高等代数试卷及答案--(二)

合集下载

高代2期末考试试题及答案

高代2期末考试试题及答案

高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。

答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。

答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。

答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。

答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。

答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。

答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。

高等代数二练习题答案

高等代数二练习题答案

高等代数二练习题答案一、多项式运算1. 给定多项式 \( p(x) = x^3 - 3x^2 + 2x - 1 \) 和 \( q(x) =x^2 + 1 \),求 \( p(x) \) 除以 \( q(x) \) 的商和余数。

2. 计算多项式 \( r(x) = 2x^3 - 5x^2 + 7x - 3 \) 和 \( s(x) =x - 2 \) 的乘积。

3. 证明多项式 \( t(x) = x^4 - 5x^3 + 6x^2 + 8x - 9 \) 可以分解为两个二次多项式的乘积。

二、矩阵运算1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 和 \( B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \),求矩阵 \( A \) 与 \( B \) 的乘积。

2. 若矩阵 \( C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \),求 \( C \) 的逆矩阵。

3. 判断矩阵 \( D = \begin{bmatrix} 2 & 1 \\ 1 & 2\end{bmatrix} \) 是否可对角化,并给出相应的对角矩阵。

三、线性方程组1. 解线性方程组:\[\begin{align*}x + 2y - z &= 1 \\3x - y + 2z &= 0 \\2x + y + z &= -1\end{align*}\]2. 判断下列线性方程组是否有唯一解:\[\begin{align*}x + y &= 3 \\2x + 2y &= 6\end{align*}\]3. 用克拉默法则解线性方程组:\[\begin{align*}x - y + z &= 2 \\2x + y - z &= 1 \\-x + 2y + z &= 3\end{align*}\]四、特征值与特征向量1. 求矩阵 \( E = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \) 的特征值和对应的特征向量。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

(24)--13-14学年高等代数(II)试卷及参考答案

(24)--13-14学年高等代数(II)试卷及参考答案

得分 五、(10 分) 设 V 是数域 Ω 上的 n 维向量空间, σ 是 V 上线性变换. 证明: 存
在 V 上线性变换 τ , 使得 kerσ = τ (V ), kerτ = σ(V ).
第 5 页 (共 6 页)来自得分 六、(10 分) 设 A1, A2, . . . , Ak 均为 n 阶实对称矩阵, 并且对任意的 i, j 均有
¯ Ý­:˦ ÈÙ u, v ∈ V , Þ
(σ + τ )(u)v = u(σ − τ )(v),
(1)
(σ + 2τ )(u)v = uσ(v).
Ý ¦ ÈÙ Þ (2) − (1)
u, v ∈ V ,
τ (u)v = uτ (v).
À τ Ï ©¦». Á Ý (1) ¸ (3) ¦ ÈÙ u, v ∈ V , Þ
b
a + 3b
0
1
下对应的矩阵为
.
5. 设 V 是数域 Ω 上的有限维向量空间, 若 V 上线性变换 σ 的特征多项式
为 f (λ) = nk=1(λ − k)k, 则 dim ker(σ − k∗)k =
, 其中 k = 1, 2, . . . , n.
6. 设 V 是 2014 维欧氏空间, 若 V 上线性变换 σ 既是正交变换, 又是反对称
变换, 则 σ 的特征多项式为
.
7. 设 1, 2 都是 30 阶方阵 A 的特征根, 1 的代数重数为 29, 几何重数为 27,
则满足此条件且互不相似的 A 的总个数为
.
第 1 页 (共 6 页)
得分 二、(15 分) 设 A, B 均是 n 阶实对称矩阵. 证明: A, B 都是半正定矩阵, 当且

高等代数(二)智慧树知到期末考试章节课后题库2024年浙江师范大学

高等代数(二)智慧树知到期末考试章节课后题库2024年浙江师范大学

高等代数(二)智慧树知到期末考试答案章节题库2024年浙江师范大学1.答案:错2.答案:对3.答案:错4.以任何非零向量为特征向量的线性变换的特征值的个数(不计重数)不能大于1。

答案:对5.答案:错6.答案:错7.答案:对8.答案:对9.答案:对10.答案:错11.答案:错12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:26.下列结论正确的是()。

答案:27.答案:28.答案:29.答案:30.答案:31.答案:32.答案:33.答案:34.在下列矩阵中,正交矩阵的是()答案:35.答案:36.答案:等价37.答案:有唯一解38.答案:39.答案:40.答案:充分必要条件41.答案:42.答案:合同但不相似43.答案:44.特征多项式相同是两个矩阵相似的()答案:必要非充分条件45.答案:46.答案:47.答案:48.答案:49.答案:50.答案:51.答案:对52.答案:错53.答案:54.答案:55.答案:56.答案:57.在下列矩阵中,可对角化的矩阵为()。

答案:58.答案:59.答案:错60.答案:错61.答案:对62.答案:63.答案:64.答案:错65.答案:错66.答案:错67.答案: 68.答案: 69.答案:。

2020-2021《高等代数二》期末课程考试试卷(含答案)

2020-2021《高等代数二》期末课程考试试卷(含答案)

