上海市八年级上学期数学10月月考试卷
上海市八年级上学期数学10月月考试卷
上海市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·姜堰模拟) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2016·岳阳) 下列长度的三根小木棒能构成三角形的是()A . 2cm,3cm,5cmB . 7cm,4cm,2cmC . 3cm,4cm,8cmD . 3cm,3cm,4cm3. (2分)如果在△ABC中,∠A=60°+∠B+∠C,则∠A等于()A . 30°B . 60°C . 120°D . 140°4. (2分)等腰三角形的一个角是48°,它的一个底角的度数是()A . 48°B . 48°或42°C . 42°或66°D . 48°或66°5. (2分)等腰三角形一腰上的高线与底边的夹角等于()A . 顶角B . 底角C . 顶角的一半D . 底角的一半6. (2分)(2011·衢州) 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A . 1B . 2C . 3D . 47. (2分)如图,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A . 3B . 6C . 12D . 248. (2分)下列各组条件中,能判定△ABC≌△DEF的是()A . AB=DE,BC=EF,∠A=∠DB . ∠A=∠D,∠C=∠F,AC=EFC . AB=DE,BC=EF,△ABC的周长= △DEF的周长D . ∠ A=∠D,∠B=∠E,∠C=∠F9. (2分)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是()A . 6B . 5C . 10D . 810. (2分)(2018·仙桃) 如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A . 1B . 1.5C . 2D . 2.5二、填空题 (共9题;共13分)11. (1分) (2020七下·建湖月考) 若等腰三角形的两边的长分别是3cm、7cm,则它的周长为________cm.12. (1分)(2012·宜宾) 如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=________.13. (1分)如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是________ cm.14. (1分) (2019八上·江津期中) 如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________.15. (5分)(2017·枣庄模拟) 如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为________.16. (1分) (2017八下·南江期末) 如图,平行四边形中, ,点为的中点,则________。
上海市静安区民立中学2021-2022学年八年级上学期10月月考数学试题(解析版)
【答案】见解析
【详解】试题分析:将原方程整理成一般式,根据方程有两个相等的实数根即可得出关于k的一元二次方程,解方程即可求出k值,将k的值代入原方程解方程即可得出结论.
试题解析:
=
=
即
当 , =0
当 , =0
.
22.如图利用长25米的一段围墙,用篱笆围一个长方形的场地做鸡场,中间用篱笆分割出2个小长方形,与墙平行的一边上和中间用篱笆的隔离各开一扇宽为1米的门,总共用去篱笆的长度为51米,为了使这个长方形 的面积为216平方米,求 边各为多少米?
C、2 是二次根式,不符合题意;
D、 是二次根式,不符合题意;
故选:B.
【点睛】本题考查了二次根式的定义,注意二次根式的被开方数是非负数.
2.下列方程一定是一元二次方程的是( )
A.xy+x=yB.x2=﹣1
C.ax2+bx=0D.(x﹣5)x=x2﹣2x﹣1
【答案】B
【分析】本题根据一元二次方程的定义解答.
【详解】解: ﹣2 = ;
中,∵ , ,∴ ,
∴ .
故答案为: ; .
【点睛】本题主要考查了二次根式的化简以及二次根式的乘法运算等知识,灵活运用二次根式的性质是解题关键.
8.分母有理化: =___.
【答案】
【分析】分母中含有根号,则需分子分母同时乘以分母的有理化因式: 的有理化因式是它本身, 的有理化因式是 .
【详解】解:∵关于x的方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,
∴“天宫”方程的一个解为 ,
方程 是“天宫”方程,
,
, , ,
上海市实验学校东校2024-2025学年上学期八年级数学10月月考试卷
上海市实验学校东校2024-2025学年 上学期八年级数学10月月考试卷一、单选题1的一个有理化因式是( )A B C D 2.下列二次根式中,属于最简二次根式的是( )A B C D 3.下列方程中,是关于x 的一元二次方程的是( )A .2210x x +-=B .2(2)(5)(32)x x x -=-+C .2(23)(1)(41)x x x +=-+D .2220x xy y ++= 4.下列各组中的两个根式是同类二次根式的是( )A .B D 5.使用配方法解一元二次方程251x x +=时,方程两边应同时加上( )A .52B .54C .254D .254-6.化简二次根式 )A B C D二、填空题7.891=-a ,则a 的取值范围是.10.方程22x x =的根是.11.已知2y =,则2x y +=.120)b <.13.最简二次根式m =.14=.15.若关于x 的一元二次方程()22110m x x m -++-=有一个根为0,则m 的值为.16.已知6,4a b ab +=-=,求 17.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a +220181a +的值为. 18.定义:如果两个一元二次方程分别有两个实数根,且至少有一个公共根,那么称这两个方程互为“联根方程”.已知关于x 的两个一元二次方程2(3)30x a x a -++=和22(1)20a x a x a ---+=互为联根方程,那么a 的值为.三、解答题19.计算:2021x x ≤22.解方程:(1)23(1)480x --=(2)222x x +=(3)2(25)(1)(52)x x x x -=--(4)22410x x +-=23.(111,28a b ==. (2)已知a 242a a -+的值.24.阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程20ax bx c ++=的两个根分别是12,x x ,那么1212,b c x x x x a a +=-=.例如:已知方程22350x x +-=的两根分别是12,x x ,则:1212355,222b c x x x x a a -+=-=-===-. 请同学们阅读后利用以上结论完成以下问题:(1)已知方程22210x x --=的两根分别是12,x x ,求12x x +和21x x 的值;(2)已知方程2236x x -=的两根分别是12,x x ,求221122x x x x ++的值.25.材料一:由222=-=可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==; 材料二:根式化简112⎛== ⎝;12==. 根据以上材料,请完成下列问题:=_______;(直接写结果) (2)(3);(4).。
上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)
【19题答案】
【答案】A
【分析】将方程解的条件化为函数的取值,从而求出m的取值范围.
【详解】∵方程x2+(m+2)x+m+5=0的一个根大于1,另一个根小于1,
令f(x)=x2+(m+2)x+m+5,
则f(1)=1+m+2+m+5<0,
解得,m<-4.
故选A.
【点睛】本题考查了函数与方程之间的互相转化,属于基础题.
4.当 _____时,函数 是正比例函数,且 的值随 的值增大而减小.
【4题答案】
【答案】0
【分析】根据正比例函数的意义,可得答案.
【详解】∵函数 是正比例函数,
∴ ,
解得, , ,
∵y的值随x的值增大而减小,
∴m-2<0,即m<2
∴m=0,
故答案为0.
【点睛】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.
【答案】C
【分析】先提取公因式4后,观察方程4(x2+2x- ),可以令x2+2x- =0,用配方法解得两根x1、x2,则 =4(x2+2x- )=(x-x1)(x-x2).
【详解】 =4(x2+2x- )
令x2+2x- =0,则x2+2x=
∴x2+2x+1= +1,即(x+1)2=
解得, , ,
∴ =4
【点睛】本题考查了一元二次方程的解的定义:就是能够使方程左右两边相等的未知数的值,此题应特别注意一元二次方程的二次项系数不得为零.
10.关于 的代数式 是一个完全平方式,则 _____.
上海市宝山区泗塘中学2021-2022学年八年级上学期10月月考数学试题
先用十字相乘分解,再用平方差公式分解即可.
解:x4+3x2﹣10
=
=
故答案为: .
