地源热泵埋管数、配电量以及投资计算

合集下载

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法地源热泵系统是一种利用地下土壤或岩石的稳定温度来进行室内空调的系统。

它使用地源热能进行供暖、制冷和热水生产,具有高效节能、环保、可持续等优点。

为了确保地源热泵系统的正常运行和高效性能,需要严格遵守相关的工程技术规范,并合理计算埋管。

首先,工程技术规范是指在设计、安装、调试和运维地源热泵系统过程中必须遵守的规范性标准。

以下是地源热泵系统工程技术规范的一些主要内容:1.设计准则:包括设计热负荷计算、系统选型、管道布置、室内设备配置等方面的指导原则。

2.安装标准:包括安装位置、安全防护、设备间距离要求、管道施工质量要求等方面的规定。

3.调试要求:包括系统压力测试、系统流量调整、冷凝水排放、电气连接测试等方面的具体要求。

4.运维管理:包括设备日常维护、系统巡检、故障处理、水质管理等方面的管理要求。

其次,埋管计算方法是指地源热泵系统中埋管的规划和计算方法。

埋管是地源热泵系统中用于传输地源热能的重要部分,其合理的规划和计算直接影响系统的性能。

1.埋管的长度计算:根据设计热负荷、地源温度、环境温度等参数,通过热平衡计算确定需要埋设的管道长度。

2.埋管的深度计算:根据地下土壤或岩石的温度分布、管道材料的传热特性等参数,通过热传导计算确定管道的埋设深度。

3.管道间距计算:根据埋管的散热能力和热负荷的大小,通过管道间距的选择来达到合适的散热效果。

4.地源热泵系统的管道布局:根据建筑物的结构布局、热负荷分布等要素,选择合适的管道布局方式,确保热能的传输和供暖效果。

综上所述,地源热泵系统工程技术规范和埋管计算方法是确保地源热泵系统安装和运行安全、高效的重要依据。

只有严格遵守规范要求,并合理计算埋管,才能确保地源热泵系统的正常运行和优异性能。

地源热泵空调竖直埋管换热器计算方法

地源热泵空调竖直埋管换热器计算方法
2.056 100 0.41 3 100 4 12 制冷时 制冷时 地层静默温度
最大工况温度(制冷) 最大工况温度(制冷)℃ 30 最小工况温度(制热) 最小工况温度(制热)℃ 3
℃ 15
2.本地区土壤检测情况(一般土壤) 2.本地区土壤检测情况(一般土壤)
一般土壤:干土壤比热为0.837KJ/kg•K 埋管管材外径 mm 32
ห้องสมุดไป่ตู้
3. 3.管材参数
埋管管材导热率 埋管管材厚度 竖直埋管换热器深度 单孔竖直埋管数量 最热月平均每日运行时间
4. 4.竖直埋管换热器设计规范
竖直埋管换热器之间间距 最冷月平均每日运行时间 M h 制热时 制热时 5 12
竖直埋管总长( 竖直埋管总长(M) 竖直埋管换热器数量( 竖直埋管换热器数量(座)
地源热泵竖直埋管换热器计算器
1. 1.地源热泵空调参数
地源热泵制冷量(KW) 地源热泵制冷量(KW) 6000 地源热泵制热量(KW) 地源热泵制热量(KW) 6000
土壤平均导热率 土壤平均含水量 W/M℃ ﹪ W/M℃ mm M 根 h
地源热泵制冷功率(KW) 地源热泵制冷功率(KW) 138 地源热泵制热功率(KW) 地源热泵制热功率(KW) 173
390019 975
462822 1157
地源热泵竖直埋管换热器计算器:1.计算器内土壤平均导热率为天津某地区 2.计算器参数埋管管材为PE100

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法
3
主要内容
1 总则 2 术语 3 工程勘察 4 地埋管换热系统 5 地下水换热系统 6 地表水换热系统 7 建筑物内系统 8 整体运转、调试与验收 9 附录
地源热泵系统工程技术规范
2 术语
2.0.1 地源热泵系统 groud-source heat pump system 以岩土体、地下水或地表水为低温热源,由水源热泵
分为直接地下水换热系统和间接地下水换热系 统。
2.0.11 直接地下水换热系统 由抽水井取出的地下水,经处理后直接流
经水源热泵机组热交换后返回地下同一含水层 的地下水换热系统。
8
地源热泵系统工程技术规范
2 术语
2.0.12 间接地下水换热系统 由抽水井取出的地下水经中间换热器热交换
后返回地下同一含水层的地下水换热系统。 2.0.13 地表水换热系统
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容: 1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布; 3 场地内树木植被、池塘、排水沟及架空输电线、电信电
缆的分布; 4 场地内已有的、计划修建的地下管线和地下构筑物的分
蕴藏在浅层岩土体、地下水或地表水中的热能资源。 2.0.5 传热介质 heat-transfer fluid
地源热泵系统中,通过换热管与岩土体、地下水或地 表水进行热交换的一种液体。一般为水或添加防冻剂的水 溶液。
6
地源热泵系统工程技术规范
2 术语
2.0.6 地埋管换热系统 ground heat exchanger system 传热介质通过竖直或水平地埋管换热器与岩土体进行热交

