初一绝对值问题较难问题详解
第二讲绝对值难题讲解学习
第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零•即卜当金〉0时!|a|= J 0)当离=0时|[怜当印<0时・绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关•在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a, b为实数,下列各式对吗?若不对,应附加什么条件?(1) I a+b | =| a | +| b | ;⑵| ab | = | a || b |; (3) | a-b | = | b-a |;⑷若 | a | =b,则a=b;⑸若| a |v| b |,贝U a v b;⑹若a> b,则 | a |>| b | .解(1)不对.当a, b同号或其中一个为0时成立.(2)对.⑶对.⑷不对.当a > 0时成立.⑸不对.当b > 0时成立.⑹不对.当a + b> 0时成立.例2设有理数a, b, c在数轴上的对应点如图1-1所示,化简| b-a | + | a+c |+ I c-b |.團1-1解由图1-1可知,a>0, b v 0, c v 0,且有| c | >| a |>| b |> 0.根据有理数加减运算的符号法则,有b-a v 0, a+ c v 0, c-b v 0.再根据绝对值的概念,得| b-a | =a-b,| a+c | =-(a+c) , | c-b | =b-c.于是有原式=(a -b) -(a+c)+(b -c)=a -b-a-c+b-c=-2c.例3 已知x v -3,化简:| 3+ | 2- | 1+x |||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=| 3+ | 2+(1+x) | | (因为1+x v 0)=| 3+ | 3+x | |=| 3-(3+x) | (因为3+x v 0)=| -x | =-x.例4若血弄0,则占+上十二询所有可能值是什么? l a! I b l l c l解因为abc丰0,所以a丰0, b^ 0, c丰0.=1 a, b, c均大于零时,原式=3;(1)当⑵当a, b, c均小于零时,原式=-3;⑶当§ a, b, c中有两个大于零,一个小于零时,原式=1;⑷当§ a, b, c中有两个小于零,一个大于零时,原式--1瞅昏詁訥< 可能的值W辽说明本例的解法是采取把a, b, c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若丨x丨=3,| y | =2,且丨x-y | =y-x,求x+y的值.解因为 | x-y |> 0,所以y-x》0, y >x•由 | x | =3,| y | =2 可知,x v 0, 即x=-3.(1) 当y=2 时,x+y=-1 ;(2) 当y=-2 时,x+y=-5.所以x+y的值为-1或-5.例6 若a, b, c 为整数,且 | a-b | 19+ | c-a | 99=1, 试计算 | c-a | + | a-b |+ | b-c | 的值.解a , b, c均为整数,贝U a-b, c-a也应为整数,且| a-b | 19,| c-a | 99为两个非负整数,和为1,所以只能是| a-b | 19=0 且 | c-a | 99=1, ①或| a-b | 19=1 且 | c-a | 99=0.②由①有a=b且c=a± 1,于是| b-c | = | c-a | =1;由②有c=a且a=b ± 1,于是| b-c | =I b-c | =1 且 |a-b | + | c-a | =1,| a-b | =1.无论①或②都有所以I c-a | + | a-b | + | b-c | =2.例孑若I x-y+3 I I x+y-1999 I互为相反数,求的值. x-y解依相反数的意义有I x-y+3 | =- | x+y-1999 | .x-y+3 I =0 且I x+y-1999 I 因为任何一个实数的绝对值是非负数,所以必有I=0•即(s + y-1999 = 0, ②由①有x-y=-3,由②有x+y=1999 .②-①得2y=2002, y=1001 ,所以幫一y x ~ y 一孑例8 化简:| 3x+1 I + I 2x-1 |.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简I 3x+1 I,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们是分Q冷与篡<冷两种情况加以讨论的,此瞅赵是一个分界点-类似地’对于1 2盖J I而言,葢二+是一个分界点r为同吋去掉两个绝对值符号,我们把两个分界点J和:标在谿由上把数轴分为三个部分(如图1 -2所示),即这样我们就可以分类讨论化简了.區1解(1)当囂<冷时.原式=-(3x+1) -(2x-1)= -5x ;(2)当^<x<|时,原式=(3x+1) -(2x-1)=x+2 ;⑶当耳”时,原式=(3x+1)+(2x -1)=5x .即x + 2,当-时;5x(当Q右吋.说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y | 2x+6 | + | x-1 | -4 | x+1 求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3, 1, -1 .(1) 当x w -3 时,y=-(2x+6) -(x-1)+4(x+1)=x -1,由于x< -3,所以y=x-1w -4, y的最大值是-4.(2) 当-3< x w-1 时,y=(2x+6) -(x -1)+4(x+1)=5x+11 , 由于-3w x W -1,所以-4w 5x+11 w 6, y的最大值是6.(3) 当-1w x w 1 时,y=(2x+6) -(x-1)-4(x+1)= -3x+3, 由于-1 w x W 1,所以O w -3x+3w 6, y的最大值是6.(4) 当x> 1 时,y=(2x+6)+(x -1)-4(x+1)= -x+1 ,由于x> 1,所以1-x w 0, y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10 设a v b v c v d,求I x-a | + | x-b | + | x-c | + | x-d |的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用| x-a|, | x-b | ,| x-c |,| x-d |的几何意义来解题,将显得更加简捷便利.解设a, b, c, d, x在数轴上的对应点分别为A, B, C, D, X,则| x-a |表示线段AX之长,同理,| x-b | , | x-c | , | x-d |分别表示线段BX, CX DX之长.现要求| x-a |,| x-b |,| x-c |, | x-d |之和的值最小,就是要在数轴上找一点X,使该点到A, B, C, D四点距离之和最小.因为a v b v c v d,所以A, B, C, D的排列应如图1 - 3所示:图1-3所以当X在B, C之间时,距离和最小,这个最小值为AD+BC即(d-a)+(c -b).例11若2x+ | 4-5x | + | 1-3x | +4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0 一种情况.因此必须有I 4-5x | =4- 5x且| 1-3x | =3x-1.故x应满足的条件是(4-5x>O r解之得号£ V — *此时原式=2x+(4 -5x) -(1 -3x)+4=7 .练习二1. x是什么实数时,下列等式成立:(1) I (x -2)+(x -4) | = | x-2 | + | x-4 | ;(2) | (7x+6)(3x -5) | =(7x+6)(3x -5).2. 化简下列各式:(2) | x+5 | + | x-7 | + | x+10 | .3. 若a+ b v 0,化简 | a+b-1 | - | 3-a-b | .4. 已知y= | x+3 | + | x-2 | - | 3x-9 |,求y 的最大值.5. 设T= | x-p | + | x-15 | + | x-p-15 |,其中0 v p v 15,对于满足p< x< 15 的x来说,T的最小值是多少?6. 已知a v b,求| x-a | + | x-b |的最小值.7. 不相等的有理数a, b, c在数轴上的对应点分别为A, B, C,如果| a-b | + | b-c | = | a-c |,那么B点应为().(1) 在A, C点的右边;(2) 在A, C点的左边;(3) 在A, C点之间;(4) 以上三种情况都有可能.。
七年级上册数学绝对值难题类型
七年级上册数学绝对值难题类型七年级上册数学绝对值难题类型及解析一、绝对值的定义与性质1. 绝对值的定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作\vert a\vert。
2. 绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
二、绝对值的化简1. 已知字母的取值范围化简绝对值当a \geq 0时,\vert a\vert = a;当a 0时,\verta\vert = a。
例如:已知x 0,化简\vert x 2\vert。
因为x 0,所以x 2 0,则\vert x 2\vert = (x 2) = 2 x。
2. 多重绝对值的化简从内向外依次化简绝对值。
例如:化简\vert\vert 3 x\vert 1\vert,需要先求出\vert 3 x\vert的值,再进一步化简。
三、绝对值方程1. 形如\vert x\vert = a(a > 0)的方程方程的解为x = \pm a。
例如:\vert x\vert = 5,则x = \pm 5。
2. 形如\vert ax + b\vert = c(c > 0)的方程当ax + b \geq 0时,ax + b = c;当ax + b 0时,ax + b = c。
例如:\vert 2x 1\vert = 3,当2x 1 \geq 0,即x\geq \frac{1}{2}时,2x 1 = 3,解得x = 2;当2x 1 0,即x \frac{1}{2}时,2x 1 = 3,解得x = 1。