2020-2021《高等代数二》期末课程考试试卷专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____.4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____. 6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)7试写出线性空间V 上线性变换ψ核的表达式______.8 属于不同特征值的特征向量线性无关是否正确?______. 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9T T Tααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.12已知1122A ⎛⎫= ⎪⎝⎭,求nA .三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+, 试证:123,,ααα是V 的一组基并求它的对偶基.2020-2021《高等代数二》期末课程考试试卷答案专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.5111,,,4444--2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.是3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____. ()1'A -4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____.1,03. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____.()(),,f f αβαβ=6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)【解】设()325f x x x =-,则B 的特征值为()()()14,16,212f f f =--=-=-.于是()()()4612288B =-⋅-⋅-=-.7试写出线性空间V 上线性变换ψ核的表达式______.(){}10|0x V x ψψ-=∈= 8 属于不同特征值的特征向量线性无关是否正确?______. 是 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.【解】设λ是A 的特征值,α是其对应的特征向量,则,0A αλαα=≠,22A A αλαλα==,又由2A A =得到2A A ααλα==,所以2λαλα=.20,0,1λλλ-==.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.【解】略.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.【解】既然B 是秩为2,解空间的维数为2,又12,αα线性无关,所以12,αα是解空间的一个基,()()()()1121221111,1,2,3,,14,2,10,6.,3TTβααββαβββ===-=-- 再单位化,))1121,1,2,3,2,1,5,3.TTηαη===--12已知1122A ⎛⎫=⎪⎝⎭,求nA . 【解】(1) 求A 的特征值,2300,3E A λλλλλ-=-=⇒==.(2) 求A 的特征向量,当3λ=时,112α⎛⎫= ⎪⎝⎭,当0λ=时,211α⎛⎫=⎪-⎝⎭.令()12,P αα=,则13000A P P -⎛⎫= ⎪⎝⎭,于是11111130303300002323nn n n nn n A P P P P ------⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭. 三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.【证明】根据(),0γγ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+,试证123,,ααα是V 的一组基并求它的对偶基.证明:()()123123011,,,,112111g g g f f f -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭。

高等代数(北大版第三版)习题答案II 2

高等代数(北大版第三版)习题答案II 2

第六章 线性空间1.设,N M ⊂证明:,MN M MN N ==。

证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM ∈。

又因,M N M ⊂ 故M N M =。

再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。

但,N M N ⊂所以MN N =。

2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。

证 ),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。

反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL ∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。

若x M NL M N L ∈∈∈(),则x ,x 。

在前一情形X x M N ∈, X ML ∈且,x MN ∈因而()(M L )。

,,N L x M N X M L M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。

高等代数答案2

高等代数答案2


1 ⎛ ⎜1 − 2 ⎜ 1 A−1 = ⎜ 0 ⎜ 4 ⎜ ⎜0 0 ⎝
1 ⎞ ⎟ 12 ⎟ 5 − ⎟ 24 ⎟ 1 ⎟ ⎟ 6 ⎠ −
⎛ 2 2 3⎞ ⎛ 1 −1 0⎞ ⎜ ⎟ ⎜ ⎟ (1) X ⎜ 1 − 1 0 ⎟ = ⎜ − 1 1 1 ⎟ ⎜ −1 2 1 ⎟ ⎜ 2 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛1 0 1⎞ ⎜ ⎟ (2) X= AX− A +I, 其中 A= ⎜ 0 2 0 ⎟ ⎜1 0 1⎟ ⎝ ⎠
0 1 0 0
0 0 1 0
0⎞ ⎟ 0⎟ , 0⎟ ⎟ 0⎟ ⎠
⎛1 ⎜ ⎜0 (2) ⎜ 0 ⎜ ⎜0 ⎝
0 1 0 0
0 0 1 0
0⎞ ⎟ 0⎟ 0⎟ ⎟ 0⎟ ⎠
证明
⎛1 ⎜ ⎜0 Q = T12 (2)T23 (−1)T24 (−1) = ⎜ 0 ⎜ ⎜0 ⎝
2 − 2 − 2⎞ ⎟ 1 −1 −1⎟ . 0 1 0 ⎟ ⎟ 0 0 1 ⎟ ⎠
习 题 二
解 1. 证明任何一个数域都包含有理数域. 证明 设 F 是一个数域,则 F 含有一个不等于 0 的数 a ,且
⎛1 ⎜ ⎜1 ⎜0 ⎜ ⎜0 ⎜0 ⎝
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
0 1 0 0 1
0⎞ ⎟ 0⎟ 1⎟ ⎟ 0⎟ 1⎟ ⎠
1=
a ∈ F . 用 1 和它自己重复的相加,可得全体正整数,因此 a
⎛ 4 ⎞ ⎜ ⎟ ⎛ a11 ⎜ ⎜ 0 ⎟ (3) ⎜ ⎟ (−3 1 2 5); (4) (x1 x2 x3) ⎜ a 21 7 ⎜a ⎜ ⎟ ⎝ 31 ⎜ − 3⎟ ⎝ ⎠ ⎛ 1 1⎞ (5) ⎜ ⎜ 0 1⎟ ⎟ (n 是自然数). ⎝ ⎠