地埋管换热器计算方法

地埋管换热器计算方法
竖直埋管地热换热器的设计和参数分析
摘 要:本文通过对某住宅小区地源热泵系统地热换热器的方案设计的工程实例,介绍了采用《地热之星》软 件设计地热换热器的方法;讨论分析了回填材料导热系数、岩土导热系数、钻孔间距以及循环液的类型四种 主要因素对地热换热器设计尺寸的影响,并指出提高回填材料导热系数、适当增大钻孔间距以及选择凝固点 较低的循环液有利于减小钻孔长度,从而节省地热换热器的初投资。
本工程采用单U型竖直埋管的形式。单个钻孔的截面示意图如图1 所示。管材采用目前国际上广泛使用的 高密度聚乙烯管(PE3408),其导热系数为
本工程采用单U型竖直埋管的形式。单个钻孔的截面示意图如图1 所示。管材采用目前国际上广泛使用的 高密度聚乙烯管(PE3408),其导热系数为 0.42 W/(m℃);标准尺寸比为SDR11,管外径为32mm,内径为26mm。两支管间距选为C 型,即两根管子中心距 为钻孔半径。
4 方案比较 综合以上所述,在该工程地热换热器设计的方案比较中主要考虑以下几项因素的影响:①回填材料导热系数; ②岩土导热系数;③钻孔间距;④循环液的类型。
4.1 回填材料导热系数和岩土导热系数对地热换热器设计尺寸的影响
当循环液为乙二醇 16% ,钻孔几何分布为矩形阵列 4×25 ,钻孔间距为 4*5 (行间距*列间距)时,采用不 同的回填材料导热系数以及岩土导热系数计算出了一系列地热换热器的尺寸,据此画出了 1 万平米空调面积 总钻孔长度随岩土导热系数和回填材料导热系数的变化曲线图。图 2 中的曲线从上到下分别代表岩土的导热 系数为 0.8,1.2,1.6,2.0 W/(m.K) 。从图中可以看出,随着回填材料的导热系数的增大,钻孔长度逐渐减小; 随着岩土导热系数的增大,钻孔长度明显减小。另外,从图中还可以看到对于导热系数在 0.8-2.0 W/(m.K) 范 围内的岩土,当钻孔回填材料的导热系数由 0.6 W/(m.K)增大到 1.2 W/(m.K) 时,仅增大了 1 倍,钻孔总长度 就减少了 500m 左右。这说明:当回填材料导热系数较小,尤其当其小于 1.2 W/(m.K) 时,提高钻孔回填材料 的导热系数,可以减少相当可观的埋管长度。

地源热泵系统运行费用分析

地源热泵系统运行费用分析

地源热泵系统运行费用分析[摘要]以长春帕拉斯大酒店土壤源热泵系统项目为依据,着重介绍了土壤源热系统运行节能分析。

【关键词】地源热泵;地埋管换热器;节能近年来,随着我国社会经济的发展及人民生活水平的不断提高,改善建筑热舒适条件已成为一个比较突出的要求。

空调作为目前改善建筑热舒适条件的工具,早已悄悄进入我们的生活,尤其是在公共场所,空调已经基本普及。

然而,随着空调设备的日益普及,建筑耗能量势必将迅猛增加,对大气环境的污染也将日趋严重。

如何在建筑热舒适条件得到改善的条件下把建筑耗能量减下来,减轻对大气环境的污染,成了暖通界人士首要其冲需要解决的问题。

现阶段,在保证使用功能不降低的情况下,全国各地在新建房屋的设计及施工中采取各种有效的节能技术和管理措施,把建筑的能耗较大幅度地降下来,在北方还对原有建筑物有计划地进行节能改造,达到节省能源、保护环境和提高人民生活质量的目的。

地源热泵作为一种有益环境、节约能源和经济可行的建筑物供暖及制冷新技术越来越受到关注。

它是利用地下相对稳定的土壤温度,通过媒介质来获取土壤内冷(热)能量的新型装置,可一年四季方便地调节建筑内的温度,即可制冷又可制热,而且运行费用低。

在我国冬冷夏热的北方,地源热泵系统受到越来越多的欢迎。

地源热泵节能是显而易见的,但是否就省钱呢?节能并不等于就省钱,因为还要考虑设备的投资费用、燃料价格及电力价格等,因此必须综合考虑各种影响因素,才能正确判断地源热泵是否既节能又省钱。