四、绝对值不等式1. 形如\vert x\vert a(a > 0)的不等式不等式的解集为a x a。
例如:\vert x\vert 2,则2 x 2。
2. 形如\vert x\vert > a(a > 0)的不等式不等式的解集为x a或x > a。
例如:\vert x\vert > 3,则x 3或x > 3。
初一数学绝对值难点突破(含答案)
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
初一第一章的《绝对值》的几个难题(答案)
初一第一章的《绝对值》的几个难题(答案)解:根据题意,我们可以列出方程组:a-b = 2008kc-a = 2008(1-k)其中k为整数。
将XXX代入原方程可得:a-b + c-a = 2化XXX:c-b = 2008k+1或c-b = 2008(1-k)-1因为a、b、c为整数,所以k只能为0或1.当k=0时,c-b=1,a-b=2008,b-c=-2007,所以c-a+a-b+b-c=2.当k=1时,c-b=-1,a-b=-2008,b-c=2007,所以c-a+a-b+b-c=2.因此,c-a+a-b+b-c的值为2.3、解方程:x-2+2x-1=8.答:将x-2和2x-1括起来,得到(x-2)+(2x-1)=8,化简得3x-3=8,解得x=11/3.4、已知:关于x的方程x-ax=1,同时有一个正根和一个负根,求整数a的值。
答:设正根为x1,负根为x2,则有x1-x2=2|a|。
因为x1和x2都是根,所以x1-ax1=1,x2-ax2=1.将两式相减得到x1-x2=a(x1-x2),因为x1和x2不相等,所以a=1或a=-1.当a=1时,方程化为x-x=1无解;当a=-1时,方程化为x+x=1,解得x=-1/2,符合要求。
因此,a=-1.5、已知:a、b、c是非零有理数,且a+b+c=0,求:abc/(abc)的值。
答:由a+b+c=0可得abc=-(ab+bc+ca),因此abc/(abc)=-1.6、设abcde是一个五位数,其中a、b、c、d、e是阿拉伯数字,且a<b<c<d,试求y=a-b+b-c+c-d+d-e的最大值。
答:因为a<b<c<d,所以b-a≥1,c-b≥1,d-c≥1,e-d≥1,将y拆开得到y=(b-a)+(c-b)+(d-c)+(e-d),因此y≥4.当a=1,b=2,c=3,d=4,e=5时,y=4,所以y的最大值为4.7、求关于x的方程x-2-1=a(0<a<1)所有解的和。
七年级数学上学期 绝对值重难点突破(含解析)
初中数学人教版七年级上学期第一章有理数绝对值重难点突破一、解答题1.(8分)(2020七上·硚口期中)已知是有理数.(1)当时,先判断的正、负符号,再求的值;(2)当时,直接写出的值.2.(8分)(2021七上·相城月考)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|3.(10分)(2021七上·苏州月考)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.4.(12分)(2020七上·金华期中)数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
我们知道一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,如:,:表示数的点到原点的距离。
同样的,:表示数的点到表示数3的点的距离。
请结合数轴解决下列问题:①当时,表示什么意思?________;②若,则________;③若,则的值是________;④求使的值最小的所有符合条件的整数.二、综合题5.(10分)(2021七上·薛城期中)数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则点A、B两点间的距离表示为.利用上述结论,回答以下问题(1)若点A在数轴上表示-3,点B在数轴上表示1,那么AB=;(2)若数轴上两点C、D表示的数为x、-1①C、D两点之间的距离可用含x的式子表示为;②若该两点之间的距离是3,那么x值为;(3)若数轴上表示a的点位于-5和2之间,化简.6.(11分)(2021七上·建昌期中)“数形结合”是重要的数学思想.如:表示与差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用,表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和两点之间的距离是.(2)可理解为与两数在数轴上所对应的两点之间的距离;可理解为与两数在数轴上所对应的两点之间的距离.(3)若,则.(4)若表示一个有理数,的最小值为.(5)直接写出所有符合条件的整数x,使得,的值为7.(10分)(2021七上·温岭期中)点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a-b|回答下列问题:(1)数轴上表示-1和-4的两点之间的距离是;(2)数轴上表示x和-1的两点A之和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.8.(15分)(2020七上·武汉期中)(问题背景)在数轴上,点表示数在原点的左边,点表示的数在原点的右边,如图1,所示,则有:①;②线段的长度等于.(问题解决)点、点、点在数轴上的位置如图2所示,三点对应的数分别为,、.①线段的长度为▲;②若点为线段的中点,则点表示的数是▲;③化简:.(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应的数为,点对应的数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要1秒,完全经过线段需要2秒,求的值;②已知,当式子取最小值时,相应的的取值范围是▲,式子的最小值是▲.(用含、的式子表示)9.(16分)(2020七上·孝南期中)已知是最小的正整数,且,满足,请回答:(1)请直接写出,,的值:=,=,=;(2)在(1)的条件下,若点为一动点,其对应的数为,点在0到1之间运动,即时,化简:;(3)在(1)(2)的条件下,,,分别对应的点、、开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、解答题1.【答案】(1)解:,;(2)解:当同正时,;当两正一负时,;当一正两负时,;当同负时,;综上:或±1.【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】(1)利用有理数的乘法法则可知a,b同号,再利用有理数的加法法则,结合已知可得到a,b同为负数,然后化简绝对值,可求出结果。
初一数学期末复习数轴绝对值动点压轴题难题(附答案详解)
初一数学数轴绝对值动点压轴题(附答案详解)一、解答题(共20小题)1. 如图,数轴的原点为O,点A,B,C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)求点A,C分别对应的数;(2)求点P,Q分别对应的数(用含t的式子表示).(3)试问当t为何值时,OP=OQ?2. 已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P,Q两点从原点出发运动4秒时的位置.(2)如果P,Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P,Q到原点的距离相等?3. 阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与−2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4)求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.4. 如图1,在平面直角坐标系中,A(6,a),B(b,0)且(a−6)2+√b−2=0.(1)求点A,B的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若S△PAB=15,请求出P点的坐标;(3)如图2,已知AB=√52,若C点是x轴上一个动点,是否存在点C,使BC=AB,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.5. 如图,A,B分别为数轴上的两点,A点对应的数为−5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.6. 数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是,点B对应的数是;(2)若数轴上有一点D,且BD=4,则点D表示的数是什么?(3)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.当点P和点Q间的距离为8个单位长度时,求t的值.7. 如图,已知点O是原点,点A在数轴上,点A表示的数为−6,点B在原点的右侧,且OB=4OA.3(1)点B对应的数是,在数轴上标出点B.(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P,Q两点表示的数:P是;Q是;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?8. 如图,半径为1个单位的圆片上有一点A与数轴的原点重合,AB是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,−5,+4,+3,−2.当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?9. 结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示−3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于∣m−n∣.如果表示数a 和−1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于−4与2之间,则∣a+4∣+∣a−2∣的值为;(3)利用数轴找出所有符合条件的整数点x,使得∣x+2∣+∣x−5∣=7,这些点表示的数的和是.(4)当a=时,∣a+3∣+∣a−1∣+∣a−4∣的值最小,最小值是.10. 