伺服电机功能作用

伺服电机功能作用
伺服电机功能作用

伺服电机功能及作用

摘要:交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组rf,它始终接在交流电压uf上;另一个是控制绕组l,联接控制信号电压uc。所以交流伺服电动机又称两个伺服电动机。

关键词:伺服电动机单相异步电动机性能比较

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

二、永磁交流伺服电动机

20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

提高伺服电机动态性能的重要性

提高伺服电机动态性能的重要性 随着伺服电动机在工业中的广泛应用,高动态性能的的伺服驱动器和伺服电动机的设计和研究必将成为国内研究的一个热点,同时,如何提高伺服电动机的动态特性,也已经成为急待解决的问题。 伺服系统在动态调节过程中的性能指标称为动态性能指标,如超调量、跟随速度、跟随精度、调节时间、抗干扰能力等。 伺服系统最早被应用到军事、航天领域,伴随工业化的脚步,逐渐进入到工业领域和民用领域,在生产实践中,伺服系统的应用早已非常广泛。 1、在数控机床中,采用高端永磁交流伺服代替异步变频驱动似乎已成为标准。90年代以来,欧美各国致力开发应用高速数控机床,在相同分辨率的情况下,工作台的进给速度获得到大大提升。当今数控系统机床更是突出高速、高精度、高动态、高刚性的特点。我们已经看到国产伺服在经济型的数控机床上的应用,但在中高档机床上国产伺服仍达不到要求,性能是一个重要方面,稳定性和品牌效应也是短时间内无法跨越的障碍。 2、机器人也是伺服系统应用较多的领域,工业机器人拥有多个自由度,因此每台工业机器人需要的伺服电机少则3-4台,多则10台以上。目前工业机器人的拥有量已经超过100万台,而且每年的需求量仍在大幅度增加。国际上工业机器人巨头大多都有自己专属的伺服配套,近些年也开始有国内的伺服厂家开始走进机器人行业,尽管性能上还是有不小差距。 3、纺织行业的伺服应用比例很低,为了提高生产效率,部分纺织机械开始采用高档的伺服技术,但几乎用的都是进口品牌,价格因素导致伺服系统在纺织行业没有大面积普及应

用。若是国产伺服在保持价格优势的同时,提高产品性能,将会大大推动整个行业的发展。 除此之外,印刷机械、包装机械、医疗设备、冶金机械、自动化流水线等都对伺系统有很大的需求量。从中也可以看到提高伺服系统的性能对于各行业发展的重要性,除了价格因素之外,买家对于伺服电机的关注点主要有: ●动态响应快,动态响应是伺服系统重要的动态性能指标,要求系统跟随给定快、超 调量小、甚至无超调 ●精度高,伺服系统的精度是指输出量跟随给定值的精确程度,如精密加工的机床, 要求很高的定位精度 ●抗扰动能力强,在各种扰动作用下系统输出动态变化小,恢复时间快 ●与行业相关的解决方案,如电子凸轮、追剪、飞剪等控制技术的应用 伺服系统主要由伺服电机和驱动器两部分组成。驱动器在控制系统中作为命令元件,伺服电机在控制系统中作为执行元件,两者是控制系统的重要组成部分。伺服系统的的动态性能很多程度上取决于这两个部分。其中,响应带宽是衡量动态性能的一项重要指标,带宽越高,伺服系统的输出跟随输入指令的能力就越强,动态性能就越好。 《交流伺服驱动器通用技术条件》(JB T 10184-2000)中规定了伺服驱动器速度环带宽的测试方法:驱动器输入正弦波转速指令,其幅值为额定转速指令值的0.01倍,频率由1Hz 逐渐升高,记录电动机对应的转速曲线,随着指令正弦频率的提高,电动机转速的波形曲线对指令正弦波曲线的相位滞后逐渐增大,而幅值逐渐减小。相位滞后增大至90度时的频率作为伺服系统90度相移的频带宽度;幅值减小至低频时0.707倍的频率作为伺服系统-3dB 频带宽度。

伺服电机选型计算

电机: 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机在电路中是用字母M表示,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母G表示,它的主要作用是利用机械能转化为电能。 伺服电机: 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 工作原理: 1、伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就

