实时时钟芯片RX_8025的原理及其应用
8025t中文使用详细说明
RX-8025T 使用说明概要
1、8025T 的特点:
1. 内置高稳定度的 32.768KHz 的 DTCXO (数字温度补偿晶体振荡器) 2. 支持 I2C 总线的高速模式(400K)。 3. 定时报警功能(可设定:天,日期,小时,分钟) 4. 固定周期定时中断功能。 5. 时间更新中断功能。 6. 32.768KHz 频率输出(具有使能 OE 功能) 7. 闰年自动调整功能。(2000 到 2099) 8. 宽范围接口电压:2.2V 到 5.5V 9. 宽范围的时间保持电压:1.8V 到 5.5V 10. 低电流功耗:0.8uA/3V (Typ.)
2、8025T 结构框图:
I
3、 8025T 管脚定义:
RX-8025T 使用说明概要
3.1 管脚功能定义:
管脚名称
I/O
功能
1:T1
In
* 工厂测试用(不用额外连接)
2:SCL
In
I2C 总线通讯的串行时钟输入端
3:FOUT
Out
这是个 C-MOS 输出引脚,可通过 FOE 进行控制。
当 FOE=’H’,该引脚输出一个 32.768KHz 信号
时钟计数器(寄存器 0 到 2)
分别记录时钟的-时,分,秒 所有的数据格式都为 BCD 码,例如秒寄存器的值为 ‘0101 1001’ 实际表示为 59 秒。 小时计数器从‘00’‘01’一直到‘23’,然后重新从‘00’开始,为 24 小时进制。
星期寄存器 REG-3
该寄存器用来记录星期的信息:第 0 位到第 6 位用来表示星期日,星期一....到星期六。 数据格式不再是 BCD 编码,而是分别用一位来表示不同的日期。
RX-8025T规格书(中文)
• 多种检测功能 • 电源电压监控功能 (具有可选择的检测阈值)
• 停止检测功能
• 加电重设检测功能
• 警报器功能和定时器功能
SCL
• 产生周期性的中断信号定时器功能。
及可任意组合星期 , 时 , 分 , 钟设定的警报功能
SDA
GND
引脚功能定义
信号名称 SCL SDA
FOUT
FOE
/ INTA / INTB TEST
:1.15 V ~ 5.5 V
•多种检测功能
:如,振荡停止检测功能
•低待机电流
:0.48 µA / 3 V (Typ.)
•32.768 kHz 频率输出功能
:带控制引脚的 C-MOS 输出
•包括时刻、日历、各种检测功能、中断功能等
* I2C-Bus 是 NXP Semiconductor 公司的一种商标。
警报器_D 寄存器 (分,时)
时间计数器 (秒,分,时,周,日,月,年)
电压 检测
OSC 检测
中断控制
地址 解码器
地址 寄存器
移位寄存器
I/O 控制
概览
• 32.768 kHz 石英振荡器的内置功能 •频率已针对高精度调整。
VDD
( ± 5 ×10−6 / Ta = +25 °C ) ( 相当于每月 13 秒的偏差 )
0.5 6.3 Max.
RX − 8025 NB
22. N.C. 21. N.C.
4.8 5.0 ± 0.2
20. 19. ห้องสมุดไป่ตู้8. 17. 16. 15.
1.3 ± 0.1
14. 13. 12.
N.C. N.C. N.C. N.C. N.C. N.C. N.C.
RX-8025T使用说明概要
条件
接口电压 温度补偿电压 -
Min.
1.8 2.2 1.6 -40
Typ.
3.0 3.0 3.0 +25
6、频率特性:
频率稳定度: ▵f/f= ±3.8ppm @ Ta= 0 to +50℃, VDD=3.0V 相当于:60*60*24*3.8ppm = 0.328 (85℃, VDD=3.0V 相当于:60*60*24*5.0ppm = 0.432 (s/day)
2、8025T 结构框图:
I
3、 8025T 管脚定义:
RX-8025T 使用说明概要
3.1 管脚功能定义:
管脚名称
I/O
功能
1:T1
In
* 工厂测试用(不用额外连接)
2:SCL
In
I2C 总线通讯的串行时钟输入端
3:FOUT
Out
这是个 C-MOS 输出引脚,可通过 FOE 进行控制。
当 FOE=’H’,该引脚输出一个 32.768KHz 信号
VII
具体见下表:
RX-8025T 使用说明概要
特别注意:不要同时设定多位为‘1’的情况,因为任何错误的设定都会导致正常操作的混乱。
日历寄存器(4 到 6)
具有自动日历调节的功能,作用范围 2001 年 1 月 1 日到 2099 年 12 月 31 日。 数据格式为 BCD 编码。 注意:设定不存在的日期数据将导致计数器不能正常操作。 -----------------------------------------------------------------------------另外,日历对应的星期系统不能自动调整,可以通过一定的算法来实现,下面介绍一种常用 的公式: A:最常见的公式:
RX8025中文资料
----------------------- Page 3-----------------------
RX-8025SA/SB EPSON
3. 引脚说明
3.1 引脚配置
本输入与电源电压无关 输入电压最高可达到5.5V
与I2C 通信用串行时钟同步 进行地址 数据 应答bit 等的输入输出
SDA 双向 这一引脚在输出时N-ch 开路漏极 请根据信号线的容量连接适当的下拉
电阻
由FOE 控制的32.768kHz 时钟输出
FOUT 输出 FOE=High 时输出32.768kHz C-MOS 输出
FOE=Low 或OPEN 时计时器输出停止 这时的输出固定为 L
3.1 引脚配置············································································································2
3.2 引脚功能············································································································2
出
本产品功能多样 采用表贴封装形式 最适用于各种手机 携带终端及其他小型电子机器等
2. 框图
1 Ver.0.1 2002.07
8.6 Alarm_D 功能····································································································· 19
RX-8025T使用说明概要
项目
电源电压 输入电压(1) 输入电压(2) 输出电压(1) 输出电压(2) 存储温度
符号
VDD Vin1 Vin2 Vout1 Vout2 T-STG
条件
VDD 和 GND 之间 FOE 引脚 SCL,SDA 引脚 FOUT 引脚 SDA,/INT 引脚 分散存放,无包装
数值
-0.3 to +7.0 * GND-0.3 to VDD+0.3
VII
具体见下表:
RX-8025T 使用说明概要
特别注意:不要同时设定多位为‘1’的情况,因为任何错误的设定都会导致正常操作的混乱。
日历寄存器(4 到 6)
具有自动日历调节的功能,作用范围 2001 年 1 月 1 日到 2099 年 12 月 31 日。 数据格式为 BCD 编码。 注意:设定不存在的日期数据将导致计数器不能正常操作。 -----------------------------------------------------------------------------另外,日历对应的星期系统不能自动调整,可以通过一定的算法来实现,下面介绍一种常用 的公式: A:最常见的公式:
GND-0.3 to +7.0 GND-0.3 to VDD+0.3 * GND-0.3 to +7.0
-55 to +125
单位
V V V V V ℃
II
RX-8025T 使用说明概要
5、推荐操作条件:
项目
运行电压 温度补偿电压 时钟供电电压 操作温度
符号
VDD V-TEM V-CLK T-OPR
V
11.1 寄存器详解: 控制寄存器 F
RX-8025T 使用说明概要
RX8025SA
Shift Register
Page - 1
2002.08 Ver.0.1
RX-8025 SA/NB 3. Description of Pins
3.1. Pin Layout
RX - 8025 SA
1. N.C. 2. SCL 3. FOUT 4. N.C. 5. TEST 6. VDD 7. FOE SOP - 14pin 14. N.C. 13. SDA 12. / INTB 11. GND 10. / INTA 9. N.C. 8. N.C. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. FOE VDD N.C. TEST FOUT SCL SDA / INTB GND / INTA N.C.