本题考查了实数范围内因式分解,解题关键是熟练运用因式分解的方法在实数范围内进行分解.
10.化简: =___, =___.
①. ②.
利用二次根式的乘法法则对 化简,二次根式的除法法则对 进行化简.
解: ,
故答案为: ;
本题考查了化简最简二次根式,熟练掌握二次根式的化简方法是解题的关键.
11.当x=___二次根式 有最小值,最小值为___.
①.-1②.
把 配方得: ,即可解决.
∵
∴
当x=-1时, 有最小值,从而 有最小值,且最小值为
故答案为:-1,
本题考查了配方法及求最小值,关键是配方.
12.若m2x3﹣(2x+1)2+(n﹣3)x+5=0是关于x的一元二次方程,且不含x的一次项,则m=___,n=___.
18. .
先把二次根式化为最简二次根式,然后合并即可
解:原式=
本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解题的关键.
19. .
先化简二次根式,再合并即可.
解:
=
= .
本题考查了二次根式的运算,解题关键是熟练运用二次根式性质进行化简,准确进行二次根式加减.
20. .
13.若 ,则xy=_______
40
根据二次根式的性质,被开方数大于等于0,列不等式组求x,代入已知等式求y.
解:根据二次根式的性质,得
,解得x=8,
此时y=5,
所以xy=40.
八年级(上)月考数学试卷(10月份)附答案
八年级(上)月考数学试卷(10月份)一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个二、填空题(每小题2分,共20分)8.角的对称轴是.9.若等腰三角形的顶角为50°,则它的底角为.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= °11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= °.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= .15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠(角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD .参考答案与试题解析一、选择题(每小题2分,共16分)1.如图,下列图案是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个考点:轴对称图形.分析:根据轴对称图形的概念对各图形分析判断即可得解.解答:解:第1个图形是轴对称图形,第2个图形不是轴对称图形,第3个图形是轴对称图形,第4个图形是轴对称图形,综上所述,轴对称图形有3个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A. SSS B. SAS C. SSA D. AAS考点:全等三角形的判定.分析:求出∠PDA=∠PEA=90°,∠DAP=∠EAP,根据AAS推出两三角形全等即可.解答:解:∵PD⊥AB,PE⊥AF,∴∠PDA=∠PEA=90°,∵AP平分∠BAF,∴∠DAP=∠EAP,在△APD和△APE中∴△APD≌△APE(AAS),故选D.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.① B.② C.③ D.④考点:全等三角形的应用.分析:假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S) B.(S、A、S) C.(A、S、A) D.(A、A、S)考点:全等三角形的判定与性质;作图—基本作图.分析:利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.解答:解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.点评:考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.5.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A. 15cm B. 20cm C. 25cm D. 20cm或25cm考点:等腰三角形的性质;三角形三边关系.分析:分5cm是腰长和底边两种情况讨论求解即可.解答:解:5cm是腰长时,三角形的三边分别为5cm、5cm、10cm,∵5+5=10,∴不能组成三角形,10cm是腰长时,三角形的三边分别为5cm、10cm、10cm,能组成三角形,周长=5+10+10=25cm,综上所述,此三角形的周长是25cm.故选C.点评:本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CD B. CD垂直平分ABC. AB与CD互相垂直平分 D. CD平分∠ACB考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件AC=AD,利用线段的垂直平分线的性质的逆用可得点A在CD的垂直平分线上,同理,点B也在CD的垂直平分线上,于是A是符合题意的,是正确的,答案可得.解答:解:∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.点评:本题考查的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;两点确定一条直线.分别应用垂直平分线性质定理的逆定理是解答本题的关键.7.如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有()A. 2个 B. 3个 C. 4个 D. 5个考点:等腰三角形的判定.分析:根据等腰三角形的判定,运用直角三角形的两个锐角互余和角平分线的性质,证得∠CAD=∠BAD=30°,CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形.解答:解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD是角平分线,∴∠CAD=∠BAD=30°,∴AD=BD.∴△ABD是等腰三角形.∵AD是角平分线,∠ACB=90°,DE⊥AB,∴CD=ED∴AC=AE∴△CDE、△ACE是等腰三角形;又△CEB也是等腰三角形显然此图中有4个等腰三角形.故选C.点评:本题考查了等腰三角形的判定;要综合运用直角三角形的两个锐角互余和角平分线的性质,找到相等的线段,来判定等腰三角形.二、填空题(每小题2分,共20分)8.角的对称轴是角平分线所在的直线.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形.解答:解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.点评:注意:对称轴必须说成直线.9.若等腰三角形的顶角为50°,则它的底角为65°.考点:等腰三角形的性质.分析:等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和直接求出底角,答案可得.解答:解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65.故填65.点评:本题主要考查了等腰三角形,的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.10.如图,△ABC≌△DEF,由图中提供的信息,可得∠D= 70 °.考点:全等三角形的性质.分析:根据三角形的内角和定理求出∠A,再根据全等三角形对应角相等可得∠D=∠A.解答:解:在△ABC中,∠A=180°﹣∠B﹣∠C=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴∠D=∠A=70°.故答案为:70.点评:本题考查了全等三角形的性质,根据对应边确定出∠A和∠D是对应角是解题的关键.11.如图8,点C、D在BE上,BC=DE,∠1=∠2,要使得△ABD≌△AEC,还需要添加一个条件,你添加的条件是∠B=∠C(答案不唯一).考点:全等三角形的判定.专题:开放型.分析:添加的条件:∠B=∠C,根据等式的性质可得∠BAD=∠EAC,DB=CE,可根据AAS判定△ABD≌△AEC.解答:解:添加的条件:∠B=∠C,∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠EAC,∵CB=DE,∴CB+CD=DE+CD,即DB=CE,在△ABD和△AEC中,∴△ABD≌△AEC(AAS),故答案为:∠B=∠C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用三角形的稳定性.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:这是利用三角形的稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.如图,AB⊥AC,点D在BC的延长线上,且AB=AC=CD,则∠ADB= 22.5 °.考点:等腰三角形的性质;三角形的外角性质.专题:计算题.分析:由已知可得到∠B=∠ACB=45°,∠CAD=∠CDA,再根据三角形外角的性质可得到∠ACB 与∠ADB之间的关系,从而不难求解.解答:解:∵AB=AC=CD,AB⊥AC,∴∠B=∠ACB=45°,∠CAD=∠CDA∵∠ACB=∠CAD+∠CDA=2∠ADB=45°∴∠ADB=22.5°.故答案为:22.5°.点评:此题主要考查等腰三角形的性质及三角形的外角的性质的综合运用.14.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC= 5 .考点:等腰三角形的判定与性质;平行线的性质.分析:由BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,易得△BOD与△COE是等腰三角形,又由△ADE的周长为9,可得AB+AC=9,又由△ABC的周长是14,即可求得答案.解答:解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为29,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∴BC=5.故答案为:5.点评:此题考查了等腰三角形的性质与判定.此题难度适中,注意掌握数形结合思想的应用.15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.考点:利用轴对称设计图案.分析:利用轴对称图形的性质分别得出符合要求的答案即可.解答:解:如图所示:与△ABC成轴对称的有△ACG、△AFE、△BFD、△CHD、△CGB一共有5个.故答案为:5.点评:此题主要考查了利用轴对称设计图案,根据已知得出所有符合要求的答案注意不要漏解.17.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8 根.考点:等腰三角形的性质.专题:应用题;压轴题.分析:根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.