会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2、交流伺服电机也是无刷电机,分为同步和异步电机,运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

伺服电机的选型和计算

电机的选择: (1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2 式中 M-----电动机轴转距; F------使机械部件沿直线方向移动所需的力; L------电动机转一圈(2πrad )时,机械移动的距离 2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。 实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算: z z M h h F M B sp SP ao P K 2 11122? ??? ??++=η ππ M 1-----等速运动时的驱动力矩(N.mm) π 2h F sp ao K ---双螺母滚珠丝杠的预紧力矩(N.mm) F ao ------预紧力(N),通常预紧力取最大轴向工作载荷 F max 的1/3,即 F ao = 3 1 F max 当F max 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查: h sp -----丝杠导程(mm); K--------滚珠丝杠预紧力矩系数,取0.1~0.2; P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=; W 1-----移动部件重力(N),包括最大承载重力; P 1 -------有夹板夹持时(如主轴箱)的夹板夹持力; μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ; η1 -------滚珠丝杠的效率,取0.90~0.95; M B ----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题) z 1 --------齿轮1的齿数 z 2 --------齿轮2的齿数 最后按满足下式的条件选择伺服电机 M M s ≤1 M s -----伺服电机的额定转距

伺服电机选型必备 惯量匹配和最佳传动比

惯量匹配和最佳传动比 1 功率变化率 伺服电机的基本功能就是将输入的电功率快速的转换为机械功率输出。功率转换的越快,伺服电机的快速性越好。功率转换的快速性用功率变化率(dP/dt)来衡量: P=T·ω T=J·dω/dt dP/dt=d(T·ω)/dt=T·dω/dt=T·T/J dP/dt=T2/J 伺服电机以峰值转矩Tp进行加/减速运动时的功率变化率最大: (dP/dt)max=Tp2/Jm 通常用理想空载时伺服电机的功率变化率来衡量伺服电机的快速性。 衡量伺服电机快速性的性能指标还有: 转矩/惯量比:Tp/Jm= dω/dt 最大理论加速度:(dω/dt)max= Tp/Jm 这些指标都是单一衡量伺服电机加速性能的指标。 2 惯量匹配 伺服系统要求伺服电机能快速跟踪指令的变化。对一个定位运动而言,就是要求以最短的时间到达目标位置。换一种说法,就是在直接驱动负载的定位过程中,负载以最大的功率变化率将输入功率转换为输出功率。 伺服电机驱动惯性负载J L的加速度、加速转矩计算如下: 负载的加速度(系统加速度):dω/dt=Tp/(Jm+J L) 负载的加速转矩:T L= J L·dω/dt= J L·Tp/(Jm+J L) 负载的功率变化率为: dP L/dt=T L2/J L dP L/dt= J L2·Tp2/(Jm+J L)2/J L = J L·Tp2/(Jm+J L)2 从式中可以看出: J L远大于Jm时:dP L/dt= Tp2/J L,负载惯量越大,负载的功率变化率越小。 J L远小于Jm时:dP L/dt= J L·Tp2/Jm,负载惯量越大,负载的功率变化率越小。 负载惯量J L相对电机惯量Jm变化时,负载的功率变化率存在一个最大值。 根据极值定理,对应dP L/dt极值的J L值为使d(dP L/dt)/d(J L) = 0的值。 d(dP L/dt)/d(J L)= d(J L·Tp2/(Jm+J L)2)/d(J L) 利用复合微分法则对(dP L/dt)求导: 设v = (Jm+J L)2 u = Tp2·J L dP L/dt = u/v d(u/v)/d(J L) = [v·du/d(J L)-u·dv/d(J L)]/v2 d(dP L/dt)/d(J L) = {(Jm+J L)2·d(Tp2·J L)/d(J L)-d[(Jm+J L)2]/d(J L)·Tp2·J L}/(Jm+J L)4 d(dP L/dt)/d(J L)=Tp2·[(Jm+J L)2-2(Jm+J L)·J L]/(Jm+J L)4 令d(dP L/dt)/d(J L)=0,则 (Jm+J L)2-2(Jm+J L)·J L=0 (Jm+J L)2-2(Jm+J L)·J L=Jm2+2JmJ L+J L2-2JmJ L-2J L2 =Jm2-J L2

