2020湖南省高考数学试题(理数)
2020年全国卷Ⅰ理数高考试题(附答案word版)
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若z =1+i ,则|z 2–2z |=A .0B .1CD .22.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a = A .–4B .–2C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .124.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为A .5B .10C .15D .209.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=AB .23C .13D10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为 A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
2024年湖南省高考数学真题及参考答案
2024年湖南省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)
答案解析
1. 答案为: A. 解析:函数的定义域是
1 x-1 (0 ,+∞ ) ,且 f ′(x) =1- x= x ,
令 f ′(x) < 0,解得 0<x< 1,所以函数 f(x) 的单调递减区间是
(0 , 1) .
2. 答案为: B; 解析: B 中, y ′ =(xe x) ′ =ex+ xex=ex(x + 1)>0 在 (0 ,+∞ ) 上恒成立,∴ y=xex 在 (0 ,+∞ )
10. 答案为: D. 解析:不妨设导函数 y=f ′(x) 的零点依次为 x 1, x 2, x 3,其中 x1< 0<x 2< x 3, 由导函数图象可知, y=f(x) 在 (- ∞, x 1) 上为减函数,在 (x 1, x 2) 上为增函数, 在 (x 2, x 3) 上为减函数,在 (x 3,+∞ ) 上为增函数,从而排除 A, C. y=f(x) 在 x=x 1,x=x3 处取到极小值,在 x=x 2 处取到极大值,又 x2> 0,排除 B,故选 D.
上为增函数 .
对于 A、 C、 D 都存在 x>0,使 y′<0 的情况 .
3. 答案为: B;
解析:由题意知,函数的定义域为
1 (0 ,+∞ ) ,由 y′=x- ≤0,得 0<x≤1,
x
所以函数的单调递减区间为 (0,1] .
4. 答案为: B; 解析:∵ f(x)=x 3-ax ,∴ f ′(x) =3x2-a. 又 f(x) 在 (-1,1) 上单调递减, ∴ 3x2- a≤0在 (-1,1) 上恒成立,∴ a≥3,故选 B.
函数 f(x) 的单调递增区间是 ( )
A. (-1 , 1) , (3 ,+∞ )
B . (- ∞, -1) , (1 , 3)
2022年湖南省高考数学真题及参考答案
2022年湖南省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
高考数学理数立体几何大题训练(含答案)
高考数学理数立体几何大题训练(含答案)1.(2020·新课标Ⅲ·理)在长方体中,点P、Q分别在棱AB、CD上,且AP=CQ.(1)证明:点PQ平分长方体的体对角线;(2)若PQ在平面BCFE内,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M、N分别为BC、B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,底面是内接正三角形ABC,P为上一点,AP为底面直径,DP⊥底面.(1)证明:DP平分∠ADC;(2)求二面角平面APD与平面ABC的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱ABC-A1B1C1中,点P、Q分别在棱AB、A1B1上,且AP=A1Q,平面PQC1为棱BC1的中垂面,M为棱AC的中点.(Ⅰ)求证:PM∥B1Q,且PM=B1Q;(Ⅱ)求二面角平面PQC1与直线PM所成角的正弦值;(Ⅲ)求直线B1Q与平面PQC1所成角的正弦值.6.(2020·江苏)在三棱锥ABCD中,已知CB=CD=1,AC=2,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC上一点,DE⊥平面BCD,DE=1.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F-DE-C的大小为θ,求sinθ的值.7.(2020·北京)如图,正方体ABCD-EFGH中,E为AD的中点,P为BF上一点.(Ⅰ)求证:PE∥CG;(Ⅱ)求直线PE与平面CGH所成角的正弦值.8.(2020·浙江)如图,三棱台DEF-ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,XXX.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在等边三角形ABC的三棱锥ABCD中,D为底面的中点,E为线段AD上一动点,记DE=λAD.(1)当λ=1时,求证:DE与平面ABC垂直;(2)当λ=2时,求直线BE与平面ACD所成角的正弦值.求证:直线AD与平面BCD垂直;2)若平面ABD与平面ACD所成二面角为,求二面角ABC与平面BCD所成二面角的正弦值。
2023年湖南省高考数学真题及参考答案
2023年湖南省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