如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,当PB=2时,求运动时间t.11. A,B,C为数轴上的三点,动点A,B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点 C 对应的数为8.(1)若2秒后,a,b满足∣a+8∣+(b−2)2=0,则x=,y=,并请在数轴上标出A,B两点的位置.(2)若动点A,B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得∣a∣=∣b∣,使得z=.(3)若动点A,B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A 与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.12. 探索研究:(1)比较下列各式的大小(用“<”或“>”或“=”连接).①∣+1∣+∣4∣∣+1+4∣;②∣−6∣+∣−3∣∣−6−3∣;③∣10∣+∣−3∣∣10−3∣;④∣8∣+∣−5∣∣8−5∣;⑤∣0∣+∣+2∣∣0+2∣;⑥∣0∣+∣−8∣∣0−8∣.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,∣a∣+∣b∣∣a+b∣(用“<”或“>”或“=”或“≥”或“≤”连接).(3)根据(2)中得出的结论,当∣x∣+2017=∣x−2017∣时,则x的取值范围是;若x>0,且∣x∣+∣y∣=10,∣x+y∣=2,则y=.13. 阅读下面材料并回答问题.I阅读:数轴上表示−2和−5的两点之间的距离等于(−2)−(−5)=3;数轴上表示1和−3的两点之间的距离等于1−(−3)=4.一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数.II问题:如图,O为数轴原点,A,B,C是数轴上的三点,A,C两点对应的数互为相反数,且A点对应的数为−6,B点对应的数是最大负整数.(1)点B对应的数是,并请在数轴上标出点B位置;PC,求线段AP中点对应的数;(2)已知点P在线段BC上,且PB=25⋅x2−bx+2的值(a,b,c是点(3)若数轴上一动点Q表示的数为x,当QB=2时,求a+c100A,B,C在数轴上对应的数).14. 如图,已知数轴上点A表示的数为6,点B表示的数为−4,C为线段AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点C表示的数是;(2)当t=秒时,点P到达点A处;(3)点P表示的数是(用含字母t的代数式表示);(4)当t=秒时,线段PC的长为2个单位长度;(5)若动点Q同时从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,那么,当t=秒时,PQ的长为1个单位长度.15. 阅读理解.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子∣x+1∣+∣x−2∣取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<−1,−1≤x≤2和x>2,经研究发现,当−1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子∣x−2∣+∣x−4∣+∣x−6∣+∣x−8∣取最小值时,相应的x的取值范围是,最小值是.(2)已知y=∣2x+8∣−4∣x+2∣,求相应的x的取值范围及y的最大值.写出解答过程.16. 阅读思考:小聪在复习过程中,发现可以用“两数的差”来表示“数轴上两点间的距离”,探索过程如下:如图甲所示,三条线段的长度可表示为AB=4−2=2,CB=4−(−2)=6,DC=(−2)−(−4)=2,于是他归纳出这样的结论:当b>a时,AB=b−a(较大数−较小数).(1)思考:你认为小聪的结论正确吗? .(2)尝试应用:①如图乙所示,计算:EF=,FA=.②把一条数轴在数m处对折,使表示−14和2014两数的点恰好互相重合,则m=.(3)问题解决:①如图丙所示,点A表示数x,点B表示−2,点C表示数2x+8,且BC=4AB,问:点A和点C分别表示什么数?②在上述①的条件下,在如图丙所示的数轴上是否存在满足条件的点D,使DA+DC=3DB?若存在,请直接写出点D所表示的数;若不存在,请说明理由.17. 如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程∣x+9∣=1的两解(a<b),(c−16)2与∣d−20∣互为相反数.(1)求a、b、c、d的值;(2)若A、B两点以每秒6个单位的速度向右匀速运动,同时C、D两点以每秒2个单位的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍,若存在,求时间t;若不存在,请说明理由.18. 已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.19. 在数轴上依次有 A ,B ,C 三点,其中点 A ,C 表示的数分别为 −2,5,且 BC =6AB .(1)在数轴上表示出 A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从 A ,B ,C 三点同时出发,沿数轴负方向运动,它们的速度分别是 14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点 P ,使 P 到 A ,B ,C 的距离和等于 10?若存在求点 P 对应的数;若不存在,请说明理由.20. 已知数轴上三点 M ,O ,N 对应的数分别为 −3,0,1,点 P 为数轴上任意一点,其对应的数为x .(1)如果点 P 到点 M 、点 N 的距离相等,那么 x 的值是 . (2)当 x = 时,使点 P 到点 M ,点 N 的距离之和是 5;(3)如果点 P 以每秒钟 3 个单位长度的速度从点 O 向左运动时,点 M 和点 N 分别以每秒钟 1个单位长度和每秒钟 4 个单位长度的速度也向左运动,且三点同时出发,那么 秒钟时点 P 到点 M ,点 N 的距离相等.答案第一部分1. (1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1−6=−5,点C对应的数是1+2=3.(2)∵动点P,Q分别同时从A,C出发,分别以每秒2个单位长度和1个单位长度的速度沿数轴正方向运动,∴点P对应的数是−5+2t,点Q对应的数是3+t.(3)①当点P与点Q在原点两侧时,若OP=OQ,则5−2t=3+t,解得:t=23;②当点P与点Q在原点同侧时,若OP=OQ,则−5+2t=3+t,解得:t=8;当t为23或8时,OP=OQ.2. (1)设P的速度为x单位长度/秒,Q的速度为3x单位长度/秒.依题意,得4(x+3x)=16,∴x=1.∴P的速度为1单位长度/秒,Q的速度为3单位长度/秒.4秒时,P的位置在−4,Q的位置在12.(2)设再经过y秒时,点P,Q到原点的距离相等,①当点P,Q位于原点两侧时,12−3y=4+y,解得,y=2.②当点P,Q位于原点同侧时,3y−12=4+y,解得,y=8.所以再经过2秒或8秒时点P,Q到原点的距离相等.3. (1)5【解析】∣3−(−2)∣=5.(2)∣x−7∣(3)−8;−3或−13(4)如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.4. (1)∵(a−6)2+√b−2=0,又∵(a−6)2≥0,√b−2≥0,∴a=6,b=2,∴A(6,6),B(2,0).(2)设P(0,m)(m>0),∵S△PAB=S△POA+S△ABO−S△POB,∴15=12×m×6+12×2×6−12×2×m,9).∴P(0,92(3)C(2+2√13,0)或(2−2√13,0).【解析】∵AB=√52=2√13,B(2,0),∴BC=AB=2√13,∴C(2+2√13,0)或(2−2√13,0).5. (1)设相遇时间为x秒,4x+6x=55−(−5),解得:x=6,因此C点对应的数为−5+4×6=19.(2)设追及时间为y秒,6y−4y=55−(−5),解得:y=30,点D对应的数为−5−4×30=−125.(3)①相遇前PQ=20时,设相遇时间为a秒,4a+6a=55−(−5)−20,解得:a=4,因此Q点对应的数为−5+4×4=11,②相遇后PQ=20时,设相遇时间为b秒,4b+6b=55−(−5)+20,解得:b=8,因此C点对应的数为−5+4×8=27,故Q点对应的数为11或27.6. (1)−30;−10【解析】∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B在点C左侧,∴点B对应的数为10−20=−10,点A对应的数为−10−20=−30.(2)由于点B对应的数为−10,BD=4,∴点D表示的数为−14或−6.(3)当运动时间为t秒时,点P对应的数是4t−30,点Q对应的数是t−10,依题意,得:∣t−10−(4t−30)∣=8,∴20−3t=8或3t−20=8,解得:t=4或t=28.3.∴t的值为4或2837. (1)8数轴表示如图所示:【解析】∵点A表示的数为−6,∴OA=6,OA,∵OB=43∵点B在原点的右侧,∴点B对应的数是8.(2)①−6+t;8−3t②∵点P和点Q经过t秒后在数轴上的点D处相遇,∴−6+t=8−3t,∴t=7,2=−2.5.∴点D所表示的数=−6+72③∵P是−6+t;Q是8−3t,∴OP=∣−6+t∣,OQ=∣8−3t∣,∵点P与点Q分别到原点的距离相等,∴∣−6+t∣=∣8−3t∣,∴−6+t=8−3t或−6+t=3t−8,或t=1,∴t=72秒或1秒,点P与点Q分别到原点的距离相等.∴经过72【解析】①∵P的路程为t,Q的路程为3t,∴P是−6+t;Q是8−3t.8. (1)无理;−2π【解析】把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是−2π.(2)±4π【解析】把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是±4π.(3)2+1+5+4+3+2=17,故A点运动的路程共有34π,+2−1−5+4+3−2=1,故此时点A所表示的数是2π.9. (1)3;5;−4或2【解析】∣1−4∣=3,∣−3−2∣=5,∣a−(−1)∣=3,所以,a+1=3或a+1=−3,解得a=−4或a=2.