还要弄清定理、公式的推导过程和例题的求解过程,揭示例、习题之间的联系及变换2、在做训练题时,如果遇到障碍,应有查阅课本的习惯,通过课本查明我们在知识和方法上的缺陷,尽可能把问题回归为课本中的例题和习题3、在复习训练的过程中,我们会积累很多解题经验和方法,其中不少是规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据4、注意在复习的各个环节,既要以课本为出发点,又要不断丰富课本的内涵,揭示课本内涵与试题之间的联系5、关于解题的表达方式,应以课本为标准。
很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,就通过课本来规范6、注意通过对课本题目改变设问方式、增加或减少变动因素和必要的引申、推广来扩大题目的训练功能。
现行课本一般是常规解答题,应从选择、填空、探索等题型功能上进行思考,并从背景、现实、来源等方面加以解释 必修一 一、集合1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔==4. 你会用补集思想解决问题吗?(排除法、间接法)5. 一元一次不等式的解法:已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)6. 一元二次不等式的解集:解关于x 的不等式:01)1(2<++-x a ax 。
山东省高中数学会考复习必背知识点
高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U 第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a na log log =,b mnb a n a m log log =。
第三章 数列1、数列的前n 项和:n n a a a a S ++++=Λ321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=ο180弧度,1弧度'1857)180(οο≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 一正、二定、三相等 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0; 第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率BA k -=,y 轴截距为B C-3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线1、椭圆标准方程:)0(12222>>=+b a b y a x ,半焦距c :222b a c -= ,离心率e 的范围:10<<e .2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距c :222b a c +=,离心率e 的范围:1>e渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2px =焦点坐标)0,2(p - py x 22=:准线方程2p y -=焦点坐标)2,0(p;py x 22-=:准线方程2p y =焦点坐标)2,0(p - 第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 3、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =。
山东省高中数学知识点总结
山东省高中数学知识点总结一、函数与导数1. 函数的概念与性质:函数的定义、函数的表达方式、函数的奇偶性、单调性、周期性、最值问题。
2. 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数的性质与图像。
3. 函数的运算:函数的四则运算、复合函数、反函数、参数方程与极坐标方程。
4. 导数与微分:导数的定义、求导法则、隐函数与参数方程求导、高阶导数、微分的概念与应用。
5. 导数的应用:利用导数研究函数的单调性、极值与最值、曲线的切线与法线、洛必达法则、泰勒公式。
二、三角函数与解三角形1. 三角函数的基本概念:正弦、余弦、正切、余切、正割、余割的定义与性质。
2. 三角函数的图像与性质:周期性、奇偶性、单调性、最值问题。
3. 三角恒等变换:基本恒等式、和差公式、倍角公式、半角公式、和差化积与积化和差。
4. 解三角形:正弦定理、余弦定理、三角形面积公式、三角形的解法。
5. 三角函数的应用:解决实际问题、三角方程的解法。
三、数列与数学归纳法1. 数列的概念与表示:数列的定义、通项公式、递推关系。
2. 等差数列与等比数列:定义、通项公式、求和公式、性质。
3. 数列的极限:数列极限的概念、性质、极限存在的条件。
4. 数学归纳法:数学归纳法的原理、证明方法、应用。
5. 无穷数列:无穷等比数列、级数的概念与收敛性。
四、平面向量与解析几何1. 向量的基本概念:向量的定义、向量的加法、数乘、数量积。
2. 向量的几何运算:向量的线性运算、向量的数量积、向量的叉积。
3. 向量在几何中的应用:平面向量的坐标表示、向量的投影、向量方程的几何意义。
4. 圆的方程:圆的标准方程、一般方程、参数方程。
5. 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
五、立体几何1. 空间几何体:多面体、旋转体的结构特征、表面积与体积公式。
2. 空间直线与平面:直线与平面的位置关系、直线与平面的方程。
3. 空间向量:空间向量的基本概念、空间向量的运算、空间向量的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2010年高中学业水平考试数学知识点总结老师的话:同学们,学业水平考试快到了!如何把数学复习好?老师告诉你:回到课本中去!翻开课本,可以重温学习的历程,回忆学习的情节,知识因此被激活,联想由此而产生。
课本是命题的依据,学业水平考试试题难度不大,大多是在课本的基础上组合加工而成的。
因此,离开书本的复习是无源之水,那么如何运用课本呢?复习不是简单的重复,你们应做到以下6点:1、在复习每一专题时,必须联系课本中的相应部分。
不仅要弄懂课本提供的知识和方法,还要弄清定理、公式的推导过程和例题的求解过程,揭示例、习题之间的联系及变换2、在做训练题时,如果遇到障碍,应有查阅课本的习惯,通过课本查明我们在知识和方法上的缺陷,尽可能把问题回归为课本中的例题和习题3、在复习训练的过程中,我们会积累很多解题经验和方法,其中不少是规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据4、注意在复习的各个环节,既要以课本为出发点,又要不断丰富课本的内涵,揭示课本内涵与试题之间的联系5、关于解题的表达方式,应以课本为标准。
很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,就通过课本来规范6、注意通过对课本题目改变设问方式、增加或减少变动因素和必要的引申、推广来扩大题目的训练功能。
现行课本一般是常规解答题,应从选择、填空、探索等题型功能上进行思考,并从背景、现实、来源等方面加以解释 必修一 一、集合1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔==4. 你会用补集思想解决问题吗?(排除法、间接法)5. 一元一次不等式的解法:已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)6. 一元二次不等式的解集:解关于x 的不等式:01)1(2<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a <;当01a <<时,11x a<<;当1a =时,x ∈∅;当1a >时,11x a<<)7. 对于方程02=++c bx ax 有实数解的问题。
(1)()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)若在[0,]2π内有两个不等的实根满足等式cos 2321x x k =+,则实数k 的范围是_______.(答:[0,1)) 二、函 数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数f : A →B 是特殊的映射。