(完整版)高等代数II期末考试试卷及答案A卷,推荐文档

(完整版)高等代数II期末考试试卷及答案A卷,推荐文档
线性空间同构: (A)数域 P 上所有二级对角矩阵作成的线性空间; (B)数域 P 上所有二级对称矩阵作成的线性空间; (C)数域 P 上所有二级反对称矩阵作成的线性空间; (D)复数域 C 作为复数域 C 上的线性空间。
2、( D )设A是非零线性空间 V 的线性变换,则下列命题正确的是:
(A)A的核是零子空间的充要条件是A是满射; (B)A的核是 V 的充要条件是A是满射; (C)A的值域是零子空间的充要条件是A是满射; (D)A的值域是 V 的充要条件是A是满射。
二、 单项选择题(每小题 3 分,共 15 分)
1、( )复数域 C 作为实数域 R 上的线性空间可与下列哪一个 线性空间同构:
(A)数域 P 上所有二级对角矩阵作成的线性空间; (B)数域 P 上所有二级对称矩阵作成的线性空间; (C)数域 P 上所有二级反对称矩阵作成的线性空间; (D)复数域 C 作为复数域 C 上的线性空间。 2、( )设A是非零线性空间 V 的线性变换,则下列命题正确的是:
2、设A是数域 P 上线性空间 V 的线性变换,证明W L 1,2 ,...,r 是A的不变子空间的兖要条件是 A i W i 1, 2,..., r
3、已知 A E 是 n 级正定矩阵,证明:
(1)A 是正定矩阵;
(2) A 2E 3n
答案
一、 填空题(每小题 3 分,共 15 分)
3、( B ) 矩阵 A 可逆的充要条件是:
A A 0; B A 是一个非零常数;
C A 是满秩的; DA 是方阵。
4、( C )设实二次型 f X AX (A 为对称阵)经正交变换后化为:
1、在线性空间 P4 中,定义线性变换:
A a,b,c, d a,b, a c,b d a,b,c, d P4

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。

证因为,于是,所以,且A不是正定矩阵。

故必存在非退化线性替换使,且在规范形中必含带负号的平方项。

于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。

13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。

证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。

14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。

证必要性。

采用反证法。

若正惯性指数秩r,则。

即,22222 若令,y,则可得非零解使。

这与所给条件矛盾,故。

充分性。

由,知,222故有,即证二次型半正定。

.证明:是半正定的。

证()可见:。

21)当不全相等时2)当时f。

2故原二次型是半正定的。

AX是一实二次型,若有实n维向量X1,X2使16.设,。

X1。

证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。

由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。

不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。

令,,,则由可求得非零向量X0使2222,X0即证。

17.A是一个实矩阵,证明:。

证由于的充分条件是与为同解方程组,故只要证明与同解即可。

事实上,即证与同解,故。

注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。

n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。

湖南理工学院高等代数试卷(2)

湖南理工学院高等代数试卷(2)

高等代数试卷(2)1. 填空题:(2×10=20)1.若向量组可由线性表示,且r>s,则线性。

2.数域P上所有n阶反对称矩阵构成的线性空间的维数是;3.设是线性空间V的两个子空间,则的充分必要条件是= ;4.数域P上的两个有限维线性空间同构的充分必要条件是。

5.设V是数域P上的n维线性空间,是V上一切线性变换所成的P上的线性空间,则dim(L(V))= 。

6.设是线性空间V的一组基,则由这个基到基的过度矩阵是。

7.令P n[x]表示一切次数不大于n的多项式连同零多项式组成的线性空间,,则关于基下的矩阵是。

8.设是n维欧氏空间V上的一个正交变换,且(单位变换),则是变换。

9.欧氏空间V上的对称变换的特征根都是数。

10.设是n维欧氏空间V的一组标准正交基,则它的度量矩阵是。

二.判断题(每题1分,计10分)1.设。

()2.两个等价的向量组一个线性无关,则另一个也线性无关。

()3.若,,且V中的任意一个向量都可由线性表示,则实数是V的组基。

()4.线性变换把线性无关的向量组变成线性无关的向量组。

()5.如果一个线性变换是单射,则它无零特征根。

()6.设是线性空间V上的一个线性变换,则的核与的象都是的不变子空间。

()7.如果W是欧氏空间的一个子空间,那么对V的内积来说,W也作成欧氏空间。

()8.设是欧氏空间V上的一个正交变换,则对于夹角等于的夹角。

()9.两个n元二次型(与(等价的充分必要条件是A与B合同。

()10.实二次型(正定的当且仅当A合同于单位矩阵。

()三、证明题(10×3=30)1.在一个欧氏空间里,对任意向量有不等式;且仅当线性相关时等式成立。

2.设V是数域P上的n维线性空间,是V的一组基,那么对V的任意n个向量有且仅有一个线性变换 σ 使得。

3.设,令V表示A的全体实系数多项式矩阵关于通常加法与数乘运算构成的线性空间;证明:dim(V)=3.四、计算题(15×2=30)1.设,求出一个正交矩阵U,使得是对角矩阵。

高等代数期末考试试卷及答案

高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。

2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。

3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。

4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。

(完整word版)高等代数试卷及答案(二),推荐文档

(完整word版)高等代数试卷及答案(二),推荐文档

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。

2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。

3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。

4.正交变换在标准正交基下的矩阵为_______________________________。

5.标准正交基下的度量矩阵为_________________________。

6.线性变换可对角化的充要条件为__________________________________。

7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。

8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。

9.叙述维数公式_________________________________________________________________________。