(2)6【解析】因为表示数a的点位于−4与2之间,所以a+4>0,a−2<0,所以∣a+4∣+∣a−2∣=(a+4)+[−(a−2)]=a+4−a+2=6.(3)12【解析】使得∣x+2∣+∣x−5∣=7的整数点有−2,−1,0,1,2,3,4,5,−2−1+0+1+2+ 3+4+5=12.故这些点表示的数的和是12.(4)1;7【解析】a=1有最小值,最小值=∣1+3∣+∣1−1∣+∣1−4∣=4+0+3=7.10. (1)5【解析】∵B是线段OA的中点,∴BA=12OA=5.(2)6【解析】当t=3时,点P所表示的数是2×3=6.(3)当0≤t≤5时,动点P所表示的数是2t;当5≤t≤10时,动点P所表示的数是20−2t.(4)①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴∣2t−5∣=2,∴2t−5=2或2t−5=−2,解得t=3.5或t=1.5;②当5≤t≤10时,动点P所表示的数是20−2t,∵PB=2,∴∣20−2t−5∣=2,∴20−2t−5=2或20−2t−5=−2,解得t=6.5或t=8.5.综上所述,所求t的值为1.5或3.5或6.5或8.5.11. (1)4;1(2)103或56(3)2.75或9.2512. (1)=;=;>;>;=;=(2)≥(3)x≤0;−6或−413. (1)−1点B位置如图:【解析】点B对应的数是−1.(2)设点P对应的数为p,∵点P在线段BC上,∴PB=p−(−1)=p+1,PC=6−p,∵PB=25PC,∴p+1=25(6−p),∴p=1.设AP中点对应的数为t,则t−(−6)=1−t,∴t=−2.5,∴AP中点对应的数为−2.5.(3)由题意:a+c=0,b=−1,当点Q在点B左侧时,−1−x=2,x=−3,∴a+c100−x2−bx+2=0=0−(−1)×(−3)+2=−1,当点Q在点B左侧时,x−(−1)=2,x=1,∴a+c100−x2−bx+2=0−(−1)×1+2=3.14. (1)1【解析】(6−4)÷2 =2÷2= 1.故点C表示的数是1.(2)5【解析】[6−(−4)]÷2 =10÷2=5(秒).答:当t=5秒时,点P到达点A处.(3)2t−4【解析】点P表示的数是2t−4.(4)1.5秒或3.5【解析】P在点C左边,[1−2−(−4)]÷2=3÷2= 1.5(秒).P在点C右边,[1+2−(−4)]÷2=7÷2= 3.5(秒).答:当t=1.5秒或3.5秒时,线段PC的长为2个单位长度.(5)3秒或113【解析】点P,Q相遇前,依题意有(2+1)t=6−(−4)−1,解得t=3;点P,Q相遇后,依题意有(2+1)t=6−(−4)+1,解得t=113.答:当t=3秒或113秒时,PQ的长为1个单位长度.15. (1)4≤x≤6;8.(2)当x≥−2时,y=∣2x+8∣−4∣x+2∣=−2x,当−4≤x≤−2时,y=∣2x+8∣−4∣x+2∣=6x+16,当x≤−4时,y=∣2x+8∣−4∣x+2∣=2x,所以x=−2时,y有最大值y=4.16. (1)正确【解析】∵当b>a时,b−a的值为线段AB的实际长度.(2)2;3;1000(3)①∵BC=2x+8−(−2)=2x+10,AB=−2−x,又∵BC=4AB,∴2x+10=4(−2−x),解得x=−3,∴点A表示数−3,点C表示数2.②存在.设点D所表示的数为y,则(a)当y<−3时,DA=−3−y,DC=2−y,DB=−2−y,若DA+DC=3DB,则−3−y+2−y=3(−2−y),解得y=−5,满足条件;(b)当−3≤y<−2时,DA=y−(−3)=y+3,DC=2−y,DB=−2−y,若DA+DC=3DB,则y+3+2−y=3(−2−y),解得y=−113<−3,不符合题意;(c)当−2≤y<2时,DA=y−(−3)=y+3,DC=2−y,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+2−y=3(y+2),解得y=−13,满足条件;(d)当y≥2时,DA=y−(−3)=y+3,DC=y−2,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+y−2=3(y+2),解得y=−5,不符合题意.综上可知,存在点D表示的数为−5或−13时满足条件.17. (1)∵a,b是方程∣x+9∣=1的两根(a<b),∴a=−10,b=−8 .∵(c−16)2与∣d−20∣互为相反数,(c−16)2≥0,∣d−20∣≥0,∴c−16=0,d−20=0.∴c=16,d=20 .(2)可知:AC=26,BD=28,AB=2,CD=4.∵A、B两点以每秒6个单位的速度向右匀速运动,C、D两点以每秒2个单位的速度向左匀速运动,∴点A、C相遇时间t=26÷(6+2)=134,点B、D的相遇时间t=28÷(6+2)=72.∵点A、C相遇之后到B、D相遇之前,A、B两点都运动在线段CD上,∴当134<t<72时,A、B两点都运动在线段CD上.(3) 存在时间,使得 BC =4AD .理由:(1) 当 t =72 时,点 B 与点 D 相遇,此时 AD =AB =2,BC =CD =4; 当 A 、 D 相遇时 t =30÷8=154; 当 72<t <154 时,点 A 在线段 CD 上,此时 BC =4+8(t −72)=8t −24,AD =2−8(t −72)=30−8t . 若 BC =4AD ,则 8t −24=4(30−8t ),解得 t =3.6;(2) 当 t =154 时,点 A 与点 D 相遇,此时 BC =CD +AB =6,AD =0; 当 t >154 时,点 A 在 CD 的延长线上,此时 BC =8t −24,AD =8t −30 .若 BC =4AD ,则 8t −24=4(8t −30),解得 t =4.综上所述,t =3.6 或 t =4 时,BC =4AD .18. (1) ∵ 点 A 表示的数为 8,B 在 A 点左边,AB =12,∴ 点 B 表示的数是 8−12=−4.∵ 动点 P 从点 A 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t (t >0)秒, ∴ 点 P 表示的数是 8−3t .(2) 设点 P 运动 x 秒时,与 Q 相距 2 个单位长度.则 AP =3x ,BQ =2x .∵AP +BQ =AB −2,∴3x +2x =10.解得:x =2.∵AP +BQ =AB +2,∴3x +2x =14.解得:x =145.∴ 点 P 运动 2 秒或 145 秒时与点 Q 相距 2 个单位长度.(3) 如图:当 P 在 Q 的左侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 即 MN +PQ =6.如图当 P 在 Q 的右侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 综上,MN +PQ =6.19. (1)(2) 7÷(2−14)=4(秒),4×(12−14)−1=0.答:丙追上甲时,甲乙相距 0 个单位长度.(3) 设 P 点表示的数为 x ,由题意可得 ∣x +2∣+∣x +1∣+∣x −5∣=10.当 x <−2 时,−x −2−x −1−x +5=10.解得 x =−83. 当 −2<x <−1 时,x +2−x −1−x +5=10.解得 x =−4,不属于上述范围(舍).当 −1<x <5 时,x +2+x +1−x +5=10.解得 x =2.当 x >5 时,x +2+x +1+x −5=10.解得 x =4,不属于上述范围(舍).结合数轴,解得 x =−83,2,∴P 点表示的数为 −83 或 2.20. (1) −1(2) −3.5 或 1.5(3) 43 或 2 【解析】提示:①当点 M 和点 N 在点 P 同侧时,因为 PM =PN ,所以点 M 和点 N 重合. ②当点 M 和点 N 在点 P 两侧时,有两种情况.情况 1:如果点 M 在点 N 左侧;情况 2:如果点 M 在点 N 右侧.。
初一数学绝对值难题解析
初一数学绝对值【1 】难题解析绝对值是初一数学的一个主要常识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对根本概念的懂得程度和基赋性质的灵巧应用才能.绝对值有两个意义:(1)代数意义:非负数(包含零)的绝对值是它本身,负数的绝对值是它的相反数.即|a|=a(当a≥0), |a|=-a (当a<0)(2)几何意义:一个数的绝对值等于数轴上暗示它的点到原点的距离.灵巧应用绝对值的基赋性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思虑:|a+b|=|a|+|b|,在什么前提下成立?|a-b|=|a|-|b|,在什么前提下成立?经常应用解题办法:(1)化简绝对值:分类评论辩论思惟(即取绝对值的数为非负数和负数两种情形)(2)应用绝对值的几何意义:数形联合思惟,如绝对值最值问题等.(3)零点分段法:求零点.分段.区段内化简.分解.例题解析:第一类:考核对绝对值代数意义的懂得和分类评论辩论思惟的应用1.在数轴上暗示a.b两个数的点如图所示,并且已知暗示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴a-c要分类评论辩论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2. 设x<-1,化简2-|2-|x-2|| .解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3.设3<a<4,化简|a-3|+|a-6| .解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34. 已知|a-b|=a+b,则以下说法:(1)a必定不是负数;(2)b可能是负数;哪个是准确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b,解得a=0,这时b>0;综上所述,(1)是准确的.第二类:考核对绝对值基赋性质的应用5. 已知2011|x-1|+2012|y+1|=0,求x+y+2012的值?解:∵|x-1|≥0,|y+1|≥0∴2011|x-1|+2012|y+1|≥0又∵已知2011|x-1|+2012|y+1|=0,∴|x-1|=0, |y+1|=0∴x=1,y=-1,原式=1-1+2012=20126.设a.b同时知足:(1)|a-2b|+|b-1|=b-1(2) |a-4|=0那么ab等于若干?