2024年全国高考甲卷理数真题试卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )A .10iB .2iC .10D .2-2.集合{}{}1,2,3,4,5,9,A B A ==,则∁A (A ∩B )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A .5B .12C .2-D .72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A .2-B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A .4B .3C .2D6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A .16B .13C .12D .237.函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭( )A.1B.1-CD.19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-”是“//a b ”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B=,294b ac =,则sin sin A C +=( )A.32B C D 12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y++-=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .二、填空题13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a -=-,则=a .16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值.23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A B A ==,则∁A (A ∩B )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A .5B .12C .2-D .72-根据5z x y =-可得1155y x z =-,即则该直线截距取最大值时,z 有最小值,此时直线4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A .2-B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A .16B .13C .12D .237.函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1-C D .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“ ”的必要条件10.设是两个平面,是两条直线,且.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确;②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误;①③正确,故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32B C D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )故选C二、填空题13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.15.已知1a >,115log log 42a -=-,则=a .16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+()(42Δ102443464k k k =-+21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;0f x ≥a.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值.【答案】(1)221y x =+满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)见解析(2)见解析。
2020年高考数学(理)二轮专题学与练 13 立体几何中的向量方法(考点解读)(原卷版)
专题13 立体几何中的向量方法空间向量及其应用一般每年考一道大题,试题一般以多面体为载体,分步设问,既考查综合几何也考查向量几何,诸小问之间有一定梯度,大多模式是:诸小问依次讨论线线垂直与平行→线面垂直与平行→面面垂直与平行→异面直线所成角、线面角、二面角→体积的计算.强调作图、证明、计算相结合.考查的多面体以三棱锥、四棱锥(有一条侧棱与底面垂直的棱锥、正棱锥)、棱柱(有一侧棱或侧面与底面垂直的棱柱,或底面为特殊图形一如正三角形、正方形、矩形、菱形、直角三角形等类型的棱柱)为主.1.共线向量与共面向量(1)共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对(x ,y ),使p =xa +yb .2.两个向量的数量积向量a 、b 的数量积:a ·b =|a ||b |cos 〈a ,b 〉. 向量的数量积满足如下运算律: ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一有序实数组{x ,y ,z },使p =xa +yb +zc .推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →.4.空间向量平行与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R);a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 5.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·a =a 21+a 22+a 23, cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(3)平面的法向量如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量. 6.空间角的类型与范围 (1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.7.用向量求空间角与距离的方法(1)求空间角:设直线l 1、l 2的方向向量分别为a 、b ,平面α、β的法向量分别为n 、m . ①异面直线l 1与l 2所成的角为θ,则cos θ=|a ·b ||a ||b |.②直线l 1与平面α所成的角为θ,则sin θ=|a ·n ||a ||n |.③平面α与平面β所成的二面角为θ,则|cos θ|=|n ·m ||n ||m |. (2)求空间距离①直线到平面的距离,两平行平面间的距离均可转化为点到平面的距离. 点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).②设n 与异面直线a ,b 都垂直,A 是直线a 上任一点,B 是直线B 上任一点,则异面直线a 、b 的距离d =|AB →·n ||n |.