解答:解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.点评:此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、作图题(每小题5分,共10分)18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.19.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP 上找一点Q,使QB=QC.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.解答:解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.点评:本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.四、解答题20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30° B. 40° C. 45° D. 36°考点:等腰三角形的性质.分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解答:解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.点评:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.21.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.考点:全等三角形的判定.专题:证明题.分析:首先根据AC∥DE,利用平行线的性质可得:∠ACB=∠E,∠ACD=∠D,再根据∠ACD=∠B证出∠D=∠B,再由∠ACB=∠E,AC=CE可根据三角形全等的判定定理AAS证出△ABC≌△CDE.解答:证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS,选用哪一种方法,取决于题目中的已知条件,22.如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4.试判断AD和BC的关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:根据ASA证△ABD≌△ACD,推出AB=AC,根据等腰三角形的性质得出即可.解答:解:AD⊥BC,AD平分BC,理由是:∵在△ABD和△ACD中∴△ABD≌△ACD(ASA)∴AB=AC,∵∠1=∠2,∴AD⊥BC,AD平分BC(等腰三角形三线合一性质).点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,注意:等腰三角形顶角的平分线,底边上的高,底边上的中线互相重合.23.已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.考点:等边三角形的性质.分析:根据△ABC为等边三角形,D为AC边上的中点得到AC=BA,∠BAC=∠BCA=60°,BD ⊥AC,求出∠BDA=90°,由CE∥AB得∠ACE=∠BAD,利用90°﹣∠ACE=90°﹣∠BAD得出∠CAE=∠ABD.解答:解:∠CAE=∠ABD,理由如下:∵△ABC为等边三角形,D为AC边上的中点,∴AC=BA,∠BAC=∠BCA=60°,BD⊥AC,∴∠BDA=90°,∵AE⊥CE,∴∠AEC=∠BDA=90°,又∵CE∥AB,∴∠ACE=∠BAD,∴90°﹣∠ACE=90°﹣∠BAD,即∠CAE=∠ABD.点评:本题主要考查等边三角形的性质的知识点,解答本题的关键是熟练掌握等边三角形边角之间的关系,此题难度不大.24.已知:如图,AD、BC相交于点O,AO=BO,∠C=∠D=90°.求证:AD=BC.考点:全等三角形的判定与性质.专题:证明题.分析:利用等角对等边以及全等三角形的判定与性质得出即可.解答:证明:∵AO=BO,∴∠OAB=∠OBA,在△ABC和△BAD中,∴△ABC≌△BAD(AAS).∴AD=BC.点评:此题主要考查了全等三角形的判定与性质等知识,根据已知得出△ABC≌△BAD是解题关键.25.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.考点:等腰三角形的判定与性质.专题:证明题.分析:连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.解答:证明:连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,即∠CBD=∠CDB,∴CD=CB.点评:此题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.26.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M; AC 的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)由在△ABC中,AB=AC,∠BAC=120°,可求得∠B与∠C的度数,又由AB的垂直平分线交AB于E,交BC于M;可得AM=BM,继而求得∠MAB的度数,则可求得∠AMN的度数,继而求得答案;(2)易得△AMN为等边三角形,则可得AM=AN=MN,又由BM=AM,CN=AN,即可证得结论.解答:(1)解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵直线ME垂直平分AB,∴BM=AM,∴∠B=∠MAB=30°,∴∠AMN=∠B+∠MAB=60°,同理可得:∠ANM=60°.∴∠MAN=180°﹣60°﹣60°=60°;(2)证明:∵在△AMN中,∠AMN=∠ANM=∠MAN=60°,∴△AMN为等边三角形.即 AM=AN=MN,又∵BM=AM,CN=AN,∴BM=CN.点评:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握转化思想与数形结合思想的应用.27.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.易得DE=AD+BE(不需证明).(1)若直线CE绕C点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE、AD、BE之间的数量关系,并说明理由;(2)若直线CE绕C点旋转到图3的位置时,其余条件不变,请直接写出此时DE、AD、BE 之间的数量关系(不需证明).考点:旋转的性质;全等三角形的判定与性质.专题:探究型.分析:(1)DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:由∠ACB=90°,BE⊥CE,AD⊥CE,则∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,得到∠CAD=∠BCE,可证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.证明的方法与(1)一样.解答:解:(1)不成立.DE、AD、BE之间的数量关系是DE=AD﹣BE,理由如下:如图2,∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,∵AC=CB,∠CAD=∠BCE,∠ADC=∠CEB=90°∴∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=AD﹣BE;(2)DE、AD、BE之间的关系是DE=BE﹣AD.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心连线段的夹角等于旋转角.也考查了三角形全等的判定与性质.28.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠BAD=∠CAD (角平分线的定义).在△ABD和△ACD中,∴△ABD≌△ACD SAS .考点:全等三角形的判定.专题:证明题.分析:首先根据角平分线定义可得到∠BAD=∠CAD,再利用SAS定理可证明△ABD≌△ACD.解答:证明:∵AD平分∠BAC(已知).∴∠BAD=∠CAD(角平分线定义),在△ABD和△ACD中,,∴△ABD≌△ACD (SAS).故答案为CAD,SAS.点评:本题主要考查了全等三角形的判定,判定两个一般三角形全等的方法有四种:AAS,SAS,SSS,ASA.。
沪科版八年级数学上册月考试题及答案(2020版)
沪科版八年级数学(上册)月考试卷▶考试范围:第12章——第14章◀注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页:3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分) 1.在平面直角坐标系中,点P (6,-a2-3)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.小明不慎将一块三角形的玻璃打碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小形状完全一样的三角形玻璃?应该带( )去。
A.第1块 B.第2块 C.第3块 D.第4块3.下列长度的三条线段不能组成三角形的是( ) A.5、8、11 B.5、6、11 C.6、8、11 D.5、6、84.如图,已知AB=AC ,则不一定能使△ABD △ACD 的条件是( ) A.BD=DC B.∠ABD=∠ACD=90° C.∠BDA=∠CDA D.∠BAD=∠CAD5.方程组⎩⎨⎧=+=+2164732y x y x 的解的情况是( )A.无解B.有一组解C.有无穷多组解D.不确定6.如图所示,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A=25°,则∠BDC 等于( ) A.50 B.60° C.70° D.80°7.如图,AB//CD ,AD//BC ,AELBD ,CF1BD 垂足分别为E 、F 两点,则图中全等的三角形有( ) A.1对 B.2对 C.3对 D.4对8.等腰三角形的一条边长为3cm ,另一条边长为6cm ,则它的周长是( ) A.12cm B.15cm C.12cm 或15cm D.不确定 9.△ABC 中,AC=5,中线AD=6,则AB 边的取值范围是( ) A.1<AB<11 B.4<AB<16 C.5<AB<17 D.7<AB<1710.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (-0.5,0)、B (2,0),则不等式(kx+b )(mx+n )>0的解集为( )A.-0.5<x<2B.0<x<2C.x>2D.x<-0.5或x>2 二、填空题(每小题5分,共20分)11.已知点P (a ,b )在一次函数y=-5x+3的图象上,则5a+b -2=________。
上海市浦东新区八年级上学期数学10月月考试卷附解析版答案
A.
ቤተ መጻሕፍቲ ባይዱ
B.
.
4.二次根式
的一个有理化因式是( )
A.