在这里采用投资回收年限法,对地源热泵项目进行经济性分析。

投资年限是工程增量成本与年节约运行费用的比值,它是评估能源利用是否合理的指标之一。

工程实例1、工程概况长春帕拉斯大酒店位于长春市经济开发区,建筑面积6500平米,共六层。

原建筑采暖采用自烧锅炉供热,没有制冷系统;该建筑在2010年进行了改造,为了达到室内温度舒适,冬季温暖,夏季凉爽,并且提供生活热水,因此采用了土壤源热泵系统。

地源热泵室外地埋管系统冷热不均衡问题解决方案

地源热泵室外地埋管系统冷热不均衡问题解决方案

地源热泵室外地埋管系统冷热不均衡问题解决方案一、冬夏季地下换热量计算:夏季向土壤中排放的热量Q1·= 597KW×(1+1÷5.15) -597KW×(1-1÷3.98)=713-378=335KW冬季从土壤中吸收的热量Q2·= 505KW×(1-1÷3.98)×2=756KW二、埋管孔数计算:冬季地埋管打孔数,口N2=756÷(40×0.045)=420口三、占地面积估算地埋管间距按四米计算,S=420×42=6720m2四、全年冷热不平衡校核计算整个制冷期向土壤排放的总热量:φ1=335KW×18×0.8小时×120×0.9天=整个制热期从土壤吸收的总热量:φ2=756KW×18×0.8小时×120×0.9天=冷热不平衡率U=φ1/φ2=0.443冷热不平衡率取值在0.8—1.15之间,则无需对地埋管系统进行地下温度场的冷热不平衡处理。

冷热不平衡率U<0.8或>1.15,则需对地埋管系统进行地下温度场的冷热不平衡处理。

说明:(以机组夏季运行120天、夏季运行120天、每天运行18个小时),空调全负荷使用系数见计算公式,我们按中原地区的气候条件,夏季制冷期为120天(6月1日—9月30日),冬季采暖期为120天(11月15日—3月15日),开动系数(制冷或采暖期内系统的开动天数比率)估算为0.90,主机使用系数为0.8[每天18小时运行,其计算依据是1/(0.17/A+0.39/B+0.33/C+0.11/D),其中A、B、C、D分别是在100%、75%、50%、25%负荷下运转的耗能量。

五、地埋管系统地下温度场的冷热不平衡处理1、冬季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.8862、夏季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.9433、冬季采用一台风冷热泵机组供应游泳馆空调;U=φ1/φ2=0.8864、安装锅炉对地埋系统补充热量:;按需调节5、屋顶布置太阳能,利用太阳能来实现地埋管系统地下温度场的冷热不平衡处理。

埋管式地源热泵系统介绍,成本,运行费用

埋管式地源热泵系统介绍,成本,运行费用

一、地源热泵系统简介0 引言“热泵”这一术语是借鉴“水泵"一词而来。

在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。

而热泵可将低温位热能“泵送"(交换传递)到高温位提供利用。

在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机"。

我们也可以称热泵为既可以制冷又可以供热的机组。

热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类.当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类.由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵.地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。

即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。

地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。

1997年之后由ASHAE统一为标准术语:地源热泵(ground—source heat pump,GSHP).00 空气源热泵空气源热泵以室外空气作为热源.在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。

空气源热泵系统简单,初投资较低。

空气源热泵的主要缺点是在夏季高温和冬季寒冷天气时热泵的效率大大降低。

而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反.因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热.此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。

在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍.在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作.空气源热泵不适用于寒冷地区,应用受到很大局限。