高频考点一向量法证明平行与垂直1.(2019·高考浙江卷)如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC =30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.【举一反三】如图,在四棱锥PABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.证明:(1)BE⊥DC;(2)BE∥平面P AD;(3)平面PCD⊥平面P AD.【变式探究】如图所示,在底面是矩形的四棱锥P-ABCD中,P A⊥底面ABCD,E,F分别是PC,PD的中点,P A=AB=1,BC=2.(1)求证:EF∥平面P AB;(2)求证:平面P AD⊥平面PDC.【方法规律】利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算研究平行、垂直关系;(4)根据运算结果解释相关问题.【变式探究】在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD . 高频考点二、 向量法求空间角例2、(2019·高考全国卷Ⅱ)如图,长方体ABCD A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B EC C 1的正弦值.【变式探究】(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE∥平面P AB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角MABD的余弦值.【方法技巧】(1)利用空间向量求空间角的一般步骤①建立恰当的空间直角坐标系.②求出相关点的坐标,写出相交向量的坐标.③结合公式进行论证、计算.④转化为几何结论.【变式探究】(2017·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值.高频考点三 探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.例 3、如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD F 为60°,DE ∥CF ,CD ⊥DE ,AD =2,DE =DC =3,CF =6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B EG D 的余弦值为14.【举一反三】如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】如图所示,已知正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 的线段AA 1上.(1)当AE EA 1=12时,求证:DE ⊥BC 1;(2)是否存在点E ,使二面角D BE A 等于60°?若存在,求AE 的长;若不存在,请说明理由.1.(2019·高考全国卷Ⅱ)如图,长方体ABCD A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B EC C 1的正弦值.2. (2019·高考天津卷)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F 的余弦值为13,求线段CF 的长.3.(2019·高考浙江卷)如图,已知三棱柱ABC A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.1. (2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅱ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2. (2018年天津卷)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅱ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅱ)证明:直线FG与平面BCD相交.4. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.5. (2018年江苏卷)在平行六面体中,.求证:(1);(2)6. (2018年全国I卷理数)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.7. (2018年全国Ⅱ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.8. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.。
2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)
函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。
2020年高考理数真题试卷(新课标Ⅲ)
2020年高考理数真题试卷(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共60分)1.(5分)已知集合 A ={(x,y)|x,y ∈N ∗,y ≥x} , B ={(x,y)|x +y =8} ,则 A ∩B 中元素的个数为( ) A .2B .3C .4D .62.(5分)复数11−3i的虚部是( )A .−310B .−110C .110D .3103.(5分)在一组样本数据中,1,2,3,4出现的频率分别为 p 1,p 2,p 3,p 4 ,且 ∑p i 4i=1=1 ,则下面四种情形中,对应样本的标准差最大的一组是( ) A .p 1=p 4=0.1,p 2=p 3=0.4 B .p 1=p 4=0.4,p 2=p 3=0.1 C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.24.(5分)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型: I(t)=K 1+e −0.23(t−53),其中K 为最大确诊病例数.当I( t ∗ )=0.95K 时,标志着已初步遏制疫情,则 t ∗ 约为( )(ln19≈3) A .60B .63C .66D .695.(5分)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C的焦点坐标为( )A .