Divider Correc -tion
Div.
Time Counter
( Sec,Min,Hour,Day,Date,Month,Year )
OSC Detect / INTA / INTB
Address Decoder
Address Register I/O Control
SCL
SDA GND
Interrupt Control
2
2. Block Diagram
FOUT FOE
32 kHz Output Control
Comparator_W
Alarm_W Register ( Min,Hour,Day)
Voltage Detect
VDD
Comparator_D
Alarm_D Register ( Min,Hour )
OSC
Item
Power voltage Clock voltage Operating temperature Applied voltage when OFF
RX-8025T使用说明概要
GND
出电压
VOL4 /INT
VDD=5V,IOL= 1 mA
GND
VOL5 引脚
VDD=3V,IOL= 1 mA
GND
VOL6 SDA
VDD≥2V,IOL= 3 mA
GND
输入漏电 流
输入引脚,VIN = VDD 或 GND ILK
-0.5
输出漏电 流
/INT,SDA,FOUT, VIN=VDD 或 GND -0.5 IOZ
当输出停止时,FOUT 引脚=“H-Z”(高阻状态)
4/8/9/14:NC
-
这些引脚没有连接内部 IC
5:TEST
In
*工厂测试用(不用额外连接)
6:VDD
-
电源正端
7:FOE
In
该引脚用来控制 FOUT 的输出模式,当为高电平时 FOUT 输出
使能。
10:/INT
Out
该引脚用于输出:报警信号,时钟信号,时间更新信号,以
VOH1 FOUT
VDD=5V,IOH=-1 mA
4.5
高电平输
VOH2 引脚
VDD=3V,IOH=-1 mA
2.2
出电压
VOH3
VDD=3V,IOH=-100 uA
2.9
VOL1 FOUT
VDD=5V,IOL= 1 mA
GND
VOL2 引脚
VDD=3V,IOL= 1 mA
GND
低电平输
VOL3
VDD=3V,IOL= 100 uA
RX-8025T 使用说明概要
RX-8025T 使用说明概要
1、8025T 的特点:
1. 内置高稳定度的 32.768KHz 的 DTCXO (数字温度补偿晶体振荡器) 2. 支持 I2C 总线的高速模式(400K)。 3. 定时报警功能(可设定:天,日期,小时,分钟) 4. 固定周期定时中断功能。 5. 时间更新中断功能。 6. 32.768KHz 频率输出(具有使能 OE 功能) 7. 闰年自动调整功能。(2000 到 2099) 8. 宽范围接口电压:2.2V 到 5.5V 9. 宽范围的时间保持电压:1.8V 到 5.5V 10. 低电流功耗:0.8uA/3V (Typ.)
RX8025T
11、 寄存器简介:
注意:当内部上电复位或当读到 VLF 位的值为 1 的时候,需要对所有的寄存器重新初始化。 确保输入正确的数据,如果数据或时间不正确,那么时钟操作的结果将不能得到保证。 *1)在内部上电期间,TEST 位复位为‘0’VLF 位复位为‘1’
此时所有寄存器的值是不确定的。 *2)只有‘0’能被写入到 UF,TF,AF,VLF,VDET 这些寄存器的位里面。 *3)任何标有‘o’的位在初始化以后应该被当作‘0’来使用。 *4)任何标有‘· ’的位可以读写任意值。 *5)TEST 位被用作工厂测试用,该位在写操作的时候一定确保是‘0’。
该寄存器用来监测各种中断时间以及内部数据的相关问题。 UF,TF,AF,分别是时间更新中断,固定周期定时中断,闹钟中断的中断标志位。 1)VLF(电压低标志位)
联系人:李先生 电话:025-84559990 84559991 传真:025-84559992
邮编:210018
地址:南京市长江路网巾市9号8502
RX-8025T 使用说明概要
3.1 管脚功能定义:
管脚名称
I/O
功能
1:T1
In
* 工厂测试用(不用额外连接)
2:SCL
In
I2C 总线通讯的串行时钟输入端
3:FOUT
Out
这是个 C-MOS 输出引脚,可通过 FOE 进行控制。
当 FOE=’H’,该引脚输出一个 32.768KHz 信号
当输出停止时,FOUT 引脚=“H-Z”(高阻状态)
0
10s
1
1
30s
2)UIE(更新中断使能位)
写入一个‘1’到该位,当一个中断事件产生时,就会有一个中断信号产生(/INT 的状态
时钟芯片rx8025读写子程序
LCALL SENDDATA
RET
RCV8025: MOV SLVADR, #64H ;接收8025的CLOCK,CALENDAR
MOV SUBADR, #00H
MOV BYTECNT,#7
MOV 32H,A
MOV A,41H
ANL A,#0F0H
RR A
RR A
RR A
RR A
MOV 33H,A
MOV A, 42H
ANL A,#0F0H
RR A
RR A
RR A
RR A
MOV 3CH,A
RET
SEND8025: ACALL LOAD8025 ;发送CLOCK(00:00:00),CALENDAR(00:01:01),WEEKLY(0)
RR A
RR A
RR A
RR A
MOV 31H,A
MOV A, 41H
ANL A, #7FH
MOV 41H, A
ANL A,#0FH
RET
STOP: CLR SDA ;STOP 子程序
NOP
SETB SCL
NOP
NOP
NOP
NOP
NOP
SETB SDA
NOP
NOP
NOP
RR A
MOV 35H,A
MOV A,43H
ANL A, #07H
MOV 43H,A
ANL A,#0FH
MOV 36H,A
MOV A,44H
RR A
MOV 38H,A
MOV A,45H
时钟芯片RX8025T
5. Recommended Operating Conditions .......................................................... 3
• 32.768 kHz output with OE function
(FOE and FOUT pins)
• Auto correction of leap years
(from 2000 to 2099)
• Wide interface voltage range: 2.2 V to 5.5 V
• Wide time-keeping voltage range:1.8 V to 5.5 V
• Low current consumption: 0.8µA / 3 V (Typ.)
The I2C-BUS is a trademark of NXP Semiconductors.