10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。

二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。

( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。

( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。

( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。

(完整word版)免费-高等代数试卷二及答案

(完整word版)免费-高等代数试卷二及答案

高等代数试卷二一、 单项选择题(每小题2分,共10分)【 】1、设)(x f 为3次实系数多项式,则A.)(x f 至少有一个有理根B. )(x f 至少有一个实根C.)(x f 存在一对非实共轭复根D. )(x f 有三个实根.【 】2、设,A B 为任意两个n 级方阵,则如下等式成立的是 A. 222()2A B A AB B +=++ B. A B A B +=+ C. AB B A = D. A B A B -=-【 】3、设向量组12,αα线性无关,则向量组1212,a b c d αααα++线性无关的充分必要条件为A. ad bc ≠B. ad bc =C. ab cd ≠D. ab cd = 【 】4.一个(2)n ≥级方阵A 经过若干次初等变换之后变为B , 则一定有A. A B =B. 0Ax =与0Bx =同解C. 秩()A =秩()BD. **A B =【 】5、设矩阵A 和B 分别是23⨯和33⨯的矩阵,秩()2A =,秩()3B =,则秩()AB 是A. 1B. 2C. 3D. 4二、填空题(每小题2分,共20分)1.多项式)(x f 没有重因式的充要条件是 . 2 .若()()1f x g x +=,则((),())f x g x = .3. 设1230231002A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则*1()A -= .4. 行列式1230000a a a 的代数余子式之和:313233A A A ++为______________. 5.设3级方阵1211222,2A B ααββββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中,i i αβ均为3维行向量。

若16,2A B ==,则A B -= .6. 若矩阵A 中有一个r 级子式不为0, 则 r(A)= .7.线性方程组 121232343414x x a x x a x x a x x a -=⎧⎪-=⎪⎨-=⎪⎪-=⎩, 有解的充要条件是 .8. 若向量组12,,r ααα可由12,,s βββ线性表示,且12,,r ααα线性无关,则r s.9.设A 为3级矩阵, 且12A =, 则 1*A A --= 10. 设001200373*******A ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭, 则1A -= .三、判断题(每小题2分,共10分)【 】1、若不可约多项式p(x)是()f x '的2重因式,则p(x)是)(x f 的3重因式.【 】2、设n 级方阵A 为可逆矩阵,则对任意的n 维向量β,线性方程组Ax β=都有解。

高等代数习题解答(第二章)

高等代数习题解答(第二章)