精选地源热泵系统工程技术规范及埋管计算方法

精选地源热泵系统工程技术规范及埋管计算方法
17
地源热泵系统工程技术规范
4.2 地埋管管材与传热介质
4.2.1 地埋管及管件应符合设计要求,且应具有质量检验报 告和生产厂的合格证。
4.2.2 地埋管管材及管件应符合下列规定: 1 地埋管应采用化学稳定性好、耐腐蚀、导热系数大、
流动阻力小的塑料管材及管件,宜采用聚乙烯管(PE80或 PE100)或聚丁烯管(PB),不宜采用聚氯乙烯(PVC) 管。管件与管材应为相同材料。
4
地源热泵系统工程技术规范
2 术语
2.0.2 水源热泵机组 water-source heat pump unit 以水或添加防冻剂的水溶液为低温热源的热泵。通常
有水/水热泵、水/空气热泵等形式。 2.0.3 地热能交换系统 geothermal exchange system
将浅层地热能资源加以利用的热交换系统。 2.0.4 浅层地热能资源 shallow geothermal resources
19
地源热泵系统工程技术规范
4.3 地埋管换热系统设计
4.3.1 地埋管换热系统设计前应明确待埋管区域内各种地下 管线的种类、位置及深度,预留未来地下管线所需的埋管 空间及埋管区域进出重型设备的车道位置。 4.3.2 地埋管换热系统设计应进行全年动态负荷计算,最小 计算周期宜为1年。计算周期内,地源热泵系统总释热量宜 与其总吸热量相平衡。 4.3.3 地埋管换热器换热量应满足地源热泵系统最大吸热量 或释热量的要求。在技术经济合理时,可采用辅助热源或 冷却ቤተ መጻሕፍቲ ባይዱ与地埋管换热器并用的调峰形式。 4.3.4 地埋管换热器应根据可使用地面面积、工程勘察结果 及挖掘成本等因素确定埋管方式。
蕴藏在浅层岩土体、地下水或地表水中的热能资源。 2.0.5 传热介质 heat-transfer fluid

地源热泵地下埋管形式及计算

地源热泵地下埋管形式及计算

地源热泵地下埋管形式及计算本文介绍了地源热泵地下埋管换热器系统形式及设计计算中的有关问题,其中包括埋管方式、埋管深度、地下埋管系统的环路形式、埋管材料、埋管间距、埋管系统的管径选择及水力和热力计算等问题。

0引言地下埋管换热器是地源热泵系统的关键组成部分,其选择的形式是否合理,设计的是否正确,关系到整个地源热泵系统能否满足要求和正常使用,本文就这方面的有关问题作些讨论,供同行们参考。

1地源热泵地下埋管形式目前地源热泵地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。

1.1水平埋管水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式[1],由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。

近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一种是螺旋状管。

它们的优点是使地沟长度缩短,而可埋设的管子长度增加。

管路的埋设视岩土情况,可采取挖沟或大面积开挖方法。

按文献[1]介绍,单层管最佳深度0.8~1.0m,双层管1.2~1.9m,但无论任何情况均应埋在当地冰冻线以下。

由于水平管埋深较浅,其埋管换热器性能不如垂直埋管,而且施工时,占用场地大,在实际使用中,往往是单层与多层互相搭配;螺旋管优于直管,但不易施工。

由于浅埋水平管受地面温度影响大,地下岩土冬夏热平衡好,因此适用于单季使用的情况(如欧洲只用于冬季供暖和生活热水供应),对冬夏冷暖联供系统使用者很少。

1.2垂直埋管根据埋管形式的不同,一般有单U形管,双U形管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管、套管式管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。

目前使用最多的是U形管、套管和单管式,下面作一简述。

1)U形管型是在钻孔的管井内安装U形管,一般管井直径为100~150mm,井深10~200m,U形管径一般在φ50mm以下(主要是流量不宜过大所限)。

地源热泵系统工程技术规范及埋管计算方法

地源热泵系统工程技术规范及埋管计算方法

1 岩土层的结构;
2 岩土体热物性; 3 岩土体温度;
4 地下水静水位、水温、水质及分布;
5 地下水径流方向、速度; 6 冻土层厚度。
3.2.2A 当地埋管地源热泵系统的应用建筑面积在3000 m2~5000 m2 时,宜进行岩土热响应试验;当应用建筑面积大于等于 5000 m2时, 应进行热响应试验。11地源热泵系统工 Nhomakorabea技术规范
2 术语
2.0.25 土热响应试验 rock-soil thermal response test 通过测试仪器,对项目所在场区的测试孔进行一定时间的连续加热, 获得岩土综合热物性参数及岩土初始平均温度的试验。
2.0.26 岩土综合热物性参数 parameter of the rock-soil thermal properties 是指不含回填材料在内的,地埋管换热器深度范围内,岩土的综合 导热系数、综合比热容。
2.0.7 地埋管换热器 ground heat exchanger 供传热介质与岩土体换热用的,由埋于地下的密闭循环管 组构成的换热器,又称土壤热交换器。根据管路埋置方式不同, 分为水平地埋管换热器和竖直地埋管换热器。 2.0.8 水平地埋管换热器 horizontal ground heat exchanger 换热管路埋置在水平管沟内的地埋管换热器,又称水平土 壤热交换器。
3.1.3 工程勘察应由具有勘察资质的专业队伍承 担。工程勘察完成后,应编写工程勘察报告,并 对资源可利用情况提出建议。
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容:
1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布;