B.
C. x2+y2=4 C. x≤1
C. C.
D. 6
D. D.
5.以下各式中,计算正确的选项是( )
A.
B.
C.
D.
2-4x-9=0,可变形为( ) A. (x-2)2=9
B. (x-2)2=13
C. (x+2)2=9
2)2=13
二、填空题(本大题共有 12 小题,每题 3 分,共 36 分)
故答案为:C. 【分析】根据二次根式的加法、乘法和除法的法那么,逐项进行判断,即可求解. 6.【解析】【解答】解: x2-4x-9=0, ∴ x2-4x=9, ∴ x2-4x+4=9+4, ∴〔x-2〕2=13. 故答案为:B. 【分析】根据配方法的步骤,先把方程化成 x2-4x=9 的形式,两边同时加上 4,把左边写成完全平方的 形式,即可求解. 二、填空题(本大题共有 12 小题,每题 3 分,共 36 分)
,
∴二次根式
的有理化因式是
.
故答案为:D. 【分析】两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有
理化因式,根据有理化因式的定义,利用平方差公式得出
, 即可求解.
5.【解析】【解答】解:A、
, 故 A 不正确;
B、
, 故 B 不正确;
C、
, 故 C 正确;
D、
,故 D 不正确.
D. (x+
7.化简:
=________ 。
8.
的倒数是________ 。
上海市八年级上学期数学10月联考试卷
上海市八年级上学期数学10月联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)下列图案中,轴对称图形是()A .B .C .D .2. (2分)小民用五根木条钉成了如图所示的两个三角形,且AB=AC,BD=CD,若为锐角三角形,则中的最大角a的取值范围是()A .B .C .D .3. (2分)如图,Rt△ABC中,CF是斜边AB上的高,角平分线BD交CF于G,DE⊥AB于E,则下列结论①∠A=∠BCF ,② CD=CG=DE, ③AD=BD ,④ BC=BE中正确的个数是()A . 1B . 2C . 3D . 44. (2分) (2016八上·余杭期中) 能把一个三角形分成面积相等的两部分的是该三角形的()A . 角平分线B . 中线C . 高D . 一边的垂直平分线5. (2分)(2019·南关模拟) 已知,用尺规作图的方法在上确定一点,使,下列作图正确的是()A .B .C .D .6. (2分)下列说法中,正确的个数有().(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA==2MN (4)连结两点的线段叫做两点间的距离A . 1B . 2C . 3D . 47. (2分)如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC,交BC于点D.若BC=6cm,则CD的长为()A . 2cmB . 3cmC . 4cmD . 5cm8. (2分) (2019七上·武威期末) 如图是一条停泊在平静湖面上的小船,那么表示它在湖中倒影的是()A .B .C .D .9. (2分)(2019·长春模拟) 如图,点A是反比例函数y=图象上一点,过点A作x轴的平行线交反比例函数y=﹣的图象于点B ,点C在x轴上,且S△ABC=,则k=()A . 6B . ﹣6C .D . ﹣二、填空题 (共9题;共9分)10. (1分) (2015八上·武汉期中) 如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2 ,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________ cm.11. (1分) (2019八上·绍兴月考) 如图,已知 ,要使 ,还需添加一个条件,则可以添加的条件是________。
上海市浦东新区进才中学北校2021-2022学年八年级上学期10月月考数学试题(解析版)
解得:b= (负值已舍),
所以正方形的面积为: .
故答案为: .
【点睛】本题主要考查了图形的剪拼,解一元二次方程,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值,从而求出边长,求面积.
三、简答题(本大题共8小题,每题4分,共32分)
19.计算: .
【答案】
【分析】根据二次根式的性质化简,再进行加减运算即可
【详解】
【点睛】本题考查了二次根式 混合运算,根据二次根式的性质化简是解题的关键.
20.计算: .
【答案】
【分析】直接利用二次根式的乘除运算法则化简求出答案.
【详解】原式= .
【点睛】本题考查的是二次根式的计算,熟练掌握运算法则是解题的关键.
【答案】
【分析】设平均每月印刷量增长的百分率 ,则根据题意列出一元二次方程即可解决问题.
【详解】设平均每月印刷量增长的百分率 ,则根据题意,得,
故答案为: .
【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.
16.已知关于 的一元二次方程 ,其中 , ,则该方程的两个解是____________________.
【详解】试题分析:(1)一元二次方程有两个不相等的实数根,则k-3≠0,△>0,公共部分就是k的取值范围.
2021-2022学年上海市浦东新区进才中学北校八年级第一学期月考数学试卷(10月份)
一、选择题(本大题共6小题,每小题3分,共18分)
1.下列二次根式中,是最简二次根式的是()
A. B. C. D.
【答案】A
【分析】根据最简二次根式的要求:①被开方数不含能开得尽方的因数或因式,②被开方数的因数是整数,字母因式是整式,逐一进行判断即可.
上海市黄浦大同初级中学2022-2023学年八年级上学期数学专项作业练习(10月月考
(3)已知22a,b是整数,k是常数),要使S为“完美数”,=++-+(S a ab b b k4512试求出符合条件的一个k值,并说明理由.拓展应用:(4)已知实数a,b满足2530+的最小值.a a b-++-=,求a b(2)9±(3)当36k=时,S是完美数,理由见解析(4)a b+的最小值为-1【分析】(1)根据“完美数”的定义依次进行判断即可;(2)利用配方法进行转化,然后求得对应系数的值,进而得出结果;(3)利用完全平方式把原式变形,根据“完美数”的定义,即可证明结论;(4)利用配方法和非负数的性质,即可求得a+b的最小值.【详解】(1)解:∵29=25+4=52+22,13=9+4=32+22,48和28不能表示成两个数的平方和,∴“完美数”有29和13,故答案为:①③;(2)解:∵a2−6a+18=(a−3)2+9=(a−m)2+n2,∴m=3,n2=9,∴n=±3,∴mn=±9.故答案为:±9;(3)解:(答案不唯一,合理即可)当36k=时,S是完美数;理由如下:22S a ab b b=++-+451236222=+++-+441236a ab b b b=()()22++-a b b26∵a,b是整数,∴2a b和6+b-也是整数,∴当36k=时,S是完美数;(4)解∶∵2530-++-=,a a b∴243+=-+,a b a a∴2441+=-+-,a b a a∴()221a b a+=--,∵()220a-³,∴()2211a--³-,∴a b+的最小值为-1.【点睛】本题考查了配方法的应用,理解 “完美数”的定义并能够灵活配方是解决问题的关键.。
上海市第四中学2021-2022学年八年级上学期10月月考数学试卷(解析版)
【答案】 且
【分析】由题意可知,此方程为一元二次方程且有两个实数根,则 且 求解即可.
【详解】解:由题意可知,此方程为一元二次方程且有两个实数根,
则 且 ,即
化简得 ,解得
所以 且
故答案为 且
【点睛】本题考查了根的判别式、一元二次方程的定义,根据题意列出不等式是解题的关键.
【详解】解:∵BQ平分∠ABC,BQ⊥AE,
在△BQA和△BQE中,
,
∴△BQA≌△BQE,
∴BA=BE,
同理可证△CAP≌△CDP,得到AC=CD,
∵BE+CD=AB+AC=26-BC=26-10=16,
∴DE=BE+CD-BC=6,
故答案为:6
【点睛】本题主要考察全等三角形的判定和性质,熟练掌握全等三角的判定和性质是解题的关键.