( 14,0)B .( 12,0) C .(1,0)D .(2,0)6.(5分)已知向量a ,b 满足 |a →|=5 , |b →|=6 , a →⋅b →=−6 ,则 cos⟨a →,a →+b →⟩= ( )A .−3135B .−1935C .1735D .19357.(5分)在△ABC 中,cosC= 23,AC=4,BC=3,则cosB=( ) A .19B .13C .12D .238.(5分)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 √2B .4+4 √2C .6+2 √3D .4+2 √39.(5分)已知2tanθ–tan(θ+ π4 )=7,则tanθ=( )A .–2B .–1C .1D .210.(5分)若直线l 与曲线y= √x 和x 2+y 2= 15都相切,则l 的方程为( )A .y=2x+1B .y=2x+ 12C .y= 12 x+1D .y= 12 x+ 1211.(5分)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为 √5 .P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A .1B .2C .4D .812.(5分)已知55<84,134<85.设a=log 53,b=log 85,c=log 138,则( )A .a<b<cB .b<a<cC .b<c<aD .c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2020高考数学(理)必刷试题+参考答案+评分标准 (26)
2020高考数学模拟试题(理科)一、填空题(本大题共12小题)1.已知全集0,1,2,,集合1,,0,,则______.2.已知复数是虚数单位,则______3.关于x,y的二元一次方程组无解,则______4.直线的一个方向向量,直线的一个法向量,则直线与直线的夹角是______5.已知为钝角三角形,边长,,则边长______6.设常数,展开式中的系数为4,则______ .7.已知,则此函数的值域是______8.若函数的值域为,则的最小值为______9.已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为,则直线PC与平面PAB所成角的余弦值是______.10.在直角坐标系xOy中,曲线C的参数方程为,为参数,直线l的参数方程为,若C上的点到l距离的最大值为,则______11.已知a、b、c都是实数,若函数的反函数的定义域是,则c的所有取值构成的集合是______.12.已知双曲线的左、右焦点分别为,,过的直线与C的两条渐近线分别交于A、B两点,若,则双曲线C的渐近线方程为______二、选择题(本大题共4小题)13.设点不共线,则“与的夹角是锐角”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件14.若,,则A. B. C. D.15.定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,,,,中0的个数不少于1的个数,若,则不同的“规范01数列”共有A. 18个B. 16个C. 14个D. 12个16.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数,存在一个正数M,使得函数的值域包含于区间,例如,当时,,,则下命题为假命题的是A. 函数的定义域为D,则“的充要条件是“对任意的,存在,满足”B. 若函数,的定义域相同,且,,则C. 若函数有最大值,则D. 函数的充要条件是有最大值和最小值三、解答题(本大题共5小题)17.关于x的不等式的解集为.求实数a,b的值;若,,且为纯虚数,求的值.18.如图,在四棱锥中,平面ABCD,,,,,E为PD的中点,点F在PC上,且.求证:平面PAD;应是平面AEF与直线PB交于点G在平面AEF内,求的值.19.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧为圆弧的中点和线段MN构成,已知圆O的半径为40米,点P到MN的距离为50米,现规范在此农田修建两个温室大棚,大棚Ⅰ内的地块形状为梯形MNBA,其中,且,大棚Ⅱ内的地块形状为,要求A、B均在圆弧上,设OB与MN所成的角为.用表示多边形MAPBN的面积,并确定的取值范围;若分别在两个大棚内种植两种不同的蔬菜,且这两种蔬菜单位面积的年产值相等,求当为何值时,能使种植蔬菜的收益最大.20.已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点.求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l 的方程;若不存在,请说明两点.21.若定义在R上的函数满足:对于任意实数x、y,总有恒成立,我们称为“类余弦型”函数.已知为“类余弦型”函数,且,求和的值;在的条件下,定义数列2,3,求的值.若为“类余弦型”函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数,满足,判断和的大小关系,并证明你的结论.答案和解析1.【答案】【解析】解:全集0,1,2,,集合1,,0,,则故答案为.根据集合的基本运算即可求和结果;本题主要考查集合的基本运算,比较基础.2.【答案】5【解析】解:,,.故答案为:5.由商的模等于模的商求得,再由求解.本题考查复数模的求法,是基础的计算题.3.【答案】0【解析】解:时,方程组化为:,无解,舍去.时,两条直线平行时,可得:,无解.综上可得:.故答案为:0.对m分类讨论,利用两条直线平行时无解,即可得出.本题考查了两条直线平行的条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.4.【答案】【解析】解:直线的一个方向向量,直线的一个法向量,故直线的一个方向向量,设直线与直线的夹角是,则,,故答案为:.先求得直线的一个方向向量,两用两个向量的数量积的定义,求得直线与直线的夹角的余弦值,可得直线与直线的夹角.本题主要考查两个向量的数量积的定义,直线的方向向量和法向量,属于基础题.5.【答案】【解析】解:若c是最大边,则.,,又,,若b是最大边,必有,有,解可得,,综合可得.故答案为:.根据余弦定理和钝角的余弦函数小于0可求得c的范围,进而利用两边之差和小大于第三边,求得c的另一个范围,最后取交集,即可得解.本题主要考查了余弦定理的运用.