解:∵|a-2b|≥0,|b-1|≥0∴|a-2b|+|b-1|=b-1≥0∴(1)式=|a-2b|+b-1=b-1 ,得|a-2b|=0,即a=2b∵ |a-4|=0 ∴a-4=0,a=4∵ a=2b ∴ b=2 ,ab=4×2=87.设a.b.c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0,请化简:|b|-|a+b|-|c-b|+|a-c| .解:∵|a|+a=0,a≠0 ∴a<0∵|ab|=ab≥0 ,b≠0,a<0 ∴b<0,a+b<0∵|c|-c=0,c≠0 ∴c>0 ,c-b>0,a-c<0∴原式=b+(a+b)-(c-b)+c-a=b8.知足|a-b|+ab=1的非负整数(a,b)共有几对?解:∵a,b都长短负整数∴|a-b|也长短负整数,ab也长短负整数∴要知足|a-b|+ab=1,必须|a-b|=1,ab=0 或者|a-b|=0,ab=1分类评论辩论:当|a-b|=1,ab=0时,a=0,b=1 或者a=1,b=0 有两对(a,b)的取值;当|a-b|=0,ab=1时,a=1,b=1有一对(a,b)的取值;综上所述,(a,b)共有3对取值知足题意.9.已知a.b.c.d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值?剖析:此题咋一看无从下手,但是假如把a-b和c-d分离看作一个整体,并且应用绝对值基赋性质:|x-y|≤|x|+|y|即可快速解出.解:设x=a-b,y=c-d,则|a-b-c+d|=|x-y|≤|x|+|y|∵|x|≤9,|y|≤16 ∴|x|+|y|≤25 ,|x-y|≤|x|+|y|≤25∵已知|x-y|=25 ∴|x|=9,|y|=16∴|b-a|-|d-c|=|-x|-|-y|=|x|-|y|=9-16=-7第三类:多个绝对值化简,应用零点分段法,分类评论辩论以上这种分类评论辩论化简办法就叫做零点分段法,其步调是:求零点.分段.区段内化简.分解.依据以上材料解决下列问题:(1)化简:2|x-2|-|x+4|(2)求|x-1|-4|x+1|的最大值.解:(1)令x-2=0,x+4=0,分离求得零点值:x=2,x=-4,分区段评论辩论:当x≤-4时,原式=-2(x-2)+(x+4)=-x+8当-4<x≤2时,原式=-2(x-2)-(x+4)=-3x当x>2时,原式=2(x-2)-(x+4)=x-8综上评论辩论,原式=…(略)(2)应用“零点分段法”将代数式简化,然后在各个取值规模内求出最大值,再加以比较,从中选出最大值.令x-1=0,x+1=0,分离求得零点值:x=1,x=-1,分区段评论辩论:当x≤-1时,原式=-(x-1)+4(x+1)=3x+5 ,当x=-1时,取到最大值等于2;当-1<x≤1时,原式=-(x-1)-4(x+1)=-5x-3,此时无最大值;当x>1时,原式=(x-1)-4(x+1)=-3x+3,此时无最大值.综上评论辩论,当x=-1时,原式可以取到最大值等于2.11.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为若干?解:我们知道,互为相反数的两个数,它们的绝对值相等,应用这条性质,可以把绝对值内带x 的项的符号由负号都变成正号,以便于区段内断定正负关系.即原式=2x+|5x-4|+|3x-1|+4令5x-4=0,3x-1=0,分离求得零点值:x=4/5 , x=1/3,分区段评论辩论:当x≤1/3时,原式=2x-(5x-4)-(3x-1)+4=-6x+9,此时不是恒值;当1/3<x≤4/5时,原式=2x-(5x-4)+(3x-1)+4=7,此时恒为常数7;当x>4/5时,原式=2x+(5x-4)+(3x-1)+4=10x-1,此时也不是恒值.综上所述,若原式恒为常数,则此常数等于7 .12.若|a|=a+1,|x|=2ax,且|x+1|+|x-5|+2|x-m|的最小值是7,则m等于若干?解:∵当a≥0时,|a|=a=a+1,得到0=1抵触∴a<0,|a|=-a=a+1,解得a=-1/2.∵|x|=2ax=-x,即x的绝对值等于它的相反数∴x≤0令x+1=0,x-5=0,x-m=0,分离求得零点值:x=-1,x=5,x=m∵x≤0 ∴要对m进行分类评论辩论,以肯定分段区间:(1)若m≥0,则x取值规模分成x≤-1和-1<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=-1时取到最小值8+2m当-1<x≤0,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m, x=0时取到最小值6+2m所以当m≥0时,最小值是6+2m,令6+2m=7,得m=0.5,相符题意(2)若-1≤m<0,则x取值规模分成x≤-1和-1<x≤m和m<x≤0当x≤-1,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=-1时取到最小值8+2m, 因为-1≤m<0,所以最小值≥6当-1<x≤m,原式=(x+1)-(x-5)-2(x-m)=-2x+6+2m, x=m时取到最小值6所以当-1≤m<0时,最小值是6,和题意不符.(3)若m<-1,则x取值规模分成x≤m和m<x≤-1和-1<x≤0当x≤m,原式=-(x+1)-(x-5)-2(x-m)=-4x+4+2m, x=m时取到最小值4-2m当m<x≤-1,原式=-(x+1)-(x-5)+2(x-m)=4-2m,这时为恒值4-2m当-1<x≤0,原式=(x+1)-(x-5)+2(x-m)=2x-2m+6,无最小值所以当m<-1时,最小值是4-2m,令4-2m =7,得m=-1.5,相符题意综上所述,m=0.5或-1.5 .第四类:应用绝对值的几何意义解题1.x的绝对值的几何意义是在数轴上暗示x的点到原点的距离,即|x|=|x-0||x-1|的几何意义是在数轴上暗示x的点到暗示1的点的距离,|x+2|的几何意义是在数轴上暗示x的点到暗示-2的点的距离,|a-b|的几何意义是在数轴上暗示a的点到暗示b的点的距离.2.设A和B是数轴上的两个点,X是数轴上一个动点,我们研讨下,当X在什么地位时,X到A点和B点的距离之和最小?很显然,当X点在A点和B点之间时,X点到两个点的距离之和最小,最小值即为A点到B点的距离.当再增长一个C点时,若何求动点X到三个点的距离之和的最小值呢.经由研讨发明,当X点在中央的点即C点时,它到三个点的距离之和最小,最小值也是A 点到B点的距离.持续研讨下去,我们可以得到结论:假如有奇数个点,当动点处在最中央谁人点的地位时,它到所有点的距离之和最小.假如有偶数个点,当动点处在最中央的两个点之间时,它到所有点的距离之和最小.用一句话来记忆,就是奇中偶范.即奇数个点时,取最小值是在最中央的点.偶数个点时,取最小值是在最中央的两个点之间的规模内都可以.。
初一数学绝对值难题解析完整版
初一数学绝对值难题解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0),|a|=-a(当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤|a+b|≤|a|+|b|;(5)|a|-|b|≤|a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0∴a-b<0c<0,b>0∴c-b<0故,原式=(b-a)-(b-c)=c-a(2)|a-c|-|a+c|解:∵a<0,c<0∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2||。
解:∵x<-1∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6|。
绝对值的十一种常见问题
绝对值的十一种常见问题绝对值是数学中常见且重要的概念,而在使用绝对值时,有一些常见问题需要注意。
以下是绝对值的十一种常见问题及其解答:1. 什么是绝对值?绝对值是一个数与零之间的距离。
绝对值表示一个数的大小,但忽略了它的正负。
2. 如何计算一个数的绝对值?一个数的绝对值可以通过取该数的绝对值函数来计算。
绝对值函数表示为|a|,其中a是一个数。
3. 绝对值函数的图像是什么样子的?绝对值函数的图像呈现V形,开口向上或向下。
图像关于y轴对称,过原点。
4. 绝对值可以为负数吗?不可以,绝对值总是非负的。
无论输入是正数、负数,或零,绝对值的结果都不会是负数。
5. 绝对值可以为零吗?是的,绝对值可以是零。
当输入为零时,绝对值的结果也是零。
6. 如何解决含有绝对值的方程或不等式?含有绝对值的方程或不等式可以分情况讨论来解决。
根据绝对值的定义,将绝对值分开,并根据绝对值的正负情况得出不同的解。
7. 绝对值有哪些常见的性质?- |a| ≥ 0,即绝对值总是非负的。
- |a| = 0 当且仅当a = 0。
- |ab| = |a| |b|,即绝对值的乘积等于各个数的绝对值的乘积。
- |a/b| = |a| / |b|,即绝对值的除法等于被除数和除数的绝对值的除法。
8. 如何求解包含多个绝对值的复杂方程?对于包含多个绝对值的复杂方程,可以将绝对值分情况讨论,并使用不等式或方程来解决每种情况。
9. 绝对值可以用于求解哪些实际问题?绝对值可以用于求解诸如距离、温度变化、利润等实际问题。
它提供了一种对数值的无偏估计。
10. 绝对值存在什么常见误区?一个常见的误区是错误地认为|a + b| = |a| + |b|。
实际上,只有当a和b同时具有相同的符号时,该等式才成立。
11. 绝对值可以应用于复数吗?绝对值可以应用于复数。
对于复数a + bi,其绝对值定义为√(a^2 + b^2)。
希望这份文档能帮助你对绝对值的理解更加深入。
初一数学绝对值难题解析
(1)化简:2|x-2|-|x+4|
(2)求|x-1|-4|x+1|的最大值。
解:(1)令x-2=0,x+4=0,分别求得零点值:x=2,x=-4,分区段讨论:
当x≤-4时,原式=-2(x-2)+(x+4)=-x+8
当-4<x≤2时,原式=-2(x-2)-(x+4)=-3x
答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,
解得b=0,这时a≥0;
当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b是正确的。
第二类:考察对绝对值基本性质的运用
5、已知2011|x-1|+2012|y+1|=0,求x+y+2012的值?