若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2) 3.研究函数问题时要树立定义域优先的原则:(1)函数lg 3y x =-的定义域是____(答:(0,2)(2,3)(3,4));(2)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤)(3)复合函数的定义域:①若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________(答:{}42|≤≤x x );②若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]).4.求函数值域(最值)的方法:(1)配方法―①当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(2)换元法①22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);②21y x =++_____(答:(3,)+∞)t =,0t ≥。
运用换元法时,要特别要注意新元t 的范围);○3 sin cos sin cos y x x x x =++的值域为____(答:1[1,2-);○44y x =+____(答:4]+);(3)函数有界性法―求函数2sin 11sin y θθ-=+,313x x y =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞);(4)单调性法――求1(19)y x x x =-<<,229sin 1sin y x x=++的值域为______(答:80(0,)9、11[,9]2);(5)数形结合法――已知点(,)P x y 在圆221x y +=上,求2yx +及2y x -的取值范围(答:[、[); (6)不等式法―设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞)。
5.分段函数的概念。
(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是____(答:(,2][0,10]-∞-);(2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是___(答:3(,]2-∞) 6.求函数解析式的常用方法:(1)待定系数法―已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 。
(答:21()212f x x x =++) (2)配凑法―①已知,sin )cos 1(2x x f =-求()2x f 的解析式___(答:242()2,[f x x x x =-+∈);②若221)1(xx x x f +=-,则函数)1(-x f =___(答:223x x -+);(3)方程的思想―已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--); 7. 函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔1)()(0)()()()(-=-⇔=+-⇔-=-x f x f x f x f x f x f ; ⑶)(x f 是偶函数1)()(0)()()()(=-⇔=--⇔=-⇔x f x f x f x f x f x f ;⑷奇函数)(x f 在原点有定义,则0)0(=f ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;8.函数的单调性。
如何用定义证明函数的单调性?(取值、作差、判正负) 如何判断复合函数的单调性?()y f u =(外层),()u x ϕ=(内层),则[]()y f x ϕ=当内、外层函数单调性相同时,[]()f x ϕ为增函数,否则[]()f x ϕ为减函数如:求()212log 2y x x =-+的单调区间。
设22u x x =-+,由0u >,则02x <<且12log u ↓,()211u x =--+,如图当(01]x ∈,时,u ↑,又12log u ↓,∴y ↓当[12)x ∈,时,u ↓,又12log u ↓,∴y ↑∴……)9. 函数图象⑴图象作法 :①描点法(注意三角函数的五点作图)②图象变换法③导数法 ⑵图象变换:① 平移变换:ⅰ)()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ)0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; ② 伸缩变换:ⅰ)()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标伸长为原来的ω1倍;ⅱ)()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标伸长为原来的A 倍;③ 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=;ⅲ)(x f y =−→−=0x )(x f y -=; ⅳ)(x f y =−−→−=xy )(1x f y -=;④ 翻转变换:ⅰ|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉);ⅱ|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象);10.常用函数的图象和性质 (1)()0y kx b k =+≠一次函数: (2)反比例函数:()0ky k x=≠推广为()0ky b k x a=+≠-是中心'()O a b ,的双曲线。
(3)二次函数()2224024b ac b y ax bx c a a x a a -⎛⎫=++≠=++⎪⎝⎭的图像为抛物线顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴2bx a =- 开口方向:0a >,向上,函数2min 44ac b y a-=0a <,向下,2max44ac b y a-=应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程20ax bx c ++=,0∆>时,两根12x x 、为二次函数2y ax bx c =++的图像与x 轴的两个交点,也是二次不等式20(0)ax bx c ++><解集的端点值。
②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
如:二次方程20ax bx c ++=的两根都大于02()0bk k a f k ∆≥⎧⎪⎪⇔->⎨⎪>⎪⎩,一根大于k ,一根小于()0k f k ⇔<(4)指数函数:()01x y a a a =>≠, (5)对数函数:()log 01a y x a a =>≠,由图象记性质!(注意底数的限定!)(6)“对勾函数”()0ky x k x=+> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?必修二 一、 立体几何 1.平行、垂直关系证明的思路平行垂直的证明主要利用线面关系的转化:线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−线面平行的判定:a b b a a ααα⊂⊄⇒∥,面,∥面线面平行的性质:b a b αααβαβ⊂=⇒∥面,面,∥三垂线定理(及逆定理):PA α⊥面,AO 为PO 在α内射影,a α⊂面,则a x(a>1)abαa OA a PO a PO a AO ⇒⇒⊥⊥;⊥⊥线面垂直:a b a c b c b c O a αα⊂=⇒⊥,⊥,,,⊥面面垂直:a a αββα⊂⇒⊥面,面⊥,l a a l a αβαβαβ=⊂⇒面⊥面,,,⊥⊥;a b a b a a αααβαβ⇒⇒⊥面,⊥面∥面⊥,面⊥∥a bα2.三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°o 0b b θαα⊂=时,∥或(3)二面角:二面角l αβ--的平面角0180o o θθ<≤,三垂线定理法:A ∈α作或证AB ⊥β于B ,作BO ⊥棱于O ,连AO ,则AO ⊥棱l ,∴∠AOB 为所求。