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.6.【答案】【解析】解:常数,展开式中的系数为4,,当时,,,解得,,.故答案为:.由,根据的系数为4,求出,从而,解得,由此能求出的值.本题考查数列的前n项和极限的求法,是中档题,解题时要认真审题,注意二项式定理、极限性质的合理运用.7.【答案】【解析】解:令,,,则原函数化为,.,.原函数的值域为故答案为:令,由x的范围求得t的范围,再由二次函数求值域.本题考查利用换元法求函数的值域,是基础题.8.【答案】【解析】解:函数数,,,,根据正弦函数的性质:当时可得,,则则的最小值为.故答案为:根据x在上,求解内层函数的范围,即可由三角函数的性质可得答案.本题考查三角函数的性质的应用.属于基础题.9.【答案】【解析】解:在PC上任取一点D并作平面APB,则就是直线PC与平面PAB所成的角.过点O作,,因为平面APB,则,.≌,,≌,因为,所以点O在的平分线上,即.在直角中,,,则.在直角中,,则.即直线PC与平面PAB所成角的余弦值是.过PC上一点D作平面APB,则就是直线PC与平面PAB所成的角.能证明点O在的平分线上,通过解直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.本题考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力、转化能力.10.【答案】12【解析】解:曲线C的参数方程为,为参数,直线l的参数方程为,设曲线C上的点的坐标为,则P到直线l的距离:,,C上的点到l距离的最大值为,,解得.故答案为:12.设曲线C上的点的坐标为,则P到直线l的距离,由C上的点到l距离的最大值为,能求出a的值.本题考查实数值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.11.【答案】【解析】解:函数的反函数的定义域是,即函数的值域为,若,显然不合题意,则,此时的值域为;则需的值域包含,结合函数在内有意义,则.的所有取值构成的集合是.故答案为:.由题意可得,函数的值域为,当,显然不合题意,则,此时的值域为;然后结合反比例函数的图象及函数在内有意义,可得,则答案可求.本题考查互为反函数的两个函数特性间的关系,考查逻辑思维能力与推理运算能力,是中档题.12.【答案】.【解析】解:如图,,,则:,联立,解得,整理得:,,双曲线C的渐近线方程:.故答案为:.由题意画出图形,结合已知可得,写出的方程,与联立求得B点坐标,再由斜边的中线等于斜边的一半求解.求解渐近线方程即可.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.13.【答案】C【解析】【分析】本题考查充分条件、必要条件、充要条件的判断,考查向量等基础知识,考查推理能力与计算能力,属于中档题.“与的夹角为锐角”“”,“”“与的夹角为锐角”,由此能求出结果.【解答】解:点A,B,C不共线,若“与的夹角为锐角”,则,,“与的夹角为锐角”“”,若,则,化简得,即与的夹角为锐角,“”“与的夹角为锐角”,设点A,B,C不共线,则“与的夹角为锐角”是“”的充分必要条件.故选C.14.【答案】B【解析】解:,,则,,,故选:B.利用指数函数、对数函数、幂函数的单调性即可得出.本题考查了指数函数、对数函数、幂函数的单调性,考查了推理能力与计算能力,属于基础题.15.【答案】C【解析】【分析】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,共14个.故选C.16.【答案】D【解析】解:对于A,“的充要条件是“对任意的,存在,满足”“的值域为R”,故A正确;对于B,依题意,,,则,即,故B正确;对于C,若函数有最大值,则,此时,,,显然,即C成立;对于D,当,时,既无最大值又无最小值,但是,故D为假命题.故选:D.根据题目给出的定义,结合函数的定义域,值域情况逐个选项判断即可得到结论.本题考查新定义的理解和应用,考查了函数的值域,主要考查推理能力和计算能力,属于中档题.17.【答案】解:不等式即的解集为.,b是方程的两个实数根,,,解得,.为纯虚数,,,解得.【解析】由题意可得:,b是方程的两个实数根,利用根与系数的关系即可得出.为纯虚数,利用纯虚数的定义即可得出.本题考查了复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.18.【答案】解:证明:平面ABCD,,,,平面PAD.解:平面ABCD,,,,,E为PD的中点,点F在PC上,且.过A作,交BC于M,以A为原点,AM,AD,AP所在直线为x,y,z轴,建立空间直角坐标系,0,,2,,2,,0,,,1,,0,,,1,,,设平面AEF的法向量y,,则,取,得1,,设b,,,,则,b,,,,解得,,,,平面AEF与直线PB交于点G在平面AEF内,,解得,故的值为.【解析】推导出,,由此能证明平面PAD.以A为原点,AM,AD,AP所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出的值.本题考查线面垂直的证明,考查两线段的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:等腰梯形MNBA的高为,,,等腰梯形MNBA的面积为,等腰三角形PAB中,P到AB的距离为,故等腰三角形PAB的面积为,多边形MAPBN的面积为.,,即,.令,.其中,,即.当即时,取得最大值,此时种植蔬菜的收益最大.【解析】计算AB,梯形和三角形的高度,分别求出梯形和三角形的面积即可得出答案,根据求出的范围;根据和角公式求出面积最大值及其对应的的值即可.本题考查了解析式求解,三角函数恒等变换,函数最值的计算,属于中档题.20.【答案】解:由题意可知,,则;所以椭圆C的方程为:;由题意可知,,设,则,;所以的取值范围是;假设存在满足条件的直线l,根据题意直线l的斜率存在;设直线l的方程为:;有:;,则;;设,则CD的中点为;,;,则;,即;即,无解;故满足条件的直线不存在;【解析】根据条件直接求出a,b;设,表示出,求出其范围;设CD的中点为;由,则;得到其斜率的积为,再方程联立计算;本题考查椭圆的简单几何性质,向量的数量积,直线的垂直,设而不求的思想方法,关键在于将几何条件进行适当的转化,属于中档题.21.【答案】解:令,,则,所以.令,,则,所以.令,,其中n是大于1的整数,则,所以,即.又因为,所以数列是首项为3,公比为2的等比数列,所以,则.所以原式.证明:令,,则,所以.令,y为任意实数,则,即,所以是偶函数.令N为,分母的最小公倍数,并且,,a、b都是自然数,并且.令数列满足,,1,下证:数列单调递增.,所以;若,n是正整数,即;令,,则,即.所以.综上,数列单调递增,所以,又因为是偶函数,所以【解析】是抽象函数基础题,代入特定的数值即可;对于此数列,需要求其通项,而求通项又需要递推公式,所以代入合理的数值,得到递推公式;属于难题,因为的铺垫,证明偶函数需要代入特定的数,证明与的大小关系需要定义新的数列,又因为题目中的有理数条件,要充分利用分数的特点.本题涉及抽象函数、数列求通项求和等知识,使用了赋值法、数学归纳法等方法,属于难题.。