高等代数习题解答第二章 行列式1.决定以下9级排列的逆序数,从而决定它们的奇偶性: 1)134782695; 2)217986354; 3)987654321.1)解 ()134********τ=,排列134782695是偶排列. 2)解 ()21798635418τ=,排列217986354是偶排列. 3)解 ()98765432136τ=,排列987654321是偶排列. 2.选择i 与k 使1)1274569i k 成偶排列; 2)1254897i k 成奇排列.1)解 当8,3i k ==时,()12748563910τ=,排列127485639为偶排列. 2)解 当3,6i k ==时,()1325648975τ=,排列132564897为奇排列. 3.写出把排列12435变成排列25341的那些变换. 解 (1,2)(1,5)(4,3)12435214352543125341→→→.4.决定排列(1)21n n - 的逆序数,并讨论它的奇偶性. 解 ()(1)(1)21012(2)(1)2n n n n n n τ--=++++-+-=. 当4n k =或41()n k k +=+∈ 时,排列为偶排列; 当42n k =+或43()n k k +=+∈ 时,排列为奇排列.5.如果排列121n n x x x x - 的逆序数为k ,排列121n n x x x x - 的逆序数是多少?解 由于一个n 级排列中,构成逆序的数对与构成顺序的数对总数是2(1)2n n n C -=,把一个排列颠倒后,原来的逆序变成顺序,原来的顺序变成逆序,所以排列121n n x x x x - 的逆序数(1)2n n k --. 6.在6级行列式中,233142561465a a a a a a 与324314516625a a a a a a 这两项应带有什么符号?解 由于(234516)(312645)4ττ+=+=;(341562)(234165)6410ττ+=+=,故两项均应带有正号.7.写出4级行列式中所有带负号并且包括因子23a 的项. 解 所求的项为112332a a a a -;12233441a a a a -;14233142a a a a - 8.按定义计算行列式:1)000100200100000n n-; 2)010000200001000n n -;3)00100200100000n n-.1)解 原行列式(1)((1)21)2(1)!(1)!n n n n n n τ--=-=- .2)解 原行列式(231)1(1)!(1)!n n n n τ-=-=- . 3)解 原行列式(1)(2)((1)(2)21)2(1)!(1)!n n n n n n n τ----=-=- .9.由行列式的定义证明:123451234512121200000000a a a a ab b b b bc cd de e =. 证明 由定义,行列式的一般项为125125()125(1)j j j j j j a a a τ- , 其中,125j j j 是一个5级排列.在这个5级排列中,345,,j j j 至少有一个大于或等于3,则相应的元素等于0,由此可知每一项都为0,从而行列式为0.10.由行列式的定义计算212111()321111xx x f x x x-=中4x 与3x 的系数,并说明理由.解 ()f x 的展开式中x 的4次项只有一项:(1234)(1)2x x x x τ-⋅⋅⋅,故4x 项的系数为2;x 的3次项也只有一项:(2134)(1)1x x x τ-⋅⋅⋅,故3x 项的系数为1-.11.由1111110111=证明:奇偶排列各半.证明 由于行列式的每个元素都等于1,所以它的每一项的绝对值都等于1,当行标按自然顺序排列时,符号由列标排列的奇偶性确定,当列标排列为奇排列时,符号为负,当列标排列为偶排列时,符号为正.由又由于行列式等于0,说明带正号的项与带负号的项个数相等,即(列标排列中)奇排列与偶排列各占一半.12.设21211112111111()1n n n n n n x x x a a a p x a a a ------=,其中121,,,n a a a - 是互不相同的数.1)由行列式定义,说明()p x 是一个1n -次多项式;2)由行列式性质,求()p x 的根.解 1)()p x 的展开式中,含1n x -的只有一项,其系数是211112112222111111(1)1n n n n n n n a a a a a a a a a --+-----,由于121,,,n a a a - 互不相同,上述的范德蒙德行列式不等于0,故1n x -项的系数不等于0,从而()p x 是一个1n -次多项式.2)2121111111112111111()()()1n n n n i j k i i k n n n n n x x x a a a p x a x a a a a a ----=≤<≤-----==∏-⋅∏-,而111()0n j k i k n a a -≤<≤-∏-≠,于是()p x 的根是121,,,n a a a - .13.计算下面的行列式:1)2464273271014543443342721621; 2)xy x y yx y x x y xy+++;3)3111131111311113; 4)1234234134124123;5)1111111111111111xx y y+-+-; 6)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++.1)解 2464273271014543443342721621123100042732720005434431000721621c c c ++=23100010032720001004431000100621c c -= 121000100511327102144311621c c ÷÷=21312511327100121100294r r r r --=--529410=-⨯.2)解 xy x y y x y x x yx y +++()()()123222c c c x y y x y x y x yx x y xy++++=+++()()121211c x y y x y x y x y x xy÷++=++()2131120r r r r y x yx y xy x yx--+=+---()2x yx y x y x-=+--()()22()()x y x y x y =+----()22332()2()x y x xy y x y =+-+-=-+.3)解311113111131111312346111631161316113c c c c +++=2131416111020000200002r r r r r r ---=622248=⨯⨯⨯=.4)解1234234134124123123410234103411041210123c c c c +++=21314110234011302220111r r r r r r ----=-----32412102340113004404r r r r -+-=--101(4)(4)160=⨯⨯-⨯-=.5)解1111111111111111xx y y +-+-123411110011110r r r r x x x y yy--+--=+--21431100001010c c c c x x x y yy--+--=+--241300(1)0x x y y+++--=---拉普拉斯定理22xy xy x y =⋅=.注1:也可以不用拉普拉斯定理;注2:另解 将第4行拆成两行.6)解2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++2131412222214469214469214469214469c c c c c c a a a a b b b b cc c cd d d d ---++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++.14.证明1111111112222222222b cc a a b a b cb c c a a b a b c b c c a a b a b c ++++++=+++. 证法一 左边1231111122222222c c c a c a a b a c a a b a c a a b ---++=-++-++1(2)11111222222c a c a a b a c a a b a c a a b ÷-++=-++++ 21311112222c c c c a c b a c b a c b --=-231112222c c a b ca b c a b c ↔==右边.证法二 左边123111111122222222()2()2()c c c a b c c a a b a b c c a a b a b c c a a b ++++++=++++++++12111111122222222c a b c c a a b a b c c a a b a b c c a a b ÷++++=++++++++ 213111111222222c c c c a b c b c a b c b c a b c b c --++--=++--++--1231112222c c c a b c a b c a b c ++--=----23(1)111(1)2222c c a b ca b c a b c ⨯-⨯-==右边. 15.略16.