1. Overview
3.2. Pin Functions
Signal name
I/O
RX − 8801 SA
SOP − 14pin
14. N.C. 13. SDA 12. T2 (VPP) 11. GND 10. / INT
9. N.C. 8. N.C.
RX − 8801 SA
I2C-Bus Interface Real-time Clock Module
RX − 8801 SA
Preliminary
8025T使用说明
时钟计数器(寄存器 0 到 2)
分别记录时钟的-时,分,秒 所有的数据格式都为 BCD 码,例如秒寄存器的值为 ‘0101 1001’ 实际表示为 59 秒。 小时计数器从‘00’‘01’一直到‘23’,然后重新从‘00’开始,为 24 小时进制。
星期寄存器 REG-3
该寄存器用来记录星期的信息:第 0 位到第 6 位用来表示星期日,星期一....到星期六。 数据格式不再是 BCD 编码,而是分别用一位来表示不同的日期。
VII
具体见下表:
RX-8025T 使用说明概要
特别注意:不要同时设定多位为‘1’的情况,因为任何错误的设定都会导致正常操作的混乱。
日历寄存器(4 到 6)
具有自动日历调节的功能,作用范围 2001 年 1 月 1 日到 2099 年 12 月 31 日。 数据格式为 BCD 编码。 注意:设定不存在的日期数据将导致计数器不能正常操作。 -----------------------------------------------------------------------------另外,日历对应的星期系统不能自动调整,可以通过一定的算法来实现,下面介绍一种常用 的公式: A:最常见的公式:
读/写
当一个中断事件产生时,就会有一个中断信号产生(/INT 的状态会从 H-Z 高阻状态 1
变为低电平。)
注意:在中断发生以后,/INT 的状态在 7.8ms 或 500ms 后自动清除(通过 USEL 位选择) 3)TIE(定时中断使能位)
写入一个‘1’到该位,当一个中断事件产生时,就会有一个中断信号产生(/INT 的状态 会从 H-Z 高阻状态变为低电平。) 写入一个‘0’到该位,当一个中断事件发生时,不会有中断信号产生。
RX-8025中文资料
11.使用上的注意事项················································································· 30
11.1 处理上的注意事项 ·························································································· 30 11.2 装配上的注意事项 ·························································································· 30
输入输出
本输入与电源电压无关 输入电压最高可达到 5.5V
时钟芯片精度比较
时钟芯片精度比较以前用DS1302 做了万年历,感觉精度不稳定,受晶振和匹配电容的影响,不同的DS1302误差也不一样在网上查资料,精度比较高的两种实时芯片,DS3231,RX8025,两则都能在TB上买到,就是DS3231好贵哦它们的性能呢,就不用多说了,芯片手册里都有,就简单说一下,DS3231-RX8025都是IIC通讯,内置晶振,中断输出,闹钟寄存器。
综上,自己做了一个DS1302-DS3231-RX8025三个一的一个时钟,单片机STC12C5A32S2用来观察它们的精度,经过一周多的时间观察,果然1302不行,做了四个,四个1302变化的都不一样,而3231和8025还是比较理想,4块板子上的3231-8025走时都很准确综合比较DS3231和8025胜出,再综合价格,RX8025为最终胜者。
不过RX8025没有备用电池接口VBAT,需要设计一个主备电切换电路。
LCD是LCD160160,比较少见,在咸鱼上淘的,当初调试这款液晶时,化了很大功夫,大家可以选择自己熟练的液晶显示。
供大家交流学习,有不同看法可以一起交流上传的文件有程序,PCF原理图,以及芯片手册。
这里就贴主函数程序,完整程序见附件1./*****************************************************************************2.1.本程序时测试DS1302,DS3231,RX8025三款时钟芯片的精准度,基于液晶LCD160160显示3.程序说明:4.1.RX8025,DS3231都是IIC通讯,本程序中RX8025采用了比较完善的IIC程序;5.DS3231采用的是比较简单的IIC程序,但两者原理都是一样的。
6.2.本程序中星期的计算是采用公式计算的得来,原型是蔡勒公式,与网上的公式都是7.大同小异。
所以在此程序中的“周”只计算了一次,是根据DS1302读出来的“年月日”数据来8.计算的,因为三个时钟芯片的年月日都一样,所以就只计算一次。
实时时钟芯片RX_8025的原理及其应用
!’B’B
写操作 首先主器件( 微处理器) 向 W*)+ 芯片发送写指
M1/N
M1/K
M1/+ = B)G)# = Q4/
M1/#
・
M1/! M1/) @-4/
・
M1/B H/B O2CD
M1/* H/* A2CD
令, 收到应答信号后, 主器件再向 W*)+ 芯片发送要 写入数据的地址, 收到应答信号后, 再发送要写的 数据, 再发一个应答信号后结束。格式见图 # 。
节因素和温度变动对计时准确度的调整,它的调 整 范 围 为 !)<=>?@A;>"’;B;* C=, 调 整 准 确 度 单 位 为 A!’*+B;*C=,并且每 )*4 进行内部调整时钟一次。 注意不用此功能时要将 D= 到 D* 清 * 。 它的调整过程见表 ;。 表; 高精度调整时钟精确度表
!)<=<’<?@!H!)<=<’<C!)<=>I J !)<=>KC"’;=B;*C=; ( 计算对目前偏移量 的 最 佳 调 整 数 据 ( )) ;* 进
)’# 9 = < 控制单元 W*)+ 芯 片 与 主 器 件 之 间 的 数 据 传 输 是 通 过 ?HR 和 ?AE 两个脚,按 9)H 总线接口方式进行数据
的读取和写入, ?HR 脚 的 最 大 时 钟 频 率 为 #**XIJ ( 当 ! ""!B’N$ 时) , 与 9)H 总线高速模式相对应。
监测评估表ቤተ መጻሕፍቲ ባይዱ
针对现象分析原因 时钟出现反常状态, 可能是 温度下降引起的。 时钟出现反常状态, 可能是 电压下降引起的。 正常状态 时钟正常, 但有一种反常状态 存在, 可能后备电池出现异常。 时钟状态必须初始化, 否则就 会出现电压下降。
RX-8025T时钟芯片应用手册 EPSON
7.1. DC Characteristics ............................................................................................................. 4 7.2. AC Characteristics.............................................................................................................. 5
6. Frequency Characteristics ..................................................................................3
7. Electrical Characteristics.....................................................................................4
4. Absolute Maximum Ratings ...............................................................................3
RX8025SA时钟芯片
I2C-Bus Interface Real-time Clock ModuleRX-8025 SA/NB Preliminary •Features built-in 32.768 kHz quartz oscillator, frequency adjusted for high precision(± 5 × 10−6 when Ta = +25°C)• Supports I2C-Bus's high speed mode (400 kHz)• Includes time (H/M/S) and calendar (YR/MO/DATE/DAY) counter functions (BCD code)• Select between 12-hr and 24-hr clock display• Auto calculation of leap years until 2099• Built-in high-precision clock precision control logic• CPU interrupt generation function (cycle time range: 1 month to 0.5 seconds, includesinterrupt flags and interrupt stop function)• Dual alarm functions (Alarm_W: Day/Hour/Min, Alarm_D: Hour/Min)• 32.768 kHz clock output (CMOS output with control pin)• Oscillation stop detection function (used to determine presence of internal data)• Power supply voltage monitoring function (with selectable detection threshold)•Wide clock voltage range: 1.15 V to 5.5 V•Wide interface voltage range: 1.7 V to 5.5 V•Low current consumption: 0.48 µA/3.0 V (Typ.)1. OverviewThis module is an I2C bus interface-compliant real-time clock which includes a 32.768 kHz quartz oscillatorthat has been adjusted for high precision. In addition to providing a function for generating six types ofinterrupts, a dual alarm function, an oscillation stop detection function (used to determine presence of valid internal data at power-on), and a power supply voltage monitoring function, this module includes a digital clock precision adjustment function that can be used to set various levels of precision.Since the internal oscillation circuit is driven at a constant voltage, 32.768 kHz clock output is stable and free of voltage fluctuation effects.This implementation of multiple functions in one SMT package is ideal for applications ranging from cellular phones to PDAs and other small electronic devices.3. Description of Pins3.2. Pin Functions SignalnameI / OFunctionSCL IThis is the serial clock input pin for I 2C communications. Data input and output across the SDA pin is synchronized with this pin's clock signal.Up to 5.5 V can be used for this input, regardless of the power supply voltage.SDA I/OThis pin's signal is used for input and output of address, data, and ACK bits, synchronized with the serial clock used for I 2C communications. The SDA pin is an N-ch open drain pin during output. Be sure to connect a suitable pull-upresistance relative to the signal line capacity.FOUT OThis is the output pin for the 32.768 kHz clock