∵|x|≤9,|y|≤16∴|x|+|y|≤25 ,|x-y|≤|x|+|y|≤25
∵已知|x-y|=25∴|x|=9,|y|=16
∴|b-a|-|d-c|=|-x|-|-y|=|x|-|y|=9-16=-7
第三类:多个绝对值化简,运用零点分段法,分类讨论
以上这种分类讨论化简方法就叫做零点分段法,其步骤是:求零点、分段、区段内化简、综合。
那么ab等于多少?
解:∵|a-2b|≥0,|b-1|≥0∴|a-2b|+|b-1|=b-1≥0
∴(1)式=|a-2b|+b-1=b-1 ,得|a-2b|=0,即a=2b
∵|a-4|=0∴a-4=0,a=4
∵a=2b∴b=2 ,ab=4×2=8
7、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0,
解:∵|x-1|≥0,|y+1|≥0∴2011|x-1|+2012|y+1|≥0
又∵已知2011|x-1|+2012|y+1|=0,∴|x-1|=0, |y+1|=0
七年级数学培优:绝对值化简计算题的难点和解题的关键
七年级数学培优:绝对值化简计算题的难点和解题的关键
绝对值的化简计算,对于很多刚上初一的同学来说,是非常的头疼的。
不知道该怎么理解题目,不知道如何下手。
其实很简单,这类题型的解题关键就是找到绝对值符号里面的的数或者式子在题意中所表示的数值是负数,0还是正数。
然后按“绝对值的基本性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0。
”来解题就非常简单了。
请看下面5个例题。
例题1,x和y都不等于0,那么它们就有可能为负数,也有可能为正数。
比如,当x为正数的时候,那么它的绝对也是x,这它们相除就等于1;如何x是负数,则它的绝对是就是-x,则它们相除就等于-1。
所以,后面就简单了。
例题2,和例题1类似。
例题3,则需要分类判定a的正负性,需要分类判定a-1的值是正负还是负数。
所以,需要比较a和1的大小,-a和1的大小。
例题4,考的是绝对值的非负性。
当两个非负数相加的和等于,就只有0+0=0。
于是我们一般把这里题型称之为0+0=0题型。
谁的绝对值等于,0的绝对值等于0。
所以,绝对值符号的式子必然等于0。
例题5,这类题型非常常见,也是很多刚入中学一看就懵的题目。
这怎么办?我又不知道a,b,c的值是多少。
其实,我们只是需要知道他们是正数还是负数,他们的大小。
然后根据有理数的加减法则判定他们的和或者差是正数还是负数就可以了。
若是正数,则它的绝对值是本身,本身就是字母和符合都不变。
若是负数,则它的绝对值是它的相反数,相反数就是字母不变把符号写成相反的就可以了。
初一数学绝对值难点突破(含答案)
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.第1页(共9页)3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
初一第一章的《绝对值》的几个难题(答案)
初一第一章的《绝对值》的几个难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++. 2、若a 、b 为整数,且200820081a b c a -+-=;试求:c a a b b c -+-+-的值。
3、解方程:2218x x -+-=。
4、已知:关于x 的方程1x ax -=,同时有一个正根和一个负根,求整数a 的值.5、已知:a 、b 、c 是非零有理数,且a +b +c =0;求:a b c abc a b c abc+++。
6、设abcde 是一个五位数,其中a 、b 、c 、d 、e 是阿拉伯数字,且a <b 〈c 〈d ,试求y a b b c c d d e =-+-+-+-的最大值。
7、求关于x 的方程21(01)x a a --=<<所有解的和。
8、若1x 、2x 都满足条件:21234x x -++=且12x x <,则12x x -的取值范围是 。
9、已知:(12)(21)(31)36x x y y z z ++--++-++=; 求:x +2y +3z 的最大值和最小值。
10、解方程: ①314x x -+=; ②311x x x +--=+; ③134x x ++-=.初一第一章的《绝对值》的几个难题(的解答):知识点:1、绝对值的定义:表示一个数的点到原点的距离就叫做这个数的绝对值.2、绝对值的代数意义:(0)(0)a a a a a ≥⎧=⎨-<⎩ 3、绝对值的基本性质: ①非负性:0a ≥; ②ab a b =; ③(0)a a b b b =≠; ④22a a =; ⑤a b a b a b -≤+≤+; ⑥a b a b a b -≤-≤+。
难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++. 答:-3。
初一绝对值问题较难问题详解
初一绝对值问题较难问题详解 之蔡仲巾千创作例1211x x x -+-=分析:倒推不是很方便我们采纳0点法去失落绝对值.先从最里面去.年夜情形2个1x ≥的时候有211x x x -+-= 有311x x --= 其实显然有 3x-1-x=1 x=1年夜情形2 x<1的时有211x x x --+= 11x x -+=这里没上个年夜情形好办绝对值有商量的余地当1x ≥-的时候有左边为x-x-1=-1的绝对值是1恒等式小 情况2x<-1 获得11x x ++=获得x=0或-1都不在年夜前提下矛盾. 综上11x -≤≤为所求例2 224321x x --=-求所有解的和分析; 12x ≥左边显然非负利用非负性获得接下来我们再用0点法去绝对值年夜情况1 2x ≥时候4x-11=2x-1 x=5年夜情形2 x<2的时候843x -- =2x-18-4x-3=2x-1 x=1解的和为6例3a,b,c,d 为整数2a b b c c d d a +++++++=求d a +分析:4个非负整数和为2, 可能为3个0一个2或2个0, 2个1第一个情况是不存在的由对称性无妨设前3个加数为0 a+b=0,b+c=0,c+d=0,获得a=c,b=d获得b=-a.d=-a 结果a+d=0与绝对值为2矛盾.那么只能是2个1, 2个0所以结果为1或0例4 (2)21a x a b +-+<解集是13x -<<求a+b分析;采纳端点代入法我们可以获得221a a b ---+=, 31a b += 再把-3代入当方程解3621a a b +-+=获得7a b += 于是代入731a a +=+ 所以a+7=3a+1或a+7+3a+1=03a =,10b =或2,5a b =-=只第一组代入验算确实-1<x<3 所以a+b=13例5设d c b a ,,,都是实数, 若,2,4=+=+d c b a 且bd a c d b c a -+-=-+-, 则d c b a +++的最年夜值为_____________分析:注意a+b 为一个整体, c+d 为一个整体分别设为x,y 我们获得了4,2x y == 且x y y x -=-马上就有y>x 所以x=-4,y=2或-2题目问的相当于x+y 的最年夜值那就是-2例6求2222232{25[4(2)]}x y xy x y xy x y ----的值 分析:此题要求值先要求出x,y.此题结构如此复杂肯定考了配对思路.注意积累经典的模型()x a x b a b -+-<最小值b-a a x b ≤≤取最小()x a x b a b ---<最小为a-bX 不年夜于a 取最小值这2条通过结合数轴都很容易证明14x x -+-≥3, 23x x ---≥-1第一个取等号的条件是1≤x ≤4第二个条件是x ≤2综上1≤x ≤2的时候第一个括号取得最小2, 我们看第二组51x x ++-≥6, 31y y -++≥4第二组结果至少4所以最小为10(-5≤x ≤1,-1≤y ≤3) 第三组在用配对思路23y y -++不小于5, 1y +不小于0和不小于5所以三个括号的积不小于100所以第一个为2, 第二个为10, 第三个为5有分析的取等号的条件可以获得x=1,y=-1然后化简获得2222232{25[4(2)]}x y xy x y xy x y ----=229344x y xy -代入获得 -93-44=-137例7 0<x<10 3x a -=整数a 有几多个?和是几多?分析:我们把x=1-9分别代入可以确定a 的范围 -2≤a ≤6所以0≤a ≤6整数有7个和为21例8已知1,1≤≤y x , 设421--++++=x y y y x M , 求M 的最年夜值与最小值分析:分析我们先把明显的绝对值符号去失落 2y-x-4=2(y-1)-(x+1)-1<0所以第三个和第二个加数的绝对值没有商量马上去失落获得1425M x y y x y x y x y =+++++-=+++-X=-1,y=1的时候M 取得最小值3 分两种情况当x+y 不小于0的时候获得M=2x+5M 最年夜值为7当x+y 不年夜于0的时候M=-x-y+5+x-y=5-2y y=-1的时候最年夜为7综上M 的最年夜值为7, 最小值3小结:解决绝对值问题注意方法就是界说, 非负性, 结合数轴, 0点分区间.固然还要注意可以积累一些经典模型, 做题就变得很容易.我们如果遇到多重绝对值的问题可以倒推或从内到外去失落绝对值符号.注意特别是指定了范围的可以没有讨论余地的绝对值先处置能商量的后处置, 这样计算可以变得简洁.0点分区间是用界说来得最直白的方法可是在应用之前可以先想下有无更好的方法.特别可以注意配对思路和例5两个基本模型的应用.看到重复结构的换元那些意识是基本功.深刻体会分类讨论和数形结合的思想.。