计算下面的行列式:1)1111211312254321- 2)111121121311113211102---3)0121420121135123312121035-- 4)111122011213210211012121302--- 1)解111121*********1-21314124111101151140123r r r r r r ------=---3242111101150001012r r r r +----=--3411110115001201r r ↔---=--34111101151(1)(1)(1)1001201r r ↔---=-=-⨯-⨯-⨯-=--.2)解111121121311113211102---1243223112122211211123201c c c ⨯⨯⨯-=--131211122213112123201r r ↔--=--213141331211041310541120834r r r r r r +-+-=----231211015210541120834r r +--=----32425812110152100211112003720r r r r -+--=--- 211111(1)372012--=-⨯⨯-1(2120(11)37)12=⨯-⨯--⨯1312=-.3)解 0121420121135123312121035--31415133012142012110141030551120241r r r r r r ----=------122121114101(1)355112241+---=⨯----1232422320110191141008174141219r r r r r r +++-----=-----2111019(1)(1)8174141219+--=--⨯-----2331241101907302857r r r r ---=----1173(1)(1)2857+--=--⨯--21473069r r ---=483=-.4)解 1101122011213210211012121302---13522221022201121642108110124261r r r ⨯⨯⨯--=-3141514221022201121202788300300645r r r r r r -+---=--- 31415141222112227811(1)303080645r r r r r r -++----=⨯⨯--31211222581300080645c c -----=--313111213(1)2588645c c -+--=-⨯⨯---21312611230712801017r r r r ++--=---117123(1)(1)10178+-=-⨯-⨯--33((7)1712(10))88=-⨯-⨯-=.17.计算下列n 级行列式:1)000000000000x y x y x y yx; 2)111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------;3)121212n n n x m x x x x m x x x x m---; 4)122222222232222n;5)12311100002200011n n n n-----. 1)解 000000000000x y x y x y y x111110000000000000(1)(1)00000000000000n n n x y y x y x y x y x y y x x y ++--=⋅-+⋅-按第1列展开111(1)n n n x x y y -+-=⋅+⋅-1(1)(2)n n n x y n +=+-≥.2)解 当1n =时,1111a b a b -=-; 当2n =时,11122122a b a b a b a b ----112212211212()()()()()()a b a b a b a b a a b b =-----=--;当3n ≥时,111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------21311112121212131313112nr r r r n n n na b a b a b a a a a a a a a a a a a a b a b a b --------=------=0. (第2,3两行成比例)3)解121212n n n x mx x x x m x x x x m---12212121nni n i nc c c i n i ni n i x mx x x mx m x x mx x m=+++==---=--∑∑∑121(2,3,,)000i ninr r i i n x mx x m m-==--=-∑11()n n i i m x m -=⎛⎫=-- ⎪⎝⎭∑. 4)解 122222222232222n2(1,3,4,,)1000222200100002i r r i n n -=-=-2121000022200100002r r n +-=-(1)2(2)!2(2)!n n =-⨯⨯-=--.另解:1(2,3,,)i r r i n -= ,然后按第2行展开.5)解 1231110000220000011n n n n -----12(1)23120100002200011nc c c n n n n n n++++--=---10002200(1)211n n n n--+=--按第1列展开(1)(1)(2)(1)2n n n +=---11(1)(1)!(1)(1)!(1)22n n n n n n --++=--=-. 另解:第1列起,各列加到后一列,然后按第n 列展开.18.证明1)01212011111001100()100nn i ina a a a a a a a a ==-∑; 2)012111021000100010000001n n n n n x a x a x a x a x a x a xa x a ------=++++-+;3)1100010001000001n n αβαβαβαβαβαβαβαβ++++-=+-+; 4)cos 100012cos 100cos 012cos 00012cos n ααααα=;5)1231211111111111111111(1)11111nn i ina a a a a a a a =+++=++∑. 1)证法一 当1n =(2级)时,左边=0011111a a a a =-=右边;假设等式对于n 级的情形成立,则对于1n +级情形:左边=0121111001001na a a a0111(1)1(1)(1)2211111111100000(1)(1)100000100n n n n n n nna a a a a a a ++++++-=-+-按第行 展开1(1)1(121)12112101(1)(1)[()]n n n n n n n iia a a a a a a a a τ-++---=--+-∑第2个行列式根据归纳假设112112101[()]n n n n iia a a a a a a a a ---=-+-∑ 12101()nn n i ia a a a a a -=-∑=右边. 证法二 左边=012111100100100n a a a a11221(1)1033200011111111000000000000000(1)000000n n na a a a a a a a a a ++=-++-按第列 展开2(121)01223121(1)(1)n n n n n n a a a a a a a a a a τ+--=-++-- 2101223121(1)(1)n n n n n a a a a a a a a a a +--=-++--01223121n n n a a a a a a a a a a -=--- =右边.证法三提示 将第(2,3,,1)i i n =+ 行的1ia -倍加到第一行即得下三角行列式. 2)证法一 当1n =时,左边=00x a x a +=+=右边; 假设等式对于n -1级情形成立,则对于n 级情形:左边=01221000100010000001n n x a x a x a xa x a -----+0121032110001000100010001000100(1)000000100101nn n n n xa x x a x x a xa xa x x a +---------=+---+-按第1行 展开111210()(1)(1)n n n x x a x a a -+-=++++-- 第1行列式根据归纳假设2210()n x a x a x a =++++ 第1行列式根据归纳假设=右边.于是,等式成立.证法二 左边=01221000100010000001n n x a x a x a xa x a -----+120110000000010001000010000100(1)(1)000100010101n nnx x x x a a x x ++-----=-+-+----按第列 展开(1)21000000001000100001000100(1)()(1)00000000000100n nn nn n x x x x x x a x a xx x-++-------++--1122211210121(1)(1)(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x x a x +-+------=--+--++--++- 110121()n n n n a a x a x x a x ----=+++++=右边.3)将等式左边的行列式记为n D ,按第1列展开,得 12()n n n D D D αβαβ--=+-, 即 112()n n n n D D D D αβα----=-, 该等式对于一切的n 都成立,于是2123()n n n n D D D D αβα----=- 334()n n D D βα--=- =221()n D D βα-=-22[()()]n βαβαβααβ-=+--+n β=. ① 在原式中,是,αβ对称的,故同理可得1n n n D D βα--=. ②②α⨯-①β⨯,得11()n n n D αβαβ++-=-,所以 11n n n D αβαβ++-=-.另解 第二数学归纳法,按第1行展开(略).4)提示 用第二数学归纳法,按第n 行展开得122cos n n n D D D α--=⋅-. 5)提示 用数学归纳法,将第n 行拆成两行111 与00n a . 19—21略。