地源热泵地埋管计算方法(知识浅析)

地源热泵地埋管计算方法(知识浅析)

•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。

1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。

2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。

3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。

4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。

5、地埋管壁厚宜按外径与壁厚之比为11倍选择。

6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。

二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。

(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。

埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。

地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。

2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。

地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。

当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。

但这样会提高工程造价、增加对设备的腐蚀。

在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。

地源热泵埋管数、配电量以及投资计算

地源热泵埋管数、配电量以及投资计算

1 钻井埋管埋管数量的确定热负荷埋管数量Qr * 0.78 = L * K * n冷负荷埋管数量Ql * 1.2 = L * K * n其中:Qr---------------------冬季热负荷Ql---------------------夏季冷负荷0.78,1.2-------------系数L----------------------单孔埋管深度K----------------------单位管长换热系数N----------------------埋管数量计算后应乘以1.05的余量2 机房及配电量一般可取建筑冷负荷的三分之一(不建议采用,此句话的由来为:冷负荷/cop 。

一般地源热泵cop为6左右,通常制冷机取5.因此建议:机房设备总的功率乘上需用系数0.9-0.95,或者当设备较少时取需用系数为1 .)机房的配电量一般根据工艺的要求把同一时间可能开启的的所有设备电功率加起来乘0.9-0.95就行。

注意冬夏季负荷功率及设备运行台数会有变化,分冬夏两个工况,分开计算,最后两者取其较大值就行。

3 机房面积机房占地面积宜为空调区域建筑面积的千分之五4 冷冻水量和冷却水量冷冻水量CMH=制冷量(KW)X 0.172冷却水量CMH=制冷量(KW)X 0.2245参考资料做建筑给排水不用算商场的人数的,按面积算,最高日生活用水定额取X,其中X取5~8,单位为每平方米营业厅面积每日(L/m2 ·d),使用时数为12h,小时变化系数为1.5~1.2,具体参见《建筑给水排水设计规范》.(1)确定主机类型;根据户式中央空调系统的选择原则和用户所在之区域,确定空调系统方式和主机类型(单冷或热泵)。