关于伺服电机与步进电机性能比较及选型的计算方法

关于伺服电机与步进电机性能比较及选型的计算方法 内容来源于 https://www.360docs.net/doc/2f2889426.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/i tem/61656f385baf28de7c1e7129.html 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。 1、伺服电机和步进电机的性能比较 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(S A N Y O D E N K I)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072 =0.0027466°,是步距角为 1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

伺服电机选型计算公式

【伺服电机基本三要素】 1、转数N:根据客户实际要求,对于同等功率电机可选配不同转数电机,一般来说,转数越低,价格越便宜。 2、扭矩T:必须满足实际需要,但是不需要像步进电机那样留有过多的余量。 3、惯量J:根据现场要求选用不同惯量的电机,如机床行业一般选用大惯量的伺服电机。 【伺服电机功率基本计算】 输出功率P = 0.1047*N*T 式中N为旋转速度,T为扭矩。旋转速度基本为3000转。 扭矩T = r*M*9.8 式中r为轴半径,M为物体重量。 【伺服电机功率选择要点】 电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。如果电动机功率选得过小,就会出现“小马拉大车”现象,造成电动机长期过载,使其绝缘因发热而损坏。甚至电动机被烧毁。

如果电动机功率选得过大,就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 【伺服电机功率实际选型计算方法】 1、要正确选择电动机的功率,必须经过以下计算或比较: 功率P = F*V /1000 (P=计算功率KW,F=所需拉力N,V=工作机线速度M/S) 2、对于恒定负载连续工作方式,可按下式计算所需电动机的功率: P1(kw):P=P/n1n2 式中n1为生产机械的效率;n2为电动机的效率,即传动效率。按该公式求出的功率P1,不一定与产品功率相同。因此,所选电动机的额定功率应等于或稍大于计算所得的功率。 3、用类比法来选择电动机的功率: 所谓类比法,就是与类似生产机械所用电动机的功率进行对比。具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。验证的方法是:使

菲仕伺服电机原理

菲仕伺服电机原理 一、产品简介 菲仕伺服电机与国内外同类产品相比具有很高的力矩/体积和功率比,低速时具有最好的稳定性,从面克服机械传动装置的诸多限制,使众多的应用场合采用直接驱动技术,满足高端机械设备对精度、速度和效率的要求,满足了用户对节能和环保的苛刻要求。菲仕系列产品,设计额定力矩从1N.M到10000N.M,额定功率从100W到5MW,将势必成为中国功率规格系列最全的高性能伺服系统产品,并可以直接和全面地取代进口伺服系统产品。 二、电机产品系列化定型研制工艺流程 三、工作原理 交流伺服电动机在没有控制电压时,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电在定子内绕组形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 四、设计参数的选取及设备结构 伺服电机主要由定子铁芯及绕组、永磁体转子模块、高精度轴承及轴承支架、电气插头及接线盒等附件组成,如下图所示:

1、定子铁芯 1)、矽钢冲片采用高速冲床进行,冲片和叠片在冲压过程中一次完成,大大的提高了生产效率。高速冲片代替以往的粉末冶金制造铁芯使铁芯的电磁特性不再受粉末成分和烧结条件的影响,使铁芯的电磁特性得以稳定。在组装和总装过程中也不会因操作不慎而使铁芯缺角少肉而影响质量,使操作过程得以简化; 2)、我们对比了高速冲片与低速冲片对电机的性能的影响,数据表明高速冲片制作的铁芯,电机的漏磁及涡流损耗大大减少,电机整体发热量大大降低,故选用了从英国进口过来的高速冲床及长寿命模具,来保证矽钢冲片的稳定性及低损耗性。 3)、我们对比了0。5MM高速冲片与0。3MM高速冲片对电机的性能的影响,数据表明0。3MM高速冲片制作的电机的漏磁及涡流损耗更进一步减少,电机整体发热量也进一步降低,故选用了0。3MM矽钢片的模具。 2、定子绕组 电机所采用的力矩绕组设计是一种具有特殊Ke和Kt常数的绕组,可适用于无齿轮传动的低速场合和直接驱动。取消减速机构可以增强力矩和刚性以及获得低速下的良好的运动平稳性。而且绕组采用符合DIN530标准的H级,保证了电机能在很高的温度情况下正常运行;特殊的高频绕组设计,适合于长配线时的高频PWM波形。 3、永磁体转子组件 1)具有设计专利技术的转子模块扣套设计保证了磁钢的机械固定,而