signal with output control provided via theFOE pin.When FOE = High, this pin outputs a 32.768 kHz clock (CMOS output). When FOE = Low or OPEN, clock output is stopped and the signal level is fixed low. FOE I This is an input pin used to control the output mode of the FOUT pin. Pull-down resistance is provided for this pin.When this pin's level is high, a 32.768 kHz is output from the FOUT pin.When this pin's level is low or open, there is no output from the FOUT pin.Up to 5.5 V can be used for this input, regardless of the power supply voltage./INTA OThis interrupt output A pin is an N-ch open drain output.It outputs alarm interrupts (Alarm_D) and periodic interrupts./INTB OThis interrupt output B pin is an N-ch open drain output.It outputs alarm interrupts (Alarm_W).TEST −This pin is used by the manufacturer for testing.Be sure to connect this pin to V DD .V DD −This pin is connected to a positive power supply.GND −This pin is connected to a grounding terminal.N.C. − This pin is not connected to the internal IC.However, note with caution that the RX-8025NB's N.C. pins (pins 14 to 22) are interconnected via the internal frame.Leave N.C. pins open or connect them to GND or V DD .Note: Be sure to connect a bypass capacitor rated at least 0.1 µF between V DD and GND.4. Absolute Maximum RatingsGND = 0 VItem Symbol ConditionRating UnitSupply voltage V DD Between V DD and GND −0.3 to +6.5V Input voltage V I SCL, SDA, FOE pins GND −0.3 to +6.5 V V O1 SDA, /INTA, /INTB pins GND −0.3 to +6.5V Output voltage V O2 FOUT pin GND −0.5 to V DD +0.3 V Storage temperatureT STGWhen stored separately, withoutpackaging−55 to +125 °C5. Operating ConditionsGND = 0 VItem Symbol Condition Min. Typ. Max. UnitPower voltageV DD − 1.73.0 5.5 V Clock voltageV CLK −1.15 3.0 5.5 V Operating temperature T OPR No condensation −40+25 +85 °C Applied voltage when OFFV PUP SCL, SDA, /INTA, /INTB pins −0.35.5 °C6. Frequency CharacteristicsGND=0 VItem Symbol ConditionRatingUnitFrequency tolerance∆ f / fTa = +25°CV DD = 3.0 V Rank AA : 5 ± 5 (∗1)× 10−6 Frequency voltagecharacteristics f / VTa = +25°C V DD = 2 V to 5 V ± 2 Max. × 10−6 / V Frequency temperature characteristics TopTa = −10°C to +70°C,V DD = 3.0 V; +25 °C reference+10 / −120 × 10−6 Oscillation start up time t STATa = +25 °CV DD = 3 V 3 Max. s Aging faTa = +25 °CV DD =3.0 V; first year ± 5 Max.× 10−6 / year∗1)Precision gap per month: 30 seconds (excluding offset value)7. Electrical Characteristics7.1. DC Electrical Characteristics7.1.1. DC electrical characteristics (1)* Unless otherwise specified, GND = 0 V, V DD = 3 V, Ta = −40 °C to +85 °CItem SymbolConditionMin. Typ. Max. UnitCurrentconsumption (1) I DD1 VDD=5 VT.B.D. T.B.D.Currentconsumption (2) I DD2 f SCL = 0Hz, FOE = GND/INTA, /INTB = V DD FOUT;output OFF (low when OFF) VDD=3 V 0.48 1.20 µACurrentconsumption (3) I DD3 VDD=5 V T.B.D. T.B.D.Currentconsumption (4) I DD4 f SCL = 0Hz/INTA, /INTB, FOE = V DD FOUT;32.768 kHz output ON, CL= 0 pF VDD=3 V T.B.D. T.B.D. µACurrentconsumption (5) I DD5 VDD=5 V T.B.D. T.B.D.Currentconsumption (6) I DD6 f SCL = 0Hz/INTA, /INTB, FOE = V DD FOUT;32.768 kHz output ON, CL= 30 pF VDD=3 VT.B.D. T.B.D.µAHigh-level input voltage V IH0.8 × V DD5.5 V Low-level input voltage V IL SCL, SDA, FOE pinsGND − 0.30.2 × V DD V High-level input current I OH FOUT pin, V OH = V DD − 0.5 V−0.5mAI OL1 FOUT pin, V OL = 0.4 V0.5 mA I OL2 /INTA and /INTB pins, V OL = 0.4 V 1.0 mA Low-level input current I OL3 SDA pin, V OL = 0.4 V4.0 mA Input leakage current I ILSCL pin, V I = 5.5 V or GND, V DD = 5.5 V−11 µA7.1.2. DC electrical characteristics (2) * Unless otherwise specified, GND = 0 V, V DD = 3 V, Ta = −40 °C to +85 °CItem Symbol Condition Min. Typ. Max. UnitInput current with pull-down resistanceI FOE FOE pin, V I = 5.5 V0.3 1.0 µA Output current when OFFI OZSDA, /INTA, and /INTB pinsV O = 5.5 V or GND, V DD = 5.5 V−11 µAHigh-voltage mode V DETH V DD pin, Ta = −30 to +70 °C 1.90 2.10 2.30 V Powersupplydetection voltage Low-voltage mode V DETL V DD pin, Ta = −30 to +70 °C1.15 1.30 1.45 V7.2. AC Electrical Characteristics∗ Unless otherwise specified: GND = 0 V, V DD = 1.7 V to 5.5 V, Ta = −40 °C to +85 °C∗ Input conditions: V IH = 0.8 × V DD , V IL = 0.2 × V DD , V OH = 0.8 × V DD , V OL = 0.2 ×V DD , CL = 50 pF Item Symbol Condition Min. Typ. Max. UnitSCL clock frequency f SCL 400 kHzSTART condition set-up time t SU;STA 0.6 µs START condition hold timet HD;STA 0.6 µs Data set-up time t SU;DAT 200 ns Data hold timet HD;DAT 0 ns STOP condition setup timet SU;STO 0.6 µs Bus idle time between a START andSTOP condition t BUF 1.3 µsWhen SCL = "L" t LOW 1.3 µs When SCL = "H"t HIGH 0.6 µs Rise time for SCL and SDA t r 0.3 µs Fall time for SCL and SDA t f 0.3 µs Allowable spike time on bust SP50 nsCaution: When accessing this device, all communication from transmitting a START condition to transmitting a STOPcondition after access should be completed within 0.5 seconds.If such communication requires 0.5 to 1.0 second or longer, the I 2C bus interface is reset by the internal bus timeout function.8. Functional descriptions8.1. Overview of Functions1) Clock functionsThese functions enable setting, timing, and display of data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2099.∗ For details, see "8.2. Description of Registers".2) Clock precision adjustment functionThe clock precision can be adjusted forward or back in units of ± 3.05 × 10−6. This function can be used to implementa higher-precision clock function, such as by:• Enabling higher clock precision throughout the year by taking seasonal clock precision adjustments into account in advance, or• Enabling correction of temperature-related clock precision variation in systems that include a temperaturedetection function.Note: Only the clock precision can be adjusted. The adjustments have no effect on the 32.768 kHz output from the FOUT pin.