(2)计算住宅夏季冷负荷 Ql 和冬季热负荷 QR ;根据用户住宅的建筑面积和用户所处区域内建筑冷、热负荷指标按下式计算住宅冷负荷Ql 和热负荷 QR 。

QL = 建筑面积×冷指标(w) ,QR = 建筑面积×热指标(w) 。

地源热泵打井计算及方案

地源热泵打井计算及方案

地源热泵打井计算及方案一、打井计算。

# (一)负荷计算。

1. 建筑物热负荷。

首先得知道这房子冬天有多“怕冷”。

要考虑房子的面积、朝向、保温情况啥的。

比如说,一个100平方米的房子,如果保温一般,每平方米大概需要80 100瓦的热量来保暖(这只是个大概数哦,不同地区差别可大了)。

那这个房子冬天的热负荷可能就是8000 10000瓦。

夏天呢,就是冷负荷啦。

同样的房子,考虑到太阳晒啊,人散热啊这些因素,每平方米可能需要100 120瓦的制冷量。

那这个房子夏天的冷负荷就是10000 12000瓦。

2. 地源热泵的能力。

地源热泵的能力得跟建筑物的冷热负荷匹配上。

一般来说,地源热泵的制热和制冷能力是有个范围的。

就像挑衣服得合身一样,热泵的能力得能满足房子的需求。

如果热泵能力太小,冬天不够暖,夏天不够凉;太大了呢,又浪费钱。

# (二)地埋管换热量计算。

1. 确定换热量。

地源热泵是靠地埋管和大地换热的。

这个换热量得根据建筑物的冷热负荷来算。

通常,我们要考虑一个安全系数,不能刚刚好,得稍微多算一点,就像吃饭得留个底,以防万一嘛。

一般安全系数取1.1 1.3左右。

比如说建筑物热负荷是10000瓦,那换热量可能就按11000 13000瓦来设计。

2. 根据换热量计算管长。

这里面有个公式,不过咱就简单说。

换热量和地埋管的长度、管材的导热性、地下土壤的温度啥的都有关系。

一般每米地埋管的换热量大概在30 50瓦/米(这也得看土壤情况,不同的土就像不同性格的人,换热能力不一样)。

如果换热量是12000瓦,按每米40瓦/米算,那大概就需要12000÷40 = 300米的地埋管。

# (三)井数计算。

1. 单井换热量。

每口井的换热量也不是个固定值,它和井的深度、直径、周围土壤情况都有关。

一般一口井的换热量在3 8千瓦左右。

比如说我们取5千瓦每口井。

2. 计算井数。

还是用前面算出来的总换热量来算井数。

如果总换热量是15千瓦,每口井换热量是5千瓦,那大概就需要15÷5 = 3口井。

地源热泵地埋管长度计算

地源热泵地埋管长度计算

地源热泵地埋管长度计算1. 什么是地源热泵?嘿,朋友们!今天咱们聊聊地源热泵,听起来高大上吧?其实就是利用地下土壤或水体的恒温来为我们提供暖气和冷气的神奇装置。

简单说,它像是个“地下空调”,无论是夏天热得冒汗,还是冬天冷得直打哆嗦,它都能给你提供舒适的环境。

想想看,夏天开着它,凉爽透心;冬天暖暖的,简直就像抱着个大热水袋,舒服得不得了!那么,关键是要安装地埋管,而这些管子的长度该怎么计算呢?咱们今天就来聊聊这其中的门道。

2. 地埋管的作用2.1 地埋管的基本原理先来点干货,地埋管的作用是什么呢?它主要是把地下的热量(不管是冷还是热)输送到地源热泵中,再通过风机把空气送到你的小窝里。

你知道吗?地下温度通常比地面温度稳定得多,冬天暖、夏天凉,这就是地埋管的魔力所在。

它的“长处”就是能有效利用自然资源,环保又省钱,真是一举两得,何乐而不为呢?2.2 为什么长度重要?那么,管子的长度为什么那么重要呢?你想啊,长度决定了它能吸收和释放多少热量。