【详解】∵实数x、y满足y= + +9,
∴1-2x≥0且2x-1≥0,
解得x= ,
∴y=9,
∴ = =3,
故答案为:3.
【点睛】本题考查了二次根式的非负性,分数指数幂,熟练掌握二次根式的性质,灵活运用分数指数幂的运算法则是解题的关键.
10.不等式 x﹣ > x的解集是__.
【答案】 ##
【分析】移项,合并同类项,系数化成1,再分母有理化即可.
【详解】解:移项得 ,
合并同类项,得 ,
系数化成1,得 ,
故答案为: .
【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.注意分母有理化.
11.方程x2+4x+4=0的根是_____.
上海市八年级上学期数学10月月考试卷
上海市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分)下列关于x的方程中,属于一元二次方程的是()A . x﹣1=0B . x2+3x﹣5=0C . x3+x=3D . ax2+bx+c=02. (2分)把根号外的因式移入根号内得()A .B .C .D .3. (2分) (2020八下·海安月考) 规定则的值是()A .B .C .D .4. (2分)(2019·高台模拟) 关于的一元二次方程的根的情况是()A . 有两不相等实数根B . 有两相等实数根C . 无实数根D . 不能确定二、填空题 (共12题;共13分)5. (2分) (2020八下·上饶月考) 已知x、y为实数,且y= ,则x+y=________.6. (1分) (2019八下·余杭期中) 化简=________.7. (1分)若与是同类二次根式,那么整数x可以是________(写出一个即可)8. (1分) (2016九上·黑龙江月考) 已知关于的一元二次方程的一个根是1,则k=________9. (1分) (2019九上·兰州期末) 方程转化为一元二次方程的一般形式是________.10. (1分)(2020·吉林模拟) 一元二次方程x2﹣ x+(b+1)=0无实数根,则b的取值范围为________.11. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=4的根是________.12. (1分)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为________ .13. (1分)(2018·温岭模拟) 已知命题“对于非零实数 a,关于 x 的一元二次方程 ax2+4x- 1=0 必有实数根”,能说明这个命题是假命题的一个反例是________.14. (1分)在实数范围内分解因式:x2y﹣3y=________15. (1分)(2020·哈尔滨模拟) 据媒体报道,我国2017年公民出境旅游总人数5 000万人次,2019年公民出境旅游总人数7 200万人次,则这两年我国公民出境旅游总人数的年平均增长率为________。
2017-2018学年上海中学八年级(上)月考数学试卷(10月份)
2017-2018学年上海中学八年级(上)月考数学试卷(10月份)一、填空题(每空3分,共36分)1.(3分)不解方程,判别3x2+4x=2方程的根的情况:.2.(3分)在实数范围内分解因式:2x2+3xy﹣y2=.3.(3分)已知方程2x2+3x﹣4=0的两根为x1,x2,那么x12+x22=.4.(3分)如果三角形的三边长分别为2、、,那么这个三角形的面积为.5.(3分)如果一个直角三角形的两条边的长分别为5、4,那么第三边的长等于.6.(3分)当m时,关于x的方程﹣x=5是一元二次方程.7.(3分)已知关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是.8.(3分)某商品原价100元,连续两次降低价格后现售价81元,若每次降价率相同,那么降价率为.9.(3分)已知直角坐标平面内的两点A(1,4)、B(﹣3,2),那么A、B两点间的距离等于.10.(3分)如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=12,则点D到AB的距离是.11.(3分)如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在D′,则重叠部分的面积为.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为.二、选择题(每题3分,共12分)13.(3分)下列关于x的方程中一定有实数解的是()A.x2+x+1=0B.x2﹣2x+4=0C.x2﹣2x﹣m=0D.x2﹣mx+m﹣1=014.(3分)以下列各组数为边长的三角形中,能够构成直角三角形的是()A.32,42,52B.C.D.15.(3分)如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,AC=2,BC=4,那么下列结论中错误的是()A.∠B=30°B.CM=C.CD=D.∠ACD=∠B 16.(3分)如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为()A.5米B.4米C.3米D.2米三、解下列关于x的方程(每题5分,共20分)17.(20分)解下列关于x的方程(1)x2﹣4x﹣2=0(2)四、解答题(前四题每题5分,后两题每题6分,共32分)18.(5分)若关于x的一元二次方程(2m﹣1)x2﹣2x+1=0有两个不相等的实数根.(1)求m的取值范围;(2)当m+=11时,求的值.19.(5分)已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.20.(5分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.21.(5分)是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个共同根,如果存在,求出这个实数m及两个方程的公共根;如果不存在,请说明理由.22.(6分)如图,已知四边形ABCD中,AB=24,AD=15,BC=20,CD=7,∠ADB+∠CBD=90°,求四边形ABCD的面积.23.(6分)如图所示,在Rt△ABC中.∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C 以2cm/s的速度移动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积为4cm2.(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm.(3)在(1)中△PBQ的面积能否等于7cm2?说明理由.2017-2018学年上海中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空题(每空3分,共36分)1.(3分)不解方程,判别3x2+4x=2方程的根的情况:有两个不相等的实数根.【分析】计算判别式的符号进行判断即可.【解答】解:∵3x2+4x=2可变形为3x2+4x﹣2=0,∴△=42﹣4×3×(﹣2)=16+24=40>0,∴该方程有两个不相等的实数根,故答案为:有两个不相等的实数根.【点评】本题主要考查根的判别式,掌握根的情况与根的判别式的关系是解题的关键.2.(3分)在实数范围内分解因式:2x2+3xy﹣y2=2(x﹣y)(x﹣y).【分析】首先求出2x2+3xy﹣y2=0的根,进而分解因式得出即可.【解答】解:令2x2+3xy﹣y2=0,则x1=y,x2=y,则2x2+3xy﹣y2=2(x﹣y)(x﹣y).故答案为:2(x﹣y)(x﹣y).【点评】本题主要考查对一个多项式进行因式分解的能力,当要求在实数范围内进行分解时,分解的结果一般要分到出现无理数为止是解答此题的关键.3.(3分)已知方程2x2+3x﹣4=0的两根为x1,x2,那么x12+x22=.【分析】由2x2+3x﹣4=0的两根为x1,x2,可推出x1+x2=,x1,x2==﹣2,然后通过配方法对x12+x22进行变形得(x1+x2)2﹣2x1x2,最后代入求值即可.【解答】解:∵2x2+3x﹣4=0的两根为x1,x2,∴x1+x2=,x1,x2==﹣2,∴x12+x22=(x1+x2)2﹣2x1x2=+4=.故答案为.【点评】本题主要考查一元二次方程根与系数的关系,配方法的应用,关键在于根据题意推出x1+x2=,x1,x2==﹣2,利用配方法正确的对x12+x22进行变形,认真的进行计算.4.(3分)如果三角形的三边长分别为2、、,那么这个三角形的面积为.【分析】先根据勾股定理的逆定理判定三角形是直角三角形,再求其面积.【解答】解:∵三角形的三边长分别是2、、,∴22+()2=()2,∴这个三角形为直角三角形,∴这个三角形的面积是×2×=.故答案为:.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.(3分)如果一个直角三角形的两条边的长分别为5、4,那么第三边的长等于3或.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时,求另一条直角边的长;二是当这个直角三角形两条直角边的长分别为5、4时,求斜边的长.然后根据勾股定理即可求得答案.【解答】解:当这个直角三角形的斜边的长为5时,第三边的长等于=3;当这个直角三角形两条直角边的长分别为5、4时,第三边的长等于=.故答案为:3或.【点评】此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是运用运用分类讨论的思想,分析该题有两种情况.6.(3分)当m=﹣时,关于x的方程﹣x=5是一元二次方程.【分析】根据一元二次方程定义可得m2﹣3=2,且m﹣≠0,再解即可.【解答】解:由题意得:m2﹣3=2,且m﹣≠0,解得:m=﹣,故答案为:=﹣.