∗ For details, see "8.3. Clock Precision Adjustment Function".3) Periodic interrupt functionIn addition to the alarm function, Periodic interrupts can be output via the /INTA pin.Select among five Periodic frequency settings: 2 Hz, 1Hz, 1/60 Hz, hourly, or monthly.Select among two output waveforms for periodic interrupts: an ordinary pulse waveform (2 Hz or 1 Hz) or a waveform (every second, minute, hour, or month) for CPU-level interrupts that can support CPU interrupts.A polling function is also provided to enable monitoring of pin states via registers.∗ For details, see "8.4. Periodic Interrupt Function".4) Alarm functionsThis module is equipped with two alarm functions (Alarm W and Alarm D) that output interrupt signals to the host at preset times. The Alarm W function can be used for day, hour, and minute-based alarm settings, and it outputsinterrupt signals via the /INTB pin. Multiple day settings can be selected (such as Monday, Wednesday, Friday,Saturday, and Sunday). The Alarm D function can be used only for hour or minute-based settings, and it outputs interrupt signals via the /INTA pin.A polling function is also provided to enable checking of each alarm mode by the host.∗ For details on the Alarm W function, see "8.5. Alarm W function" and for the Alarm D function, see "8.6. Alarm D Function".5) Oscillation stop detection function, power drop detection function (voltage monitoring function), and power-on reset detection functionThe oscillation stop detection function uses registers to record when oscillation has stopped.The power drop detection function (supply voltage monitoring function) uses registers to record when the supply voltage drops below a specified voltage threshold value. Use registers to specify either of two voltage thresholdvalues: 2.1 V or 1.3 V. Voltage sampling is performed once per second in consideration of the module's low current consumption.While the oscillation stop detection function is useful for determining when clock data has become invalid, the supply voltage monitoring function is useful for determining whether or not the clock data is able to become invalid. The supply voltage monitoring function can also be used to monitor a battery's supply voltage.When these functions are utilized in combination with the power-on reset detection function, they are useful fordetermining whether clock data is valid or invalid when checking for power-on from 0 V or for back-up.∗ For details, see "8.7. Detection Functions".6) Interface with CPUData is read and written via the I2C bus interface using two signal lines: SCL (clock) and SDA (data).Since neither SCL nor SDA includes a protective diode on the V DD side, a data interface between hosts with differing supply voltages can still be implemented by adding pull-up resistors to the circuit board.The SCL's maximum clock frequency is 400 kHz (when V DD ≥1.7 V), which supports the I2C bus's high-speed mode.∗ For further description of data read/write operations, see "8.8. Reading/Writing Data via the I2C Bus Interface".7) 32.768 kHz clock outputThe 32.768 kHz clock (with precision equal to that of the built-in quartz oscillator) can be output via the FOUT pin.The FOUT pin is a CMOS pin which can be set for clock output when the FOE pin is at high level and for low-level output when the FOE pin is at low level or is left open.Note: The precision of this 32.768 kHz clock output via the FOUT pin cannot be adjusted (even when using the clock precision adjustment function).8.2. Description of Registers8.2.1. Register tableAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0∗50 Seconds {S40 S20 S10 S8 S4 S2 S11 Minutes {M40 M20 M10 M8 M4 M2 M12 Hours {{H20P, /AH10 H8 H4 H2 H13 Days {{{{{W4 W2 W14 Days {{D20 D10 D8 D4 D2 D1∗45 Months 0 {{MO10 MO8 MO4 MO2 MO16 Years Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1∗47 Digital Offset 0 F6 F5 F4 F3 F2 F1 F08 Alarm_W ; Minute {WM40 WM20 WM10 WM8 WM4 WM2 WM19 Alarm_W ; Hour {{WH20WP, /AWH10 WH8 WH4 WH2 WH1A Alarm_W ; Day {WW6 WW5 WW4 WW3 WW2 WW1 WW0B Alarm_D ; Minute {DM40 DM20 DM10 DM8 DM4 DM2 DM1C Alarm_D ; Hour {{DH20DP, /ADH10 DH8 DH4 DH2 DH1∗3∗3D Reserved Reserved∗1∗6∗2E Control 1 WALE DALE /12 , 24 •TEST CT2 CT1 CT0∗1∗1∗6F Control 2 VDSL VDET /XST PON •CTFG WAFG DAFGCaution points:∗1. The PON bit is a power-on reset flag bit.The PON bit is set to "1" when a reset occurs, such as during the initial power-up or when recovering from asupply voltage drop. At the same time, all bits in the Control 1 and Control 2 registers except for the PON and / XST bits are reset to "0".Note: At this point, all other register values are undefined, so be sure to perform a reset before using the module.Also, be sure to avoid entering incorrect date and time data, as clock operations are not guaranteed whenthe time data is incorrect.∗2. The TEST bit is used by the manufacturer for testing. Be sure to set "0" for this bit.∗3. Address D (a reserved register) is used for the manufacturer's settings. Do not read from or write to this register.∗4. All bits marked with a "0" in the above table should be set as "0". Their value when read will be "0".∗5. All bits marked with "{" are read-only bits. Their value when read is always "0".∗6. Bits marked with "•" are RAM bits that can contain any value and are read/write-accessible.However, these bits are cleared to zero when the PON bit value is "1".Address Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0E Control 1 WALE DALE /12 , 24 •TEST CT2 CT1 CT0(Default) (0) (0) (0) (0) (0) (0) (0) (0) ∗) The default value is the value that is read (or is set internally) after the PON bit has been set to "1," such as after powering up from 0 V or recovering from a supply voltage drop.1) WALE bitThis bit is used to set up the Alarm W function (to generate alarms matching day, hour, or minute settings).WALE Data Description0 Alarm_W, match comparison operation invalid ∗ DefaultWrite / Read1 Alarm_W, match comparison operation valid (/INTB = "L" when match occurs)∗ For details, see "8.5. Alarm W Function".2) DALE bitThis bit is used to set up the Alarm D function (to generate alarms matching hour or minute settings).DALE Data Description0 Alarm_D, match comparison operation invalid ∗ DefaultWrite / Read1 Alarm_D, match comparison operation valid (/INTA = "L" when match occurs)∗ For details, see "8.6. Alarm D Function".3) /12,24 bitThis bit is used to select between 12-hour clock operation and 24-hour clock operation./12,24 Data Description0 12-hourclock ∗ Default Write / Read1 24-hourclock∗ Be sure to select between 12-hour and 24-hour clock operation before writing the time data.