伺服电机原理及选型规则

伺服电机原理及选型规则
2011-8-4 8:00:00 来源:
[摘要]:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 [关键词]:伺服系统 发动机 马达 变速装置 伺服电机 什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。 伺服电机的分类:直流伺服电机和交流伺服电机。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转 矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷 的磨损和易产生火花会影响其使用寿命。 近年来出现的无刷直流伺服电机避免了电刷 摩擦和换向干扰, 因此灵敏度高, 死区小, 噪声低, 寿命长, 对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机 电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空 心杯转子型、印刷绕组型、无槽型)的时间常数仅为几毫秒到二十毫秒。 小功率规格的直流伺服电机的额定转速在 3000r/min 以上,甚至大于 10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机 (即低速直流伺服电机)可在几十转/分的低速下,甚至在长期堵转的条件下工作, 故可直接驱动被控件而不需减速。 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护, 但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感 的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩 稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换 相。 电机免维护, 效率很高, 运行温度低, 电磁辐射很小, 长寿命, 可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同 步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着 功率增大而快速降低。因而适合做低速平稳运行的应用。 交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的 U/V/W 三相电形成电磁场,转子 在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈 值与目标值进行比较, 调整转子转动的角度。 伺服电机的精度决定于编码器的精度 (线

伺服电机的一般调试步骤

运动控制器以模拟量信号控制伺服电机的一般调试步骤 运动控制器控制伺服电机通常采用两种指令方式: 1,数字脉冲这种方式与步进电机的控制方式类似,运动控制器给伺服驱动器发送“脉冲/方向”或“CW/CCW”类型的脉冲指令信号;伺服驱动器工作在位置控制模式,位置闭环由伺服驱动器完成。日系伺服和国产伺服产品大都采用这种模式。其优点是系统调试简单,不易产生干扰,但缺点是伺服系统响应稍慢。 2,模拟信号这种方式下,运动控制系统给伺服驱动器发送+/-10 V的模拟电压指令,同时接收来自电机编码器或直线光栅等位置检测元件的位置反馈信号;伺服驱动器工作在速度控制模式,位置闭环由运动控制器完成。欧美的伺服产品大多采用这种工作模式。其优点是伺服响应快,但缺点是对现场干扰较敏感,调试稍复杂。 以下介绍运动控制器以模拟量信号控制伺服电机的一般调试步骤:1、初始化参数 在接线之前,先初始化参数。 在控制器上:选好控制方式;将PID参数清零;让控制器上电时默认使能信号关闭;将此状态保存,确保控制器再次上电时即为此状态。在伺服驱动器上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下MI NAS A4系列伺服驱动器的速度指令增益参数Pr50用来设置1V指令电压对应的电机转速(出厂值为500),如果你只准备让电机在100

0转以下工作,那么,将这个参数设置为111。 2、接线 将控制器断电,连接控制器与伺服之间的信号线。以下的连线是必须的:控制器的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,将电机和控制器上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制器是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置 3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制器打开伺服的使能信号。此时伺服电机应该以一个较低的速度转动,这就是所谓的“零漂”。一般控制器上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制器或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制器或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求

伺服电机如何进行选型

伺服电机选型技术指南 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T- 曲线 (1)传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t) ,加速度 a(t)和所需外力 F(t) 表 示,对于旋转运动用角速度(t) ,角加速度(t)和所需扭矩 T(t) 表示,它们均可以表示 为时 间的函数,与其他因素无关。很显然。电机的最大功率P 电机,最大应大于工作负载所 需的峰值 功率 P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。用峰值, T 峰值表示最大值或者峰值。电机的最大速度决 定了 减速器减速比的上限, n 上限 = 峰值, 最大 / 峰值,同样,电机的最大扭矩决定了减速比的下 限, n 下限 =T 峰值 /T 电机,最大,如果 n 下限大于 n 上限,选择的电机是不合适的。反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范 围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁 琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离 开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方 便,另外,还提供了传动比的一个可 能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力 的 各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检 查 电机是否能够驱动某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭 矩。选择一个合适的传动比就能平衡这相反 的两个方面。通常,应用有如下两种方法可以找到这个传 动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的最大速度小于电机自身的最大 速度电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭M 额