10-11高等代数(二)试卷A及答案

10-11高等代数(二)试卷A及答案

第 2 页 共 7 页
徐州工程学院试卷
七、 (共 1 题,12 分)
⎛1 a a⎞ ⎜ ⎟ 设 A = a a 1 ,其中 a ≠ 0 。 ⎜ ⎟ ⎜1 a a⎟ ⎝ ⎠
(1)求 A 的特征值和特征向量; (2) a 取何值时 A 可以对角化?并求可逆阵 P ,使得 P −1 AP 为对角阵。 八、 (共 1 题, 10 分)
⎛1 ⎜ 1 ( β1 , β 2 , β3 , β 4 ) = (ε 1 , ε 2 , ε 3 , ε 4 ) ⎜ ⎜8 ⎜ ⎝3
= (α1 , α 2 , α 3 , α 4 ) A−1 B
0 3 7 2
1 −1⎞ ⎟ 1 4⎟ = (ε1 , ε 2 , ε 3 , ε 4 ) B 6 −1⎟ ⎟ 2 −1⎠
⎛ −23 −7 −9 8 ⎞ ⎜ ⎟ 6 3 3 −1⎟ ⎜ 由基 α1 , α 2 , α 3 , α 4 到基 β1 , β 2 , β3 , β 4 的过渡矩阵 ⎜ 2 3 2 1⎟ ⎜ ⎟ 2 2 −1⎠ ⎝ 3 ⎛1⎞ ⎛1⎞ ⎜ ⎟ ⎜ ⎟ 4⎟ −1 ⎜ 4 ⎟ ⎜ α = (ε1 , ε 2 , ε 3 , ε 4 ) = (α1 , α 2 , α 3 , α 4 ) A ⎜ 2⎟ ⎜ 2⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 3⎠ ⎝ 3⎠
∀A ∈ V ,设 A = ( aij ) , a11 + a22 + a33 = 0
则 A = − a22 A1 − a33 A2 + a12 E12 + a13 E13 + a21 E21 + a31 E31 + a32 E32 所以 A1 , A2 , E12 , E13 , E23 , E21 , E31 , E32 是 V 的一组基, V 的维数是 8 四、解: V1 = L (α1 α 2 ) ,V2 = L ( β1

2012-2013高代第二学期期中试卷答案

2012-2013高代第二学期期中试卷答案

北 京 交 通 大 学2012 -2013学年第二学期《高等代数II 》期中考试试卷参考答案及评分标准一.填空题(本题满分30分,共10道小题,每道小题3分)1.已知R 3的两组基:I: )1,0,0(),0,1,0(),0,0,1(321===ααα; II: )0,1,1(),1,1,0(),1,0,1(321===βββ;那么由I 到II 的过渡矩阵为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011110101 。

2. 在22⨯P 中,已知⎪⎪⎭⎫ ⎝⎛=01001A ,⎪⎪⎭⎫ ⎝⎛=00012A ,⎪⎪⎭⎫ ⎝⎛=00103A ,⎪⎪⎭⎫ ⎝⎛=10004A 是22⨯P 的基,那么,⎪⎪⎭⎫ ⎝⎛=4523A 在该基下的坐标为 (5,3,2,4) 。

3. 设1W 是方程组04321=+++x x x x 解空间,2W 是方程组⎩⎨⎧=+-+=-++0043214321x x x x x x x x 的解空间,那么1W ∩2W 是方程组 ⎪⎩⎪⎨⎧=+++=+-+=-++000332143214321x x x x x x x x x x x x 的解空间。

4. 设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W ==, 则()=+21dim W W 3 。

5. 设1W 、2W 都是V 的子空间,且1W +2W 为直和,那么()=⋂21dim W W 0 。

6. 设线性变换A 在基21,εε的矩阵为⎪⎪⎭⎫ ⎝⎛1011,线性变换B 在基12,εε下的矩阵为⎪⎪⎭⎫ ⎝⎛-1101,那么A+B 在基21,εε下的矩阵为 ⎪⎪⎭⎫ ⎝⎛2002 . 7.设3阶矩阵A 的特征为1,2,3,那么A -1的特征值为 1,1/2,1/3 。

8.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x 10100001与矩阵B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10000001y 相似,那么y x ,的值分别是 0,1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。

2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。

3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。

4.正交变换在标准正交基下的矩阵为_______________________________。

5.标准正交基下的度量矩阵为_________________________。

6.线性变换可对角化的充要条件为__________________________________。

7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。

8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。

9.叙述维数公式_________________________________________________________________________。