∗ See also "3) Hour counter" in section 8.2.4.4) ’•’ bitThis is a read/write-accessible RAM bit that contains any (arbitrary) data.However, this bit is cleared to zero when the PON bit value is "1".5) TEST bitThis bit is used by the manufacturer for testing. Be sure to write "0" to this bit.Be careful to avoid writing a "1" to this bit when writing to other bits.TEST Data Description0 Normal operation mode ∗ DefaultWrite / Read1 Setting prohibited (manufacturer's test mode)6) CT2, CT1, and CT0 bitsThese bits are used to set up the operation of the periodic interrupt function that uses the /INTA pin./INTA pin's output settingCT2 CT1 CT0Waveform mode Cycle/Fall timing0 0 0 −/INTA = Hi-Z (= OFF) ∗ Default0 0 1 −/INTA = Fixed low0 1 0 Pulse mode ∗1) 2 Hz (50% duty)0 1 1 Pulse mode ∗1) 1 Hz (50% duty)1 0 0 Level mode ∗2)Once per second (Synchronous with per-second count-up)1 0 1 Level mode ∗2)Once per minute (Occurs when seconds reach ":00")1 1 0 Level mode ∗2)Once per hour (Occurs when minutes and seconds reach "00:00")1 1 1 Level mode ∗2)Once per month (Occurs at 00:00:00 on first day of month)∗ For details, see "8.4. Periodic Interrupt".Address Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0F Control 2 VDSL VDET / XST PON •CTFG WAFG DAFG(Default) (0) (0) (−) (1) (0) (0) (0) (0) ∗1) The default value is the value that is read (or is set internally) after the PON bit has been set to "1," such as after powering up from 0 V or recovering from a supply voltage drop.∗2) '"−" indicates undefined status.1) VDSL bitThis bit is used to set the power drop detection function's threshold voltage value.VDSL Data Description0 Sets 2.1 V as the power drop detection function's thresholdvoltage value ∗ DefaultWrite / Read1 Sets 1.3 V as the power drop detection function's threshold voltage value∗ For details, see "8.7. Detection Functions".2) VDET bitThis bit indicates the power drop detection function's detection results.VDET = "1" once a power voltage drop has occurred.VDET Data Description0 Clears the VDET bit to zero, restarts the power drop detectionoperation and sets up for next power drop detection operation∗ DefaultWrite1 Setting prohibited (do not set this bit value, even though it has no effect)0 Power drop was not detected∗ DefaultRead1 Power drop was detected(result is that bit value is held until cleared to zero)∗ For details, see "8.7. Detection Functions".3) /XST bitThis bit indicates the oscillation stop detection function's detection results.If a "1" has already been written to this bit, it is cleared to zero when stopping of internal oscillation is detected./ XST Data Description0 Setting prohibited (do not set this bit value, even though it has no effect)Write1 Sets the oscillation stop detection function as use-enabled and sets up for next detection operation0 Oscillation stop was detected(result is that bit value is held until a "1" is written)Read1 Oscillation stop was not detected∗ For details, see "8.7. Detection Functions".4) PON bitThis bit indicates the power-on reset detection function's detection results.The PON bit is set (= 1) when the internal power-on reset function operates.PON Data Description0 Clears the PON bit to zero and sets up next detection operationWrite1 Setting prohibited (do not set this bit value, even though it has no effect)0 Power-on reset was not detectedRead1 Power-on reset was detected(result is that bit value is held until cleared to zero)∗ Default∗ When PON = "1" all bits in the Clock Precision Adjustment register and in the Control 1 and Control 2 registers (except for the PON and / XST bits) are reset to "0". This also causes output from /INTA and /INTB pin to be stopped (= Hi-Z).∗ For details, see "8.7. Detection Functions".5) ' • ' bitBits marked with "•" are RAM bits that can contain any value and are read/write-accessible.However, these bits are cleared to zero when the PON bit value is "1".6) CTFG bitDuring a read operation, this bit indicates the /INTA pin's periodic interrupt output status.This status can be set as OFF by writing a "0" to this bit when /INTA = " L".CTFG Data Description0 A "0" can be written only when the periodic interrupt is in levelmode, at which time the /INTA pin is set to OFF (Hi-z) status.(Only when Alarm_D does not match)∗ After a "0" is written, the value still becomes "1" again at thenext cycle.∗ DefaultWrite1 Setting prohibited (do not set this bit value, even though it has no effect)0 Periodic interrupt output OFF status; /INTA = OFF (Hi-z)∗ Default Read1 Periodic interrupt output ON status; /INTA = "L"∗ For details, see "8.4. Periodic Interrupt Function".7) WAFG bitThis bit is valid only when the WALE bit value is "1".The WAFG bit value becomes "1" when Alarm W has occurred.The /INTB = "L" status that is set at this time can be set to OFF by writing a "0" to this bit.WAFG Data Description0 /INTB pin = OFF (Hi-z) ∗ DefaultWrite1 Setting prohibited (do not set this bit value, even though it has no effect)0 Alarm_W time setting does not match current time(This bit's value is always "0" when the WALE bit's setting is "0")∗ DefaultRead1 Alarm_W setting matches current time(Result is that bit value is held until cleared to zero)∗ For details, see "8.5. Alarm W Function".8) DAFG bitThis bit is valid only when the DALE bit value is "1". The DAFG bit value becomes "1" when Alarm D has occurred.The /INTA = "L" status that is set at this time can be set to OFF by writing a "0" to this bit.DAFG Data Description0 /INTA pin = OFF (Hi-z) (but only when the periodic interruptoutput status is OFF)∗ DefaultWrite1 Setting prohibited (do not set this bit value, even though it has no effect)0 Alarm_D time setting does not match current time(This bit's value is always "0" when the DALE bit's setting is "0")∗ DefaultRead1 Alarm_D time setting matches current time (result is that bit value is held until cleared to zero)∗ For details, see "8.6. Alarm D function".8.2.4. Time counter (Reg 0 to 2)Address Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 00 Seconds {S40 S20 S10 S8 S4 S2 S11 Minutes {M40 M20 M10 M8 M4 M2 M12 Hours {{H20P, /AH10 H8 H4 H2 H1∗) "□" indicates write-protected bits. A zero is always read from these bits.