初一数学绝对值难题解析
初一数学绝对值难题解析考验它的概念本身不难,但却经常拿来出一些难题,绝对值是初一数学的一个重要知识点,的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
(0)(当a<0), |a|=-a 即|a|=a(当a≥2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
(灵活应用绝对值的基本性质:0)≠|a/b|=|a|/|b|(b=|a|·|b|;(3)(1)|a|≥0;(2)|ab| ;|a|+|b|≤|a-b|≤b|≤|a|+|b|;(5)|a|-|b|+(4)|a|-|b|≤|a ,在什么条件下成立?|a|+|b|思考:|a+b|=,在什么条件下成立?-|b||a-b|=|a| 常用解题方法:)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(1 )运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(2 )零点分段法:求零点、分段、区段内化简、综合。
(3 例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用的点在原点左侧,请化简下cb两个数的点如图所示,并且已知表示1、在数轴上表示a、列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2|| 。
解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6| 。
解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;1,+bb-a=aa,由已知|a-b|=a+b,得-当ab<0时,a<b,|a-b|=b-;>0a=0,这时b解得)是正确的。
初一绝对值问题较难问题详解
初一绝对值问题较难问题详解 例1211x x x -+-=剖析:倒推不是很便利我们采取0点法去失落绝对值.先从最里面去.大情况2个1x ≥的时刻有211x x x -+-= 有311x x --= 其实显然有 3x-1-x=1 x=1大情况2 x<1的时有211x x x --+= 11x x -+=这里没上个大情况好办绝对值有磋商的余地当1x ≥-的时刻有左边为x-x-1=-1的绝对值是1恒等式小 情况2x<-1 得到11x x ++=得到x=0或-1都不在大前提下抵触.综上11x -≤≤为所求例2 224321x x --=-求所有解的和剖析; 12x ≥左边显然非负运用非负性得到接下来我们再用0点法去绝对值大情况1 2x ≥时刻 4x-11=2x-1 x=5大情况2 x<2的时刻843x -- =2x-18-4x-3=2x-1 x=1解的和为6例3a,b,c,d 为整数2a b b c c d d a +++++++=求d a +剖析:4个非负整数和为2,可能为3个0一个2或2个0,2个1 第一个情况是不消失的由对称性无妨设前3个加数为0 a+b=0,b+c=0,c+d=0,得到a=c,b=d得到b=-a.d=-a 成果a+d=0与绝对值为2抵触.那么只能是2个1,2个0所以成果为1或0例4 (2)21a x a b +-+<解集是13x -<<求a+b剖析;采取端点代入法我们可以得到221a a b ---+=,31a b += 再把-3代入当方程解3621a a b +-+=得到7a b += 于是代入731a a +=+ 所以a+7=3a+1或a+7+3a+1=03a =,10b =或2,5a b =-=只第一组代入验算确切-1<x<3 所以a+b=13例5设d c b a ,,,都是实数,若,2,4=+=+d c b a 且bd a c d b c a -+-=-+-, 则d c b a +++的最大值为_____________剖析:留意a+b 为一个整体,c+d 为一个整体分离设为x,y 我们得到了4,2x y == 且x y y x -=-立时就有y>x 所以x=-4,y=2或-2标题问的相当于x+y 的最大值那就是-2例6求2222232{25[4(2)]}x y xy x y xy x y ----的值 剖析:此题请求值先请求出x,y.此题构造如斯庞杂肯定考了配对思绪.留意积聚经典的模子()x a x b a b -+-<最小值b-a a x b ≤≤取最小()x a x b a b ---<最小为a-bX 不大于a 取最小值这2条经由过程联合数轴都很轻易证实14x x -+-≥3,23x x ---≥-1第一个取等号的前提是1≤x ≤4第二个前提是x ≤2综上1≤x ≤2的时刻第一个括号取得最小2,我们看第二组51x x ++-≥6,31y y -++≥4第二组成果至少4所以最小为10(-5≤x ≤1,-1≤y ≤3) 第三组在用配对思绪23y y -++不小于5,1y +不小于0和不小于5所以三个括号的积不小于100所以第一个为2,第二个为10,第三个为5有剖析的取等号的前提可以得到x=1,y=-1然后化简得到2222232{25[4(2)]}x y xy x y xy x y ----=229344x y xy -代入得到 -93-44=-137例7 0<x<10 3x a -=整数a 有若干个?和是若干?剖析:我们把x=1-9分离代入可以肯定a 的规模 -2≤a ≤6 所以0≤a ≤6整数有7个和为21例8已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最大值与最小值剖析:剖析我们先把显著的绝对值符号去失落 2y-x-4=2(y-1)-(x+1)-1<0所以第三个和第二个加数的绝对值没有磋商立时去失落得到1425M x y y x y x y x y =+++++-=+++-X=-1,y=1的时刻M 取得最小值3 分两种情况当x+y 不小于0的时刻得到M=2x+5M最大值为7当x+y不大于0的时刻M=-x-y+5+x-y=5-2y y=-1的时刻最大为7综上M的最大值为7,最小值3小结:解决绝对值问题留意办法就是界说,非负性,联合数轴,0点分区间.当然还要留意可以积聚一些经典模子,做题就变得很轻易.我们假如碰到多重绝对值的问题可以倒推或从内到外去失落绝对值符号.留意特殊是指定了规模的可以没有评论辩论余地的绝对值先处理能磋商的后处理,如许盘算可以变得简练.0点分区间是用界说来得最直白的办法但是在运用之前可以先想下有无更好的办法.特殊可以留意配对思绪和例5两个根本模子的运用.看到反复构造的换元那些意识是根本功.深入领会分类评论辩论和数形联合的思惟.。
初一 绝对值难点问题
绝对值问题一.非负性绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.即:对于一个数a ,()()()0000a a a a a a >⎧⎪==⎨⎪-<⎩;;.绝对值具有非负性.即对于任意实数a ,总有0a ≥.如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =. 例1、 若a a =-,则a 一定是________.若m 的绝对值等于2,则m=_______ 。
若a -=5,则a =__________.例2、若a =3,2=b(1)若0a b +<,那么b a -的值为多少?(2)若0a b +>那么b a -的值为多少例3、已知x =3,y =2(1)若0xy <,则x y +为多少?(2)若0xy >,则x y +为多少?例4、(1)若430x y ++-=,则代数式y x 的值是多少?(2)若()2230x y ++-=,则代数式y x 的值是多少?例5、已知13m x =-+,求m 的最小值二.去绝对值符号:1.利用代数意义去绝对值号化简含绝对值的式子,关键是去绝对值符号.先根据题设所给的条件,判断绝对值符号内的数a (或式子a )的正负(即0a >,0a <还是0a =);然后根据绝对值的代数意义去掉绝对值符号. 如:计算1b -=_____________()1b <.由于1b <,所以10b -<,根据绝对值的代数意义,应有()111b b b -=--=-+. 注意:去绝对值符号时,应将绝对值符号内的数(或式子)看做一个整体,并注意去括号时符号的变化.当题目中没有明确指出未知数的取值范围时,则需要将所有情况都分类列举出来. 例如,计算3x -:当3x ≥时,33x x -=-;当3x <时,()333x x x -=--=-. 例1、化简x例2、 化简3x -例3、 若0x >,0xy <化简|2||3|x y y x -+---=______________.例4、若33,a a -=-则a 的取值范围是多少?2.利用零点分段法去绝对值号对于含多个绝对值的情况,我们往往用零点分段法计算化简. 例如:化简12x x +--.第一个绝对值内部为1x +,当1x =-时第一个绝对值为零;第二个绝对值内部为2x -,当2x =时第二个绝对值为零.我们将1-、2称为是零点,这两个零点将整个数轴分为三部分(如图),我们对这三个部分进行分类讨论.当1x <-时,1x +、2x -均为负值,于是()()12123x x x x +--=-+---=-⎡⎤⎣⎦; 当12x -≤<时,1x +为非负值、2x -为负值,于是()121221x x x x x +--=+---=-⎡⎤⎣⎦;当2x ≥时,1x +、2x -均为非负值,于是()()12123x x x x +--=+--=. 零点是我们分类的依据,因为这些零点确定了每个绝对值内部的正、负. 零点分段法的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.例1、化简32x x -++三、绝对值最值问题:1绝对值的几何意义:数轴上一个数所对应的点到原点的距离.即a 的几何意义就是数轴上表示数a 的点与原点的距离.推而广之:代数式x a -的几何意义就是数轴上数x 、数a 所对应的两点之间的距离.例1、说出5-,3x -的几何意义,3x +的呢?2绝对值的最值问题x a x b -+-的几何意义是数轴上表示数x 的点到表示数a 、数b 两点的距离之和,其中数a 、数b 的对应点为数轴上的一个定点,数x 的对应点为一个动点,可以在数轴上移动.绝对值的最值问题,用零点分段法可以解决,但是会比较繁琐,而采用数形结合的方法,运用绝对值的几何意义求解,往往能取得事半功倍的效果. 如计算12x x -+-的最小值.(1)将使两个绝对值分别为0时的x 值标在数轴上(如图),数轴被分为2个区域;(2)假设代表动点x 的点(图中小黑球)从左到右在数轴上移动,根据绝对值的几何意义,我们可将所求表示为两条线段的和,即12S S +.(3)在区域中分别画出线段并比较,可以发现当12x ≤≤时,两线段和最小,为定值1.例1、计算下列式子的最小值(1)52x x +++ (2)31x x -+-(3)12x x -++1S 2S。