10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。

二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。

( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。

( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。

( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。

( )6.数域上任意一个矩阵都合同于一对角矩阵。

( )7.把复数域C 看作复数域上的线性空间,C ξ∀∈,令σξξ=,则σ是线性变换。

( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。

( ) 9.欧氏空间中不同基的度量矩阵是相似的。

( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。

( )三、计算题 (共3题,每题10分,共30分)1.设线性变换σ在基123,,εεε下的矩阵为122212221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求σ的特征值与特征向量,并判断σ是否可对角化?2.t 取什么值时,下列二次型是正定的?()222123123121323,,5224f x x x x x x tx x x x x x =+++-+3.设三维线性空间V 上的线性变换σ在基123,,εεε下的矩阵为:111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,求σ在基()12,,0k k P k εε∈≠且,3ε下的矩阵B 。

四、证明题 (共4题,每题10分,共40分)1.证明:12n A λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭与12i i in B λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭相似,其中12,,,ni i i ⋅⋅⋅是1,2,,n ⋅⋅⋅的一个排列。

2.证明:和1sii V =∑是直和的充要条件为:{}()1102,3,,i ijj V V i s -===⋅⋅⋅∑。

3.设A 是n 级实对称矩阵,且2A A =,证明:存在正交矩阵T ,使得:111100T AT -⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭4.证明:12n A λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭ 与 12i i in B λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭合同, 其中12,,,n i i i ⋅⋅⋅是1,2,,n ⋅⋅⋅的一个排列。

答案一.1.零 2.3996⎛⎫⎪⎝⎭3.充分大4.正交矩阵5. E6.有n 个线性无关的特征向量7.0000000a b a b c dc d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭8.12V V = 9.()()121212dim dim dim dim V V V V V V +=+-10. X AY =二.1. ⨯ 2. ⨯ 3. ⨯ 4.√ 5. ⨯ 6. ⨯ 7. ⨯ 8. √ 9. ⨯ 10. √三.1.解:()()()212221251221A f E A λλλλλλλ---=-=---=-+--- (3分) 所以,σ的特征值为11λ=-(二重)和25λ=。

把11λ=-代入方程组()0E A X λ-=得:122122122222022202220x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩基础解系为1101n ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 2011n ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦因此,σ属于1-得两个线性无关得特征向量为: 112223,ξεεξεε=-=- 因而属于1-的全部特征向量就是1122k k εε+ ,1k 、2k 取遍P 中不全为零的全部数对 (6分),再用25λ=代入()0E A X λ-=得:基础解系3111n ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,因此,属于5的全部特征向量是3k ξ,k 是P 中任意不等于零的数。

(9分)因为σ有三个线性无关的特征向量,所以σ可能对角化。

(10分)2.解:f 的矩阵为:1112125t A t -⎛⎫⎪= ⎪ ⎪-⎝⎭10>,21101t t t =-> , 2540A t t =--> 。

得:405t -<<∴当405t -<<时,f 是正定的。

3.解:()11112123131a a k a kσεεεε=++ (2.5分)()()2121222323k ka a k ka σεεεε=++ (2.5分)()()31312323331a a k a kσεεεε=++ (2.5分)∴σ在基下的矩阵为11121321222331323311a ka a B a a a k k a ka a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(2.5分) 四.1.证:任意n 维向量空间V ,V ∀的基12,,,n ααα⋅⋅⋅,则∃唯一()L V σ∈使()()121212n n n λλσααααααλ⎛⎫⎪⎪⋅⋅⋅=⋅⋅⋅ ⎪ ⎪⎝⎭(3分) 即()i i i σαλα= 1,2,,i n =⋅⋅⋅()111i i i σαλα∴=()222i i i σαλα=⋅⋅⋅⋅⋅⋅⋅()in in in σαλα=∴σ在基12,,,i i in ααα⋅⋅⋅下的矩阵为B (6分) ∴A 与B 相似(1分)2.证:1sji V=⇒∑是直和 {}0ii j iV V ≠∴=∑ (3分)11i ijijj j iV VV V-=≠⊆∑∑ {}110i ij j V V -=∴=∑ (2分)⇐令110s s ααα-+⋅⋅⋅++= ()11s s ααα-∴=-+⋅⋅⋅+11s s sjj V Vα-=∴∈∑ (3分)0s α∴=,同理1210s ααα-=⋅⋅⋅===1si i V =∴∑是直和。

(2分)3.证:设λ是A 的任一特征值 0α∴∃≠ ,使A αλα=()22A A αλαλα∴== 2A A = ,2λαλα∴=()20λλα∴-= 0α≠ 20λλ∴-=1λ∴=或0λ= A 实对称矩阵∴∃正交矩阵T ,使11100T AT -⎛⎫⎪ ⎪ ⎪=⎪⎪ ⎪ ⎪ ⎪⎝⎭4.证:A 、B 对应的二次型分别为()22211122,,n n n f x x x x x λλλ⋅⋅⋅=++⋅⋅⋅+ ()22211122,,n i i in ing y y y y y λλλ⋅⋅⋅=++⋅⋅⋅+ 令1122i i n iny x y x y x =⎧⎪=⎪⎨⋅⋅⋅⋅⋅⋅⎪⎪=⎩ , ()()221111,,,,n i i in in n g y y x x f x x λλ⋅⋅⋅=+⋅⋅⋅+=⋅⋅⋅ 所以,A 与B 合同。

相关文档
最新文档