【点评】此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.7.(3分)已知关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是k<且k≠0.【分析】关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k×1=1﹣4k>0,∴k<,∴k的取值范围为:k<且k≠0;故答案为:k<且k≠0.【点评】本题考查了一元二次方程根的判别式的应用,根与系数的关系,关键是不要忽略一元二次方程二次项系数不为零这一隐含条件.8.(3分)某商品原价100元,连续两次降低价格后现售价81元,若每次降价率相同,那么降价率为10%.【分析】设降价率为x,根据原价及经两次降价后的售价,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设降价率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:降价率为10%.故答案为:10%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.(3分)已知直角坐标平面内的两点A(1,4)、B(﹣3,2),那么A、B两点间的距离等于.【分析】根据两点间的距离公式进行计算,即A(x,y)和B(a,b),则AB=.【解答】解:∵直角坐标平面内的两点A(1,4)、B(﹣3,2),∴AB==2.故答案是:.【点评】此题考查了坐标平面内两点间的距离公式,能够熟练运用公式进行计算.10.(3分)如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=12,则点D到AB的距离是.【分析】过D作DE⊥AB与E,过D作DF⊥AC于F,由AD是△ABC的角平分线,根据角平分线的性质,可得DE=DF,又由△ABC的面积等于48,AC=12,AB=16,S△ABC=S△ABD+S△ACD,即可求得答案.【解答】解:过D作DE⊥AB与E,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积等于48,AC=12,AB=16,∴S△ABC =S△ABD+S△ACD=AB•DE+AC•DF=AB•DE+AC•DE=DE(AB+AC),即×DE×(12+16)=48,解得:DE=.故答案为:.【点评】此题考查了角平分线的性质以及三角形的面积问题,正确的作出辅助线是解题的关键.11.(3分)如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在D′,则重叠部分的面积为10.【分析】过点F作FE⊥AC,垂足为E,由勾股定理得:AC=4,然后证明△ACF 为等腰三角形,由等腰三角形的性质可求得AE的长,接下来证明△AEF∽△ABC,从而可求得EF的长为,最后根据三角形的面积公式求得△ACF的面积即可.【解答】解:如图所示:过点F作FE⊥AC,垂足为E.由勾股定理得:AC==4.∵DC∥AB,∴∠DCA=∠CAB.由翻折的性质可知:∠DCA=∠D′CA.∴∠FAC=∠FCA.∴AF=CF.又∵FE⊥AC.∴AE=CE=2.∵∠EAF=∠BAC,∠FEA=∠CBA=90°,∴△AEF∽△ABC.∴,即.∴=10.故答案为:10.【点评】本题主要考查的是相似三角形的性质和判定、勾股定理、翻折变换,证得△ACF为等腰三角形,由等腰三角形的性质可求得AE的长是解题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为2.【分析】连结CE交AB于F点,根据勾股定理得AB=5,再根据折叠的性质得CE=CA=4,DE=AD,∠E=∠A,有DE∥BC得到∠1=∠B,则∠1+∠E=90°,得到CE⊥AB,于是可根据面积法计算出CF=,所以EF=CE﹣CF=,然后证明△DEF∽△BCF,利用相似比可计算出DE=2,于是得到AD=2.【解答】解:连结CE交AB于F点,如图,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵△ACD沿CD所在的直线翻折,点A落在点E的位置,∴CE=CA=4,DE=AD,∠E=∠A,∵DE∥BC,∴∠1=∠B,而∠A+∠B=90°,∴∠1+∠E=90°,∴∠DFE=90°,∵CF•AB=AC•BC,∴CF==,∴EF=CE﹣CF=4﹣=,∵DE∥BC,∴△DEF∽△BCF,∴DE:BC=EF:CF,即DE:3=:,∴DE=2,∴AD=2.故答案为2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、相似三角形的判定与性质.二、选择题(每题3分,共12分)13.(3分)下列关于x的方程中一定有实数解的是()A.x2+x+1=0B.x2﹣2x+4=0C.x2﹣2x﹣m=0D.x2﹣mx+m﹣1=0【分析】根据根的判别式△=b2﹣4ac的值的符号就可以判断下列方程有无实数解.【解答】解:A、△=1﹣4=﹣3<0,所以没有实数解,故本选项错误;B、△=4﹣16=﹣12<0,所以没有实数解,故本选项错误;C、△=4+4m,当m≥﹣1时,△=4+4m≥0,原方程有实数解;当m<﹣1时,△=4+4m<0,原方程没有实数解;故本选项错误;D、△=m2﹣4(m﹣1)=(m﹣2)2≥0,原方程有实数解,故本选项正确.故选:D.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(3分)以下列各组数为边长的三角形中,能够构成直角三角形的是()A.32,42,52B.C.D.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、因为(32)2+(42)2≠(52)2所以三条线段不能组成直角三角形;B、因为22+()213≠()2所以三条线段能组成直角三角形;C、因为(1)2+(﹣1)2=()2,所以三条线段能组成直角三角形;D、因为()2+()2≠()2,所以三条线段不能组成直角三角形;故选:C.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.15.(3分)如图,在Rt△ABC中,∠ACB=90°,如果CD、CM分别是斜边上的高和中线,AC=2,BC=4,那么下列结论中错误的是()A.∠B=30°B.CM=C.CD=D.∠ACD=∠B【分析】解直角三角形求出,即可判断A;求出斜边,根据直角三角形性质即可求出CM;根据三角形面积公式即可求出CD;根据三角形内角和定理即可求出∠B=∠ACD.【解答】解:A、∵tanB==≠,∴∠B≠30°,故本选项正确;B、由由勾股定理得:AB==2,∵CM是斜边AB中线,∴CM=AB=,故本选项错误;C、由三角形面积公式得:AC×BC=AB×CD,即2×4=2×CD,CD=,故本选项错误;D、∵CD⊥AB,∴∠CDA=90°=∠ACB,∴∠A+∠B=90°,∠A+∠ACD=90°,∴∠ACD=∠B,故本选项错误;故选:A.【点评】本题考查了直角三角形性质,勾股定理,三角形内角和定理等知识点的应用,主要考查学生的推理能力和计算能力.16.(3分)如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为()A.5米B.4米C.3米D.2米【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+32x﹣x2=20×32﹣540,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+32x﹣x2=20×32﹣540,整理得(x﹣26)2=576,开方得x﹣26=24或x﹣26=﹣24,解得x=50(舍去)或x=2,所以道路宽为2米.故选:D.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.三、解下列关于x的方程(每题5分,共20分)17.(20分)解下列关于x的方程(1)x2﹣4x﹣2=0(2)【分析】(1)由于一次项系数是偶数,二次项系数为1,可用配方法或者公式法求解;(2)先去分母、去括号整理原方程,再用因式分解法或公式法求解.【解答】解:(1)移项,得x2﹣4x=2,两边都加4,得x2﹣4x+4=6,即(x﹣2)2=6,∴x﹣2=±,∴x=2±,∴x1=2+,x2=2﹣;(2)去括号,得x2﹣4x=3x﹣4,整理,得x2﹣7x+4=0,去分母,得3x2﹣14x+8=0,∴(3x﹣2)(x﹣4)=0∴x1=,x2=4.【点评】本题考查了一元二次方程的解法,属于常见题型,难度不大,掌握一元二次方程的解法是关键.四、解答题(前四题每题5分,后两题每题6分,共32分)18.(5分)若关于x的一元二次方程(2m﹣1)x2﹣2x+1=0有两个不相等的实数根.(1)求m的取值范围;(2)当m+=11时,求的值.【分析】(1)由方程根的性质,根据根的判别式可得到关于m的不等式,可求得m的取值范围;(2)由m的取值范围可求得<0,再利用=﹣求值即可.【解答】解:(1)∵方程(2m﹣1)x2﹣2x+1=0有两个不相等的实数根,∴△>0且2m﹣1≠0且m≥0即(﹣2)2﹣4(2m﹣1)>0且m≠且m≥0,解得0≤m<1且m≠;(2)由(1)可得0≤m<1且m≠,∴<0,∴=﹣=﹣=﹣=﹣3.【点评】本题主要考查二次根式的性质及根的判别式,利用根的判别式求得m 的取值范围是的关键.19.(5分)已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.【分析】(1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可解的k的值.【解答】解:(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得k﹣1≠0,∴k≠1且△=﹣12k+13>0,可解得k<且k≠1;(2)假设存在两根的值互为相反数,设为x1,x2,∵x1+x2=0,∴﹣=0,∴k=,又∵k<且k≠1,∴k不存在.