离散数学形成性考核作业4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学形成性考核作业4
离散数学综合练习书面作业
要求:学生提交作业有以下三种方式可供选择:
1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.
2. 在线提交word文档.
3. 自备答题纸张,将答题过程手工书写,并拍照上传.
一、公式翻译题
1.请将语句“小王去上课,小李也去上课.”翻译成命题公式.设P:小王去上课。
Q: 小李去上课。
则P^Q
2.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.
设P:他去旅游。
Q: 他有时间。
则P→Q
3.请将语句“有人不去工作”翻译成谓词公式.
设A(x): x是人
B(x):去工作
∃x(A(x)^⌝B(x))
4.请将语句“所有人都努力学习.”翻译成谓词公式.
设A(x): x是人
B(x):努力工作
∀x(A(x)^B(x))
二、计算题
1.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算 (1)(A B ); (2)(A ∩B ); (3)A ×B .
解:(1)(A B )={{1},{2}} (2)(A ∩B )={1,2} (3) A ×B
{<{1},1>,<{1},2>,<{1},{1,2 }>,<{2},1>,<{2},2>,<{2},{1,2 }>,<1,1>,<1,2>,<1,{1,2 }>,<2,1>,<2,2>,<2,{1,2 }>}
2.设A ={1,2,3,4,5},R ={
R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>} S=Φ R S=Φ S R=Φ
R -1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>} S -1=Φ
r (S )= {<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}
s (R )= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}
3.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.
(1) 写出关系R 的表示式; (2) 画出关系R 的哈斯图; (3) 求出集合B 的最大元、最小元.
解:(1)
R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}
(2)
(3) 集合B 没有最大元,最小元是2
2
3
4 6 5
7
8 关系R 的哈斯图
4.设G =
(1) 给出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4) 画出其补图的图形.
解:(1) 1v °
2v
° °3v
4v ° °5v
(2) ⎥⎥⎥
⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢
⎢⎣⎡=011001011011011
0110000100)(D A
(3) =)deg(1v 1、=)deg(2v 2、=)deg(3v 4、=)deg(4v 3、=)deg(5v 2
(4) °1v
2v ° °3v
4v ° °5v
5.图G =
(1)画出G 的图形; (2)写出G 的邻接矩阵; (3)求出G 权最小的生成树及其权值. b c
解:(1) 。 。
2 1
a 。 6 4 2 1 3 。 。 e 5 d
(2) ⎥⎥⎥
⎥⎥
⎥⎦
⎤
⎢⎢⎢⎢⎢
⎢⎣⎡=011111011011001
1100110110)(D A
(3) b c 。 。
2 1
a 。 1 3 e d 其权值为:7
6.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
解: 65
17 48
5 12
17 31
2 3 5 7
权值为65。
7. 求P
Q R 的析取范式,合取范式、主析取范式,主合取范式.
解:┐P (Q ∨R )= ┐P Q ∨R 所以合取范式和析取范式都是┐P Q ∨R
所以主合取范式就是┐P Q ∨R
所以主析取范式就是(P Q R) (P
Q R) (P Q R ) (P Q R) (P Q R) (P Q
R ) (P Q R )
8.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀. (1)试写出量词的辖域;
(2)指出该公式的自由变元和约束变元.
解:(1)量词x 的辖域为 P(x,y) (z)Q(y,x,z) 量词z 的辖域为Q(y,x,z) 量词y 的辖域为R(y,x)
(2) P(x,y)中的x 是约束变元,y 是自由变元
Q(y,x,z)中的x 和z 是约束变元,y 是自由变元 R(y,x)中的x 是自由变元,y 是约束变元