伺服电机选型计算公式

伺服电机选型计算公式 伺服电机选择的时候,首先一个要考虑的就是功率的选择。一般应注意以下两点: 1。如果电机功率选得过小.就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。 2。如果电机功率选得过大.就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较: P=F*V/100 (其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s) 此外.最常用的是采用类比法来选择电机的功率。所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。试车的目的是验证所选电机与生产机械是否匹配。 验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。 如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。如果电机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电机的功率选得过大,应调换功率较小的电机。 如果测得的电机工作电流比铭牌上标出的额定电流大40%以上.则表明电机的功率选得过小,应调换功率较大的电机。 实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。即T = 9550P/n 式中: P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。

伺服电机及选型完整版

伺服电机及选型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的转换成电动机轴上的角位移或输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 ? 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 ? 4、运行效率高。 ? 5、可支持低速长时间运行。 ? 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 、电机转矩 电机转矩,简单的说,就是转动的力量的大小。也就是电机可以发出多大的力,转矩是一种力矩,力矩在物理中的定义是: 力矩= 力×力臂 这里的力臂就可以看成电机所带动的物体的转动半径。如果电机转矩太小,就带不动所要带的物体,也就是感觉电机的“劲”不够大。 假设我们是采用滚珠丝杆使工件做平行移动: 假设:

伺服电机及选型

伺服电机及选型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。

2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 ? 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 ? 4、运行效率高。 ? 5、可支持低速长时间运行。 ? 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 2.1、电机转矩

伺服电机及选型

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个

脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。 2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W

三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 4、运行效率高。 5、可支持低速长时间运行。 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 2.1、电机转矩 电机转矩,简单的说,就是转动的力量的大小。也就是电机可以发出多大的力,转矩是一种力矩,力矩在物理中的定义是: 力矩= 力 ×力臂 这里的力臂就可以看成电机所带动的物体的转动半径。如果电机转矩太小,就带不动所要带的物体,也就是感觉电机的“劲”不够大。 假设我们是采用滚珠丝杆使工件做平行移动: 假设: 负载速度: s m v L /01.0= 检测物体质量: kg m j 5= 移动块质量: kg m z 25= 滚珠丝杆直径: m d B 02.0=

伺服电机的选型计算方法

伺服电机的选型计算方法
2012-4-17 10:51:00 来源:kingservo
1、
伺服电机和步进电机的性能比较
步进电机作为一种开环控制的系统, 和现代数字控制技术有着本质的联系。 在目前国 内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交 流伺服电机也越来越多地应用于数字控制系统中。 为了适应数字控制的发展趋势, 运动控 制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。 虽然两者在控制方 式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二 者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般 为 0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司 (SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、 0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合 式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以京伺服(KINGSERVO) 全数字式交流伺服电机为例,对于带标准 2500 线编码器的电机而言,由于驱动器内部采 用了四倍频技术,其脉冲当量为 360°/10000=0.036°。对于带 17 位编码器的电机而言, 驱动器每接收 131072 个脉冲电机转一圈,即其脉冲当量为 360°/131072=0.0027466°, 是步距角为 1.8°的步进电机的脉冲当量的 1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。 振动频率与负载情况和驱动器性能有关, 一 般认为振动频率为电机空载起跳频率的一半。 这种由步进电机的工作原理所决定的低频振 动现象对于机器的正常运转非常不利。 当步进电机工作在低速时, 一般应采用阻尼技术来 克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳, 即使在低速时也不会出现振动现象。 交流伺服系统具有 共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检 测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降, 且在较高转速时会急剧下降, 所以其最高工 作转速一般在 300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000RPM 或 3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以京伺服 (KINGSERVO)交流伺服系统为例, 它具有速度过载和转矩过载能力。 其最大转矩为额定转 矩的三倍, 可用于克服惯性负载在启动瞬间的惯性力矩。 步进电机因为没有这种过载能力, 在选型时为了克服这种惯性力矩, 往往需要选取较大转矩的电机, 而机器在正常工作期间 又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同

相关文档
最新文档