• The time counter counts seconds, minutes, and hours.• The data format is BCD format(except during 12-hour display mode). For example, when the "seconds" register value is "0101 1001" it indicates 59 seconds.∗ Note with caution that writing non-existent time data may interfere with normal operation of the time counter.1) Second counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 00 Seconds{S40 S20 S10 S8 S4 S2 S1• This second counter counts from "00" to "01," "02," and up to 59 seconds, after which it starts again from00 seconds.• When a value is written to the second counter, the internal counter is also reset to zero in less than one second.2) Minute counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 01 Minutes {M40 M20 M10 M8 M4 M2 M1• This minute counter counts from "00" to "01," "02," and up to 59 minutes, after which it starts again from00 minutes.3) Hour counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 02 Hours {{H20P , /AH10 H8 H4 H2 H1• The hour counter counts hours, and its clock mode differs according to the value of its /12,24 bit. • During 24-hour clock operation, bit 5 functions as H20 (two-digit hour display). During 12-hour clock operation, bit 5 functions as an AM/PM indicator ("0"indicates AM and "1" indicates PM).Address Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 03 Days {{{{{W4 W2 W1∗) "□" indicates write-protected bits. A zero is always read from these bits.• The day counter is a divide-by-7 counter that counts from 00 to 01 and up 06 before starting again from 01.• The correspondence between days and count values is shown below.Days W4 W2 W1 Day Remark00h0 0 0 Sundayh010 0 1 Mondayh0 1 0 Tuesday02Write / Readh0 1 1 Wednesday031 0 0 Thursday04h1 0 1 Friday 05hh1 1 0 Saturday06prohibit 1 1 1 −Do not enter a setting for this bit.Write8.2.6. Calendar counter (Reg 4 to 6)Address Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 04 Days {{D20 D10 D8 D4 D2 D15 Months 0 {{MO10 MO8 MO4 MO2 MO16 Years Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1∗1) Be sure to set a "0" for any bit whose value is shown above as "0". A zero is returned when any of these bits is read.∗2) '"□" indicates write-protected bits. A zero is always read from these bits.• The auto calendar function updates all dates, months, and years from January 1, f2001 to December 31, 2099.• The data format is BCD format. For example, a date register value of "0011 0001" indicates the 31st.∗ Note with caution that writing non-existent date data may interfere with normal operation of the calendar counter.1) Date counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 04 Days {{D20 D10 D8 D4 D2 D1• The updating of dates by the date counter varies according to the month setting.∗ A leap year is set whenever the year value is a multiple of four (such as 04, 08, 12, 88, 92, or 96).Days Month Date update pattern1, 3, 5, 7, 8, 10, or 12 01, 02, 03 to 30, 31, 01…4, 6, 9, or 11 01, 02, 03 to 30, 01, 02…Write / ReadFebruary in leap year 01, 02, 03 to 28, 29, 01…February in normal year 01, 02, 03 to 28, 01, 02…2) Month counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 05 Months 0 {{MO10 MO8 MO4 MO2 MO1• The month counter counts from 01 (January), 02 (February), and up to 12 (December), then starts againat 01 (January).∗ Be sure to set a "0" for any bit whose value is shown above as "0". A zero is returned when any of thesebits is read.3) Year counterAddress Function bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 06 Years Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1• The year counter counts from 00, 01, 02 and up to 99, then starts again at 00.∗ In any year that is a multiple of four (04, 08, 12, 88, 92, 96, etc.), the dates in February are counted from01, 02, 03 and up to 29 before starting again at 01.。
(50条消息)时钟芯片RX8025T的电源设计
(50条消息)时钟芯片RX8025T的电源设计2017-06-12 14:30:05最后发布:2017-06-12 14:30:05首发:2017-06-12 14:30:05转:/news/4392.htmlEPSON的RX-8025T实时时钟芯片具有极低的功耗,内置高稳定度的32.768KHz的晶振,并自带温度补偿功能,通过相应的设置可以提高时钟精度。
由于其强大的功能以及极简化的外围电路,得到电表厂商的青睐,成为了智能四表领域应用比较广泛的一款时钟芯片。
下面以“时钟在电池供电的情况下工作5年”为目标,结合笔者的项目谈一谈RX-8025T电源的设计经验。
RX-8025T的电源方案一般如图1所示。
时钟芯片供电采用二极管隔离,设计思路为节约时钟电池损耗,采取系统电源优先供电原则。
设计时需要注意如下几点:1)两个二极管的压降不同从RX-8025T芯片的数据手册上我们可以看到,其工作电压范围比较宽:从2.2V到5.5V,这就使得我们可以在系统电源V3P3和电池供电VBAT_RTC(一般为3.6V)上使用具有正向压降的二极管,实际输入到时钟芯片的RTC在3V~3.3V之间。
需要注意的是,电池的二极管V23和系统电源的二极管V20选型必须不一样(如图2所示),这是因为一般的锂电池电压为3.6V,而系统电压为3.3V,同样压降的二极管之后,电池电压依然是偏高的。
这样一来,即使在外部电源供电时,时钟也会消耗电池的电量。
如果系统电压线路上的二极管选用SS14降低0.2V左右,那么时钟电路上的二极管选择管压降较大的LL4148降低0.6V左右则可以很好的解决这个问题。
当外部供电时,系统电源经过LDO转出的3.3V电压在经过SS14后得到大于电池经过LL4148后的电压,此时RX-8025T由主电源供电;外部停电后系统电源无电时,切换到锂电池供电状态。
2)电池电源采用储能电容以防止电压滞后锂电池在业内主流的选择为1200mAh容量的锂亚硫酰氯电池,供电电压为3.66V,自身容量年损耗极小,可以忽略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压下降, 且内部晶 振也停止工作
)’+
计时功能单元 可进行至阳历的下二位数和年、 月、 日、 星期、
* *
B B
* B
正常状态 电压下降, 但内部晶 振继续工作
时、 分、 秒各个时段寄存器的设定 = 计时 = 读取, 当阳 历的下二位数为 # 的倍数时,可自动识别闰年, 且 自动判别至 )*"" 年,推荐应用此功能于复费率电 子式电能表对不同时段的电量的设定和读取及抄 表系统的定时抄表器上。
令, 收到应答信号后, 再发要读数据的地址, 收到应 答信号后, 再发起始位后, 主器件向 W*)+ 芯片发送 读指令, 收到应答信号后, 就开始读数据, 读完后再 发非应答信号后结束。格式见图 + 。
!’)
子程序举例框图及清单 作为一个简单的应用实例, 我们给出以下 S>T
!’B’)
读操作 首先主器件( 微处理器) 向 W*)+ 芯片发送写指
OEFV 位 来 设 置 和 监 视 ERES3 TO 报 警 。 当 OER,、 OEFV 都 为 B 时 , 则 表 示 当 前 时 间 与 , ERES3 TO 的 设 定 时 刻 一 致 , = 9(@M 置 “ R” ERES3TO 报警功能有效,发生 ERES3TO 警报; 主 机 可 通 过 表 ! 各 寄 存 器 的 AER,、 AEFV 位 来 设 置和监视 ERES3TA 报警,当 AER,、 AEFV 都为 B 时 , 则 表 示 当 前 时 间 与 ERES3TA 的 设 定 时 刻 一 致, , = 9(@E 置 “ R” ERES3TA 报警功能有效,发生 ERES3TA 警报。 T +* T
总第 !" 卷 第 ##" 期
电测与仪表
$%&’!" (%’##" 32:’ )**!