【点评】本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.20.(5分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【分析】可设矩形草坪BC边的长为x米,则AB的长是米,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:•x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程.21.(5分)是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个共同根,如果存在,求出这个实数m及两个方程的公共根;如果不存在,请说明理由.【分析】联立两方程,解方程组即可求得共同的根,把根代入方程可求得m的值.【解答】解:存在.由题意联立两方程可得,解得x=1,把x=1代入x2+mx+2=0可得m=﹣3,即当m=﹣3时,两方程有公共根,公共根为1.【点评】本题主要考查方程根的定义及解方程,联立方程求得m的值是解题的关键.22.(6分)如图,已知四边形ABCD中,AB=24,AD=15,BC=20,CD=7,∠ADB+∠CBD=90°,求四边形ABCD的面积.【分析】作∠DBM=∠BDA,∠BDN=∠DBA,射线BM,DN交于A′,可得△A′BD ≌△ADB,可得:∠A′BD=∠ADB,A′B=AD=15,A′D=AB=24,连接A′C,由∠ADB+∠CBD=90°,得到∠A′BD+∠CBD=90°,证得∠A′BC=90°,根据勾股定理得到A′C=25,根据勾股定理的逆定理得到△A′DC是直角三角形,于是得到结果.【解答】解:作∠DBM=∠BDA,∠BDN=∠DBA,射线BM,DN交于A′,可得△A′BD ≌△ADB,可得:∠A′BD=∠ADB,A′B=AD=15,A′D=AB=24,如图1,连接A′C,∵∠ADB+∠CBD=90°,∴∠A′BD+∠CBD=90°,即∠A′BC=90°,∴A′B2+BC2=A′C2,∵A′B=15,BC=20,∴A′C=25,在R t△A′CD中,A′D=24,CD=7,∴A′D2+CD2=576+49=625,∵A′C2=625,∴A′D 2+CD 2=A′C 2.∴△A′DC 是直角三角形,且∠A′DC=90°,∴S 四边形A′BCD=S △A′BC +S △A′CD=×20×15+×24×7=234,∵S △A'BD =S △ABD ,∴S 四边形ABCD =S 四边形A'BCD =234.【点评】本题考查了全等三角形的判定和性质,勾股定理,三角形的面积,正确的画出图形是解题的关键.23.(6分)如图所示,在Rt △ABC 中.∠B=90°,AB=5cm ,BC=7cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,那么几秒后,△PBQ 的面积为4cm 2.(2)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PQ 的长度等于5cm .(3)在(1)中△PBQ 的面积能否等于7cm 2?说明理由.【分析】(1)经过x 秒钟,△PBQ 的面积等于4cm 2,根据点P 从A 点开始沿AB边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解;(2)利用勾股定理列出方程求解即可;(3)结合(1)列出方程判断其根的情况即可.【解答】解:(1)设x秒后,△BPQ的面积为4cm2,此时AP=xcm,BP=(5﹣x)cm,BQ=2xcm,由BP×BQ=4,得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).当x=4时,2x=8>7,说明此时点Q越过点C,不合要求,舍去.答:1秒后△BPQ的面积为4cm2.(2)由BP2+BQ2=52,得(5﹣x)2+(2x)2=52,整理得x2﹣2x=0,解方程得:x=0(舍去),x=2.所以2秒后PQ的长度等于5cm;(3)不可能.设(5﹣x)×2x=7,整理得x2﹣5x+7=0,∵b2﹣4ac=﹣3<0,∴方程没有实数根,所以△BPQ的面积为的面积不可能等于7cm2.【点评】此题主要考查了一元二次方程的应用以及二次函数的应用,找到关键描述语“△PBQ的面积等于4cm2”“PQ的长度等于5cm”,得出等量关系是解决问题的关键.第21页(共21页)。
上海八年级上学期数学10月月考试卷
上海八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八上·三明期末) 9的平方根是()A . ±3B . 3C . 81D . ±812. (2分) (2017八上·信阳期中) 下列说法正确的()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A . ①②B . ②③C . ③④D . ②④3. (2分)一个三角形的三条边长分别为1、2,则x的取值范围是()A . 1≤x≤3B . 1<x≤3C . 1≤x<3D . 1<x<34. (2分)下列命题正确的有()个①40°角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。
A . 1个B . 2个C . 3个D . 4个5. (2分) (2016八上·绵阳期中) 如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A . 50°B . 60°C . 55°D . 65°6. (2分)(2018·攀枝花) 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A . 1B . 2C . 3D . 47. (2分)如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A . 30°B . 40°C . 50°D . 70°8. (2分)如图AB∥DE,∠1=30°,∠C=80°,则∠2=()A . 110°B . 150°C . 50°D . 无法计算9. (2分) (2017八上·北海期末) 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A . 44°B . 66°C . 96°D . 92°10. (2分) (2017七下·栾城期末) 如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3的度数等于()A . 20°B . 30°C . 50°D . 55°二、填空题 (共6题;共6分)11. (1分) (2018七下·于田期中) 若m是的算术平方根,则________ .12. (1分) (2018八上·阿城期末) 若正多边形的一个内角等于150°,则这个正多边形的边数是________13. (1分)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为________度.14. (1分) (2019八下·湖州期中) 如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.则结论一定成立的是________.15. (1分)(2018·湘西) 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.16. (1分)一个三角形的两个内角是35°和110°,则另一个内角是________.三、解答题 (共8题;共75分)17. (10分)(2012·湖州) 解方程组.18. (5分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF(2)若CD=6,CA=8,求AE的长19. (10分) (2019·安徽模拟) 如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠CED=________°;(2)如图2.若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AD= ,请求出DE的长.20. (10分) (2019八上·江岸期中) 如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上(1)直接写出坐标:A________,B________(2)①画出△ABC关于y轴的对称的△DEC(点D与点A对应)②用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹)21. (5分) (2017八下·广州期中) 如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22. (10分) (2017八下·重庆期中) 某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2) t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.(3)发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A 重合)时,刚好与2号车迎面相遇.他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(4)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?23. (10分) (2019七下·二道期中) 如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反向延长线与∠BAO的平分线交于点D,①若∠BAO=60°,则∠D=________°;(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,则∠D=________°;(3)若将“∠MON=90°”改为“∠MON= ”,,,其余条件不变,则∠D=________°(用含的代数式表示).24. (15分) (2017九上·福州期末) 在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(x,|x ﹣y|),则称点Q为点P的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P在函数y=x﹣1的图像上,其“关联点”Q与点P重合,求点P的坐标;(3)如果点M(m,n)的“关联点”N在函数y=x2的图像上,当0≤m≤2时,求线段MN的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共75分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、24-3、。