人教版七年级上册数学 绝对值 难点攻关 绝对值的理解
难点攻关绝对值的理解(一)一.已知有理数的符号求这个数的绝对值1.化简:(1) -|-a|(a<0) (2) -|-8| (3) |-(+7)| (4) |-5|二.已知一个数的绝对值求这个数2. 绝对值不大于3的所有整数为_____________;绝对值小于3的所有整数为______。
3. (1)若|a|=2,则a= ;(2) 若|x|=|y|,且x=-3,则y= ;(3) 若|+x|=-(-8),则x= ; (4)若|a|=a,则a的范围是 .三.利用绝对值求字母的取值范围4. 若|m|=x-2,则x的取值范围是( )B.x>2C.x≥2D.x=3 A.x=25. 若|x|=-x,则x的取值范围是( )A.r>0B.x=0C.x<0D.x≤0四.利用绝对值比较大小6.(1)若a>0,b<0,且|a|>|b|,用“>”把a,-a,b,-b连接起来;(2) a,b在数轴上对应的点的位置如下图所示,则a|= ,|b|= ,|-a|= ,|-b|= .(3)已知a,b在数轴上对应的点如下图所示.则a、b、-a、-b的大小关系为:五.绝对值非负性的运用7.(1)若|x-1|与-5互为相反数,求x的值.(2) 若|x-1|+1y-2|=0,则x+y=______,(3) 已知|x-2|和|y-3|互为相反数,求x+y的值.(4) 若|a|与|6-1|互为相反数,则a=_______,b= .8.若a,b是表示两个不同点A,B的有理数,且|a|=5,|b|=3,它们在数轴的位置如图所示,(1)试确定a,b的值;(2)若用AB表示A,B两点之间的距离,求AB的长;(3)若点C在数轴上,点C到点A的距离AC是点C到点B的距离BC的3倍,则点C表示的数为______.难点攻关绝对值的理解(二)一.绝对值的代数意义1. 若|a|=a,则a一定为( )A.1B.0C.正数D.正数或02. (1) -|-5|= (2) |-5|=(3)若|r|=|-3|,则x= (4)若|-x|=|-8|,则x=3. 若|x|=3,|y|=1,且x>y,则x= .4. 若|x|=6,|y|=3,且x>0,y<0,则x= .二.绝对值的几何意义5. (1)在数轴上与1的距离为3的点表示的数为 .(2) 若|x+3|=4,则x= .(3) 若|x-1|=3,则x= .(4) 在数轴上与-3的距离为4的点表示的数为 .6. (1) 绝对值为5的数是 .(2) 在数轴上到原点距离为4的点表示的数为 .(3) 在数轴上到原点距离为a(a>0)的点表示的数为 .三.绝对值的非负性7. 下列四个式子中一定是负数的是( )A.-|m|+2B.-|m|-1C.-m-3D.-m8. 已知|x-3|+|y-4|=0,则x+y的值为( )A.1B.-1C.7D.-79. 代数式|x+2|+2的最小值是( )A.0B.4C.2D.-210. 下列说法中,正确的个数是( )①若a=-b,则|a|=|b|; ②若|a|=a,则a>0;③若|a|=|b|,则a=b; ④若a为有理数,则|a|=|-a|.A.1个B.2个C.3个D.4个11. 下列说法中错误的是( )A.|a|一定是非负数B.|a|一定是负数C.|a|+1的最小值为1D.5-|a+b|最大值为5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一绝对值问题较难问
题详解
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
初一绝对值问题较难问题详解
例1211x x x -+-=
分析:倒推不是很方便我们采用0点法去掉绝对值。
先从最里面去。
大情形2个1x ≥的时候有211x x x -+-= 有311x x --= 其实显然有 3x-1-x=1 x=1
大情形2 x<1的时有211x x x --+=
11x x -+=这里没上个大情形好办绝对值有商量的余地当1x ≥-的时候有左边为x-x-1=-1的绝对值是1恒等式
小 情况2x<-1 得到11x x ++=得到x=0或-1都不在大前提下矛盾。
综上11x -≤≤为所求
例2 224321x x --=-求所有解的和
分析; 12
x ≥左边显然非负利用非负性得到 接下来我们再用0点法去绝对值大情况1 2x ≥时候
4x-11=2x-1 x=5
大情形2 x<2的时候843x -- =2x-1
8-4x-3=2x-1 x=1解的和为6
例3 a,b,c,d 为整数2a b b c c d d a +++++++=求d a +
分析:4个非负整数和为2,可能为3个0一个2或2个0,2个1
第一个情况是不存在的由对称性不妨设前3个加数为0 a+b=0,b+c=0,c+d=0,得到a=c,b=d
得到b==-a 结果a+d=0与绝对值为2矛盾。
那么只能是2个1,2个0
所以结果为1或0
例4 (2)21a x a b +-+<解集是13x -<<求a+b
分析;采用端点代入法我们可以得到221a a b ---+=,31a b +=
再把-3代入当方程解3621a a b +-+=得到7a b += 于是代入731a a +=+ 所以a+7=3a+1或a+7+3a+1=0
3a =,10b =或2,5a b =-=只第一组代入验算确实-1<x<3 所以a+b=13
例5设d c b a ,,,都是实数,若,2,4=+=+d c b a 且
b d a
c
d b c a -+-=-+-,
则d c b a +++的最大值为_____________
分析:注意a+b 为一个整体,c+d 为一个整体分别设为x,y 我们得到了
4,2x y == 且x y y x -=-马上就有y>x 所以x=-4,y=2或-2题目问的相当于x+y 的最大值那就是-2
例6
求2222232{25[4(2)]}x y xy x y xy x y ----的值
分析:此题要求值先要求出x,y 。
此题结构如此复杂肯定考了配对思路。
注意积累经典的模型()x a x b a b -+-<最小值b-a a x b ≤≤取最小()x a x b a b ---<最小为a-b
X 不大于a 取最小值这2条通过结合数轴都很容易证明
14x x -+-≥3,23x x ---≥-1第一个取等号的条件是1≤x ≤4第二个条件是x ≤2
综上1≤x ≤2的时候第一个括号取得最小2,我们看第二组51x x ++-≥6,31y y -++≥4第二组结果至少4所以最小为10(-5≤x ≤1,-1≤y ≤3) 第三组在用配对思路23y y -++不小于5,1y +不小于0和不小于5
所以三个括号的积不小于100所以第一个为2,第二个为10,第三个为5 有分析的取等号的条件可以得到x=1,y=-1
然后化简得到2222232{25[4(2)]}x y xy x y xy x y ----=229344x y xy -
代入得到 -93-44=-137
例7 0<x<10 3x a -=整数a 有多少个和是多少
分析:我们把x=1-9分别代入可以确定a 的范围 -2≤a ≤6
所以0≤a ≤6整数有7个和为21
例8已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最大值与最小值
分析:分析我们先把明显的绝对值符号去掉 2y-x-4=2(y-1)-(x+1)-1<0所以第三个和第二个加数的绝对值没有商量马上去掉得到
1425M x y y x y x y x y =+++++-=+++-
X=-1,y=1的时候M 取得最小值3 分两种情况当x+y 不小于0的时候得到M=2x+5
M 最大值为7当x+y 不大于0的时候M=-x-y+5+x-y=5-2y y=-1的时候最大为7 综上M 的最大值为7,最小值3
小结:解决绝对值问题注意方法就是定义,非负性,结合数轴,0点分区间。
当然还要注意可以积累一些经典模型,做题就变得很容易。
我们如果遇到多重绝对值的问题可以倒推或从内到外去掉绝对值符号。
注意特别是指定了范围的可以没有讨论余地的绝对值先处理能商量的后处理,这样计算可以变得简洁。
0点分区间是用定义来得最直白的方法但是在应用之前可以先想下有无更好的方法。
特别可以注意配对思路和例5两个基本模型的应用。
看到重复结构的换元那些意识是基本功。
深刻体会分类讨论和数形结合的思想。