如果长度不够,那可就“量入为出”了,热量就会像水流一样,来得快去得也快,根本没法保持房间的舒适度。

而且,管子太长了,虽然可以增加热量的吸收,但也会增加成本和施工难度,真是“过犹不及”。

所以,找到一个合适的长度,就像做菜时的调料,恰到好处才是关键。

3. 如何计算地埋管的长度3.1 影响因素那么,如何计算这条神奇的地埋管长度呢?首先,我们要考虑几个关键因素。

比如,房子的大小、保温效果、周围土壤的热导率、甚至是你家附近的水位。

每个地方的情况都不一样,简直就像每个人的口味各有千秋。

房子大需要的管子长,房子小的话,管子就可以短一些。

3.2 计算方法接下来,我们来点实际的计算方法吧。

通常,我们会用“热负荷”来作为基础,计算出所需的热量。

然后根据每米管子可以交换的热量,再结合土壤的热导率来得出总的管子长度。

听起来复杂,其实就像是在做一道数学题,稍微努力点就能搞定。

你可以请教专业的工程师,他们会用一些专业的工具和软件来帮助你计算,简直就是“高人一筹”。

地源热泵地埋管长度计算

地源热泵地埋管长度计算

地源热泵地埋管长度计算地源热泵地埋管长度计算,这可是个技术活儿。

咱们先来聊聊地源热泵,这是一种利用地下温度差异进行能源转换的设备,既环保又节能,是现代家庭装修的热门选择。

而地埋管作为地源热泵的核心部件,其长度的计算可是关系到能效高低的重要因素。

那么,如何才能算出合适的地埋管长度呢?别着急,听我慢慢道来。

我们要了解地源热泵的工作原理。

简单来说,就是通过地下的恒定温度来提取能量,然后通过压缩机将低温热量提升到高温,再通过换热器将热量传递给室内系统,实现制冷或供暖。

所以,地埋管的长度就关系到了地下水温的分布和能效的高低。

那么,如何计算地埋管的长度呢?这里我们可以借鉴一下古人的智慧——“量入为出”。

我们需要知道地源热泵的装机容量,也就是它所能提供的能量。

这个数据通常可以在地源热泵的销售合同中找到。

有了这个数据,我们就可以大致估算出需要多少米的地埋管来满足能量需求。

接下来,我们要考虑地下水的流动情况。

地下水通常是从低处向高处流动的,所以在设计地埋管时,我们要尽量让管道处于地下水流动的最低点。

这样一来,管道内的水流速度就会加快,热量传递也会更加顺畅。

这个原则也要根据实际情况灵活调整。

我们还要考虑地形地貌的影响。

在山地或者丘陵地区,地下水流动可能会受到地形的阻碍,这时候我们就需要增加地埋管的长度,以保证能量的有效传递。

这也要在合理范围内进行,过长的地埋管不仅会增加成本,还可能影响建筑物的结构安全。

在确定了地埋管的基本参数后,我们还需要进行详细的计算。

这里我们可以引用一个成语——“因地制宜”。

具体来说,就是要根据当地的地下水文地质条件、建筑物的结构特点以及气候环境等因素,综合考虑地埋管的长度、弯曲程度以及连接方式等细节问题。

在实际操作过程中,我们还可以借助一些专业软件来进行辅助计算。

这些软件通常可以根据输入的数据自动生成地埋管的设计图纸,帮助我们更好地把握设计的精度和效果。

这些软件的使用也需要一定的专业知识和技能,所以在使用过程中一定要谨慎操作。

地源热泵打井计算及方案

地源热泵打井计算及方案

地源热泵方案●项目概况项目共分三期;其中,二期办公楼建筑面积为3200㎡,空调面积约为3000㎡;二期厂房一层建筑面积为11218㎡,空调面积约为8918㎡,夹层建筑面积6880㎡,空调面积约为4780㎡;三期厂房建筑面积6648㎡,空调面积约为1600㎡。

二期和三期总建筑面积为27946㎡,总空调面积约为18298㎡。

根据甲方要求,现需为二期和三期的厂房及办公室配置空调系统。

●设计依据1、《民用建筑节能设计标准》2、《采暖通风与空气调节设计规范》(GB50019-2003)3、《公共建筑节能设计标准》(GB50189-2005)4、《地源热泵系统工程技术规范》(GB50366-2005)5、《埋地聚乙烯(PE)管材》(CJJ101-2004)6、《实用供暖空调设计手册》7、《空气调节设计手册》8、《通风与空调工程施工质量验收规范》(GB50243-2002)9、《地源热泵工程技术指南》,徐伟译10、国际热湿环境ISO7730《室内热湿环境的相关标准》11、世界卫生组织《室内空气品质WHO标准》12、甲方提供的建筑平面图●暖通专业范围本项目单位空调冷指标取120W/㎡,空调热指标取85W/㎡;则总冷负荷为2196KW,总热负荷为1555KW。

采用节能、环保的地源热泵系统为空调系统提供冷热源,夏天制冷、冬天采暖,选用两台制冷量为1100KW的地源热泵冷水机组。

二期办公区及厂房夹层空调末端主要采用风机盘管+新风的形式,二期、三期厂房部分空调末端主要采用组合式空气处理机组+新风的形式。

本项目室外地埋管采用垂直双U型埋管,共360口,有效埋管深度为100米,埋管井间距取4.5米;单位孔深排热量按56W/m,单位孔深吸热量按34W/m(根据北京威乐项目地质勘探报告);室外打井位置为三期厂房区域及室外绿化带。

除此之外,考虑到地源热泵地下热平衡性,需额外配置一台闭式辅助冷却塔,冷却塔水流量为110m3/h。

前期可不必安装冷却塔,只需预留安装冷却塔的接口及位置;根据地源热泵使用过程中地温变化情况及大小另行确认是否安装冷却塔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 钻井埋管埋管数量的确定
热负荷埋管数量
Qr * 0.78 = L * K * n
冷负荷埋管数量
Ql * 1.2 = L * K * n
其中:Qr---------------------冬季热负荷
Ql---------------------夏季冷负荷
0.78,1.2-------------系数
L----------------------单孔埋管深度
K----------------------单位管长换热系数
N----------------------埋管数量
计算后应乘以1.05的余量
2 机房及配电量
一般可取建筑冷负荷的三分之一(不建议采用,此句话的由来为:冷负荷/cop 。

一般地源热泵cop为6左右,通常制冷机取5.因此建议:机房设备总的功率乘上需用系数0.9-0.95,或者当设备较少时取需用系数为1 .)
机房的配电量一般根据工艺的要求把同一时间可能开启的的所有设备电功率加起来乘0.9-0.95就行。

注意冬夏季负荷功率及设备运行台数会有变化,分冬夏两个工况,分开计算,最后两者取其较大
值就行。

3 机房面积
机房占地面积宜为空调区域建筑面积的千分之五
4 冷冻水量和冷却水量
冷冻水量CMH=制冷量(KW)X 0.172
冷却水量CMH=制冷量(KW)X 0.224
5参考资料
做建筑给排水不用算商场的人数的,按面积算,最高日生活用水定额取X,其中X取5~8,单位为每平方米营业厅面积每日(L/m2 ·d),使用时数为12h,小时变化系数为1.5~1.2,具体参见《建筑给水排水设计规范》.
(1)确定主机类型;
根据户式中央空调系统的选择原则和用户所在之区域,确定空调系统方式和主机类型(单冷或热泵)。