)**! 年 第 + 期
,&-./01.2& 3-2450-6-7/ 8 974/056-7/2/1%7
实时时钟芯片 !"#$%&’ 的原理及其应用
田春雨, 张旭辉, 赵玉梅, 罗玉荣, 牟
( 哈尔滨电工仪表研究所, 哈尔滨 ;+**#*) 摘要: 简要介绍了一种实时时钟芯片 <=>?*)+ 的主要特点、 工作原理和实际应用。 关键词: 实时时钟; 串行 ,,@<A3; 3BC+; 单片机; 9)B 总线 中图分类号: D(E+, D3"!+ 文献标识码: F 文章编号: ;**;>;!"*( )**!) *+>**#?>*#
动停止检测和电源电压监视单元、 中断发生和闹钟 报警单元、 其内部 9 Y A 控制单元和计时功能单元等。 电路框图示于图 )。
图;
<=>?*)+ 管脚排列示意图
)’;
计时精度调整单元 该单元通过软件设置时钟调整寄存器 ( 见表
其定义如下: 串行时钟输入端; CBK: 串行地址 Y 数据 9 Y A 端; CWX:
制)
C #" C
总第 !" 卷 第 ##" 期
电测与仪表
$%&’!" (%’##" 32:’ )**!
)**! 年 第 + 期
,&-./01.2& 3-2450-6-7/ 8 974/056-7/2/1%7
;<(、 = >?@、 $A,@ 位来监测。见表 )。
表)
;<( = >?@ $A,@ * * *
LA,:此脚为控制 LATD 输出时钟信号的输入 脚内置下拉电DX: 外 部 中 断 X 输 出 , 输 出 闹 钟 中 断
( 及固定周期中断; XKX<3>W)
?
!"#$%&’ 简介 <=>?*)+ 引脚见图 ; 所示。
Y 9(DF: 外 部 中 断 F 输 出 , 输 出 闹 钟 中 断 ( 及固定周期中断; XKX<3>Z) 测验脚, 此脚接在 $WW 上; D,CD: 正电源; $WW: 接地端; [(W: 无内部连接; (’B’: & !"#$%&’ 内部框图及其工作原理 振 <=>?*)+ 器件主要包括计时精度调整单元、
地址 功能
! 应用软件 !’B 数据传输格式
首先主器件发出启动信号,其次是命令帧、 地 址帧和数据帧格式, 所有的命令、 数据和地址字节 都是首先传输最高位, 每传输一个数据字节, 存储 器内部地址计数器将增加,直到传到最后一个字 节, 每送一字节均有应答信号, 最后发出停止信号。
图!
数据传输时序图
节因素和温度变动对计时准确度的调整,它的调 整 范 围 为 !)<=>?@A;>"’;B;* C=, 调 整 准 确 度 单 位 为 A!’*+B;*C=,并且每 )*4 进行内部调整时钟一次。 注意不用此功能时要将 D= 到 D* 清 * 。 它的调整过程见表 ;。 表; 高精度调整时钟精确度表
!)<=<’<?@!H!)<=<’<C!)<=>I J !)<=>KC"’;=B;*C=; ( 计算对目前偏移量 的 最 佳 调 整 数 据 ( )) ;* 进
调整数据K偏移量 J 调整分辨率KC"’;= J !’*+ 四舍五入小数点以后) ; "C!( 计算设制调制码( ( !) ;= 进制) 调制码设制时,因为是 < 位二进制码,所以用
;)> ( >*?)减去调整数据,得到调制码。调制码 K
十进制) 十六进制) 。 ;)>C!K;)+( K>*?C*!?K<L?( 例 )’ 当 DEFG 时钟输出为 !)<=>’!?@ 时的计时 校准调整。 ( 确定目前的偏移量 ;)
!’B’B
写操作 首先主器件( 微处理器) 向 W*)+ 芯片发送写指
M1/N
M1/K
M1/+ = B)G)# = Q4/
M1/#
・
M1/! M1/) @-4/
・
M1/B H/B O2CD
M1/* H/* A2CD
令, 收到应答信号后, 主器件再向 W*)+ 芯片发送要 写入数据的地址, 收到应答信号后, 再发送要写的 数据, 再发一个应答信号后结束。格式见图 # 。
!)<=>’!?@!H!)<=>’!C!)<=>I J !)<=>KM"’;=B;*C=;
( 计算对目前偏移量 的 最 佳 调 整 数 据 ( )) ;* 进 图) 内部结构图 制) 偏移量 J 调整分辨率) 调 整 数 据 K( M;K( M"’;= J 四舍五入小数点以后) ; !’*+) M;"#( ( 计算设制调制码( , 对 # 取 ;= 进制 !) ;= 进制) 调制码K*#?( 十六进制) 。 )’) 多种检测功能单元 包括电源复位检测功能、 振动停止检测功能、 电 源电压降低检测功能, 并对监测结果进行总结评估。 反映在控制寄存器 )( 见表 !) 的相关位上, 通过确认 这一结果可认知电源、 振荡电路及计时状态。 ( 电源复位检测, 可以通过 NE( 位来监测, 当 ;) 读该位为 * 时, 则没有监测到上电复位状态; 当读该 位为 ; 时, 则监测到上电复位状态。 ( 振荡停止检测, 是对振荡停止事件进行记忆 )) 的。 ( 电源是否降过, 从而判断此时计时数据是否 !) 当读该位为 * 时, 则 有效。 可以通过 J OPG 位来监测, 监测到内部晶振停止工作状态,可能电源过 *$ 或 后备电源下降,此时计时数据无效;当读该位为 ; 时, 则没有监测到内部晶振停止工作状态, 此时计时 数据有效。 ( 电源电压降低的检测, 是对供电电压比设定 #) 电压低的事件进行记录。检测电压可由寄存器设定 为 )’;$ 和 ;’!$ 两 种 电 压 中 的 一 种 Q 它 可 以 通 过 时钟调整举例: 例 ;’当 DEFG 时钟输出为 !)<=<’<?@ 时的计时 校准调整。 确定目前的偏移量 ( ;) 则没 $LPR、 $L,G 位来监测。当读 $L,G 位为 * 时, 有监测到电压下降, 当读该位为 ; 时, 则监测到电压 下降;当读 $LPR 位为 * 时,则标准电压值设定为 )’;$;当读该位为 ; 时,则表示标准电压值设定为 该功能每秒抽样进行电源电压监视一次, 也可 ;’!$。 用于电池的电源电压监视。 ( 总结其监测结果并进行分析评估, 可以通过 +)
监测评估表
针对现象分析原因 时钟出现反常状态, 可能是 温度下降引起的。 时钟出现反常状态, 可能是 电压下降引起的。 正常状态 时钟正常, 但有一种反常状态 存在, 可能后备电池出现异常。 时钟状态必须初始化, 否则就 会出现电压下降。
电压与振荡周期状态 没有电压下降, 但内 部晶振停止工作
*
*
B
引 言
)
此脚为由 LA, 控制的 !)’EU?SGV 时钟输 LATD: 出端;
<=>?*)+ 是 ,@CA( 公 司 生 产 的 一 种 9 B 总 线
接口方式的实时计时芯片, 它内置高精度可调整的
!)’EU?SMV 水晶振子,具有 U 种中断发生功能、 )个
系统闹钟功能、 振动停止检测功能、 电源电压监视 功能和时钟精度调整功能。因此在各种手机、 智能 仪表、 控制装置及其它电子领域中得到广泛应用。
放
560 7,89.87:0 -94 -77:8.-+839* 3; ,0-:#+8<0 .:3.= <34>:0 !"#$%&’