上海中学八年级10月月考数学试题
上海中学八年级10月月考数学试题班级:姓名:成绩:一、选择题(每小题3分,共45分)1.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D. 4个2.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A. B. C. D.3.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根B. 1根C. 2根D. 3根4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等5. 对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高 B.直角三角形只有一条高C.任意三角形都有三条高 D.钝角三角形有两条高在三角形的外部6.一个正多边形的每个外角都是36°,那么它是()A. 正六边形B. 正八边形C. 正十边形D. 正十二边形7. 如右图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A. 70°B. 80°C. 100°D. 110°8.十边形的对角线条数是()A.10B. 20C.35D.709. 等腰三角形的一个内角是80°,则它的底角是()A. 50°B. 80°C. 50°或80°D. 20°或80°10.如下图,将一副三角板按图中方式叠放,则角α等于()A. 30°B. 45°C. 60°D. 75°11.如下图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15° B. 20° C. 25° D. 30°12.如下图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A. SSSB. SASC. ASAD. AAS13.具有下列条件的两个等腰三角形,不能判断它们全等的是()A. 两腰对应相等B. 底边、一腰对应相等C. 顶角、一腰对应相等D. 一底角、底边对应相等14.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和② 15. 如图,在△ABC 中,∠A=50°,点D 、E 分别在AB 、AC 上,∠1+∠2=( ).A.100°B.260°C.230°D.50°二、解答题(共75分)16.(6分)求下列图形中x 的值:17.(6分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.(7分)如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。
上海市宝山区刘行新华实验学校2021-2022学年八年级上学期10月月考数学试卷2(解析版)
一、选择题(每题4分,共24分)
1.下列式子中一定是二次根式的是()
A. B. C. D.
【答案】C
【分析】根据二次根式的定义即可求解,形如 的代数式是二次根式.
【详解】解:A、 , ,不是二次根式,不符合题意;
B、 是三次根式,不符合题意;
∴k2-2018k+1=0,
∴k-2018+ =0,
∴k+ =2018;
∴k2=2018k-1,
∴
=2018k-1-2017k+
=k-1+
=2018-1
=2017.
故答案为:2018;2017.
【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
三、简答题(每题6分,共36分)
【答案】
【分析】根据二次根式在实数范围内有意义可得: 解得即可得出答案.
【详解】解:因为 在实数范围内有意义,
所以 ,解得: ;
故答案为: .
【点睛】本题考查二次根式有意义的条件,熟练掌握二次根号下大于等于0是本题解题关键.
8.若 成立,则 的取值范围是__________.
【答案】x>2
【分析】根据二次根式有意义的条件即可求出答案.
【详解】解: , ,
,
原式 ;
故答案为: .
【点睛】本题考查二次根式的性质以及化简,理解二次根式有意义的条件和二次根式的性质是解题关键.
10.在实数范围内因式分解: ______.
【答案】
【分析】将12化成 ,利用平方差公式分解即可.
【详解】解: x2-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市八年级上学期数学10月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)对于所有实数a,b,下列等式总能成立的是()
A . (+)2=a+b
B . =a+b
C . =a2+b2
D . =a+b
2. (2分) (2020八下·随县期末) 下列二次根式是最简二次根式的是()
A .
B .
C .
D .
3. (2分)与﹣2的乘积是有理数的是()
A . ﹣2
B .
C . 2﹣
D . +2
4. (2分) (2019九上·思明期中) 一元二次方程2x2=2x﹣3的一次项系数是()
A . ﹣2
B . 2
C . ﹣3
D . 3
5. (2分) (2017九上·黄冈期中) 已知关于的方程的一个根是,则代数式的值等于()
A . 1
B . -1
C . 2
D . -2
6. (2分)对任意实数a,则下列等式一定成立的是()
A .
B .
C .
D .
二、填空题 (共12题;共12分)
7. (1分) (2020八下·沈阳期中) 代数式有意义时,x应满足的条件是________.
8. (1分) (2019八下·北京期末) 计算: =________, =________, =________.
9. (1分) (2019八下·天台期末) 若二次根式有意义,则的取值范围是________.
10. (1分)观察下列运算过程:
……
请运用上面的运算方法计算:
=________.
11. (1分) (2020八下·北京期末) 一元二次方程的根是________.
12. (1分) (2018七下·浦东期中) 如果 =81 ,那么 y = ________
13. (1分)在根式、、中,与是同类二次根式的是________ .
14. (1分)(2020·苏州模拟) 若关于x的一元二次方程x2-2x+m=0有实数解,则m的取值范围是________。
15. (1分) (2020八上·沈阳月考) 的相反数是________.
16. (1分) (2018九上·黄冈月考) 已知关于的一元二次方程有两个相等的实数根,
则的值是________.
17. (1分) (2019八下·博白期末) 若有意义,则m能取的最小整数值是________.
18. (1分)已知为有理数,分别表示的整数部分和小数部分,且,则
________.
三、解答题 (共10题;共56分)
19. (5分) (2020八下·巴彦淖尔期中) 计算
(1)
(2)
20. (5分) (2017八下·福建期中) 计算:
(1);
(2).
21. (5分) (2019八下·大连月考)
(1)
(2)
22. (5分)(2018·广州模拟) 解方程:
(1)
(2)
23. (5分) (2019九上·武威期中) 解方程:
(1) x2﹣4x=12
(2) x2﹣3x+1=0
24. (5分)解方程
(1)(x﹣2)2﹣25=0
(2) 3(x﹣2)2=x(x﹣2)
(3) x2﹣2x﹣99=0
(4)(2x+1)(x﹣2)=﹣1.
25. (5分)(2015·义乌) 计算下列各题
(1);
(2)解不等式:3x﹣5≤2(x+2)
26. (5分)已知:x+ =3,求x4+ 的值.
27. (5分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
28. (11分) (2019八上·安国期中) 观察下列各式及验证过程
= ,验证: = = = ;
= ,验证: = = = ;
= ,验证: = = = ;
(1)按照上述三个等式及其验证过程的基本思路,猜想 =________;
(2)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(3)针对上述各式反映的规律,写出用n(n≥2的自然数)表示的等式,并进行验证.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共12题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共10题;共56分)
19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、
23-1、23-2、24-1、24-2、24-3、24-4、
25-1、25-2、
26-1、27-1、28-1、28-2、28-3、。