(2)计算住宅夏季冷负荷 Ql 和冬季热负荷 QR ;
根据用户住宅的建筑面积和用户所处区域内建筑冷、热负荷指标按下式计算住宅冷负荷Ql 和热负荷 QR 。

QL = 建筑面积×冷指标(w) ,
QR = 建筑面积×热指标(w) 。

(3)确定主机型号;
根据住宅的冷负荷 Ql ,主机的名义制冷量和主机工作特性系数按下式确定主机型号: 某型号主机名义制冷量×夏季主机工作特性系数≥住宅冷负荷。

(4)如果是热泵型主机,则需校核计算该型号热泵冬季工况的实际制热量 Q机.R 。

主机实际制热量:
Q机.R = 该型号热泵主机名义制冷量×主机冬季工作特性系数。

(5)确定电加热器加热量 Q D.R ;
QD.R = 住宅冬季热负荷 QR - 主机,
冬季实际制热量 Q机.R 。

注:如果计算出来的 QD.R ≤1kw,则不需增设电加热器。

(6)如果空调系统是采用单冷(热泵过渡季用)加燃油(燃气)炉或城市热网冬季供热方式,则可按住宅冬季热负荷 QR 选择燃油(燃气)炉容量或热网供热量。

6标准煤消耗量
标准煤消耗量(t)=(运行费用/电价)*0.404*10
7埋管投资计算
岩石:180*L*n
土壤:80*L*n
8热泵机房投资计算
制冷负荷*(1250-1350)(使用这个公式数值较大)
机组造价
1)压缩式机组 0.8元/kcal/h×总负荷÷1.163÷10000
2)吸收式机组 1.47元/kcal/h×总负荷÷1.163÷10000
3)风冷热泵机组1.2元/kcal/h×总负荷÷1.163÷10000
4)VRV空调机组 2元/kcal/h×总负荷÷1.163÷10000
5)地源热泵机组1.34元/kcal/h×总负荷÷1.163÷10000
VRV空调机组>吸收式机组>地源热泵机组>风冷热泵机组>压缩式机组
9锅炉房投资(有待补充)
目前国内锅炉按热源一般有燃煤、燃油、燃气及电能几种,其具体的经济分析见下表:
煤气南京
天然气南京 2.2元/NM3 9000Kcal/m3
液化气南京 27000Kcal/m3
10 标准煤
国家发改委提供的数据是火电厂平均每千瓦时供电煤耗由2000年的392g 标准煤降到360g标准煤,2020年达到320g标准煤。

即一吨标准煤可以发三千千瓦时(3000度)的电。

工业锅炉每燃烧一吨标准煤就产生二氧化碳2620公斤,二氧化硫8.5公斤,氮氧化物7.4公斤.因此燃煤锅炉排放废气成为大气的主要污染源之一。

11机房配电量
配电量冷负荷的三分之一
12单位换算
1RT(冷吨)=3.517kW=3024kcal/h
1kcal=1.163KW
1匹=735×EER
O=0.1MPa
1公斤压力=10mH
2
1巴(bar)=100,000帕(Pa)=10牛顿/平方厘米=0.1MPa
13能源费用的计算
按照《公共建筑节能设计标准》(GB50189-2005)
5.4.7 水冷式电动蒸气压缩循环冷水(热泵)机组的综合部分负荷性能系数(IPLV)宜按下式计算和检测条件检测:
IPLV=2.3%×A+41.5%×B+46.1%×C+10.1%×D
A B C D————100% 75% 50% 25%负荷时的性能系数
根据目前商用能源价格和项目投入使用后的实际运行状况,计算不同空调系统全年的运行费的计算参数条件如下:
a)运行时间:冬、夏季各运行的天数及每天运行的小时数
b)运行时段内部分负荷系数参照《公共建筑节能设计标准》〔GB50189-2005〕取定,按2.3%的时间为满负荷(100%)运行,41.5%的时间为75%负荷运行,46.1%的时间为50%负荷运行,10.1%的时间为25%负荷运行。

c)折算满载负荷时间
夏季折算满负荷运行时间
M×(2.3%×100%+41.5%×75%+46.1%×50%+10.1%×25%)
夏季折算满负荷运行时间
N×(2.3%×100%+41.5%×75%+46.1%×50%+10.1%×25%)
M N————夏季和冬季空调运行的时间,h
d)取得制冷机组制冷工况的cop,制热工况的eer,燃气热水机组效率
E=90%。

e)能源价:电价?元/kWh;燃气?元/Nm3,自来水?元/ m3。

每个分集水器16-24个支管,每个窗井设置??个分集水器
清华同方
全热机组第大卡0.54;普通地源:每大卡0.46;
水冷冷水机组:0.41每大卡
定压补水装置:容积为系统水容积的5%,5%×面积×单位面积水容量(0.7-1.3)补水泵按照补水量(2%的系统水容量)的2.5-5倍。

相关文档
最新文档