2020高考数学(理数)题海集训26 等差数列及前n项和公式(30题含答案)
2020高考数学(理数)题海集训26 等差数列及前n 项和公式一、选择题1.设S n 是等差数列{a n }的前n 项和,若3163=S S ,则126S S等于( ). A.103 B.31 C.81 D.912.在等差数列{a n }中,已知前15项的和S 15=90,则a 8等于( )A.3B.4C.6D.123.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A.37B.36C.20D.194.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升B .6766升 C.4744升 D .3733升5.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.217 B.219 C.10 D.126.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A.12B.13C.14D.157.等差数列{a n }的前m 项的和为10,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.270D.260 8.等差数列{a n }的前n 项和为S n ,若a 1019=1,则S 2037( )A.1018B.1019C.2018D.20199.已知数列-1,a 1,a 2,-4与数列1,b 1,b 2,b 3,-5各自成等差数列,则212b a a -等于( ) A.41 B.21 C.-21 D.-4110.设S n 是等差数列{a n }的前n 项和,若a 2+a 12=18,则S 13=( )A.91B.126C.234D.11711.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A.2B.3C.6D.712.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ).A.14B.21C.28D.3513.数列{2n -1}的前10项的和是( )A .120B .110C .100D .1014.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.415.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( ).A.22B.21C.19D.1816.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于( )A .2B .0C .-1D .-217.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A.6B.7C.8D.918.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-6619.设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-1320.如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n+1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列二、填空题21.已知S n 是等差数列{a n }的前n 项和,且a 1=21,S 2=a 3,则a 2=________.22.等差数列{a n }中,S 10=4S 5,则da 1=________.23.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于________.24.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1a 5=a 22,则S 8=________.25.等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+…+a 99等于________.26.已知数列{a n }中,a 1=-7,a 2=3,a n +2=a n +2,则S 100= .27.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于 .28.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.则月末日织几何?”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布.29.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n=________时,{a n }的前n 项和最大.30.在-1与7之间顺次插入三个数a 、b 、c ,使这5个数成等差数列,则插入的三个数为 .答案解析1.答案为:A;解析:2.答案为:C ;3.答案为:A ;解析:a m =a 1+a 2+…+a 9=9a 1+36d=36d=a 37,∴m=37.故选A.4.答案为:B.解析:设该等差数列为{a n },公差为d ,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.5.答案为:B ;6.答案为:B ;7.答案为:C ;解析:∵S m =10,S 2m =100,故S 2m -S m =90,故知S m ,S 2m -S m ,S 3m -S 2m 构成首项为10, 公差为80的等差数列,∴S 3m -S 2m =90+80=170.∴S 3m =100+170=270. 8.D.9.答案为:B ;解析:设数列-1,a 1,a 2,-4的公差是d ,则a 2-a 1=d=-1,b 2=-2,故知212b a a -=21. 10.D.11.答案为:B ; 12.答案为:C ;解析:由等差数列性质得a 3+a 4+a 5=3a 4,由3a 4=12,得a 4=4,所以a 1+a 2+…+a 7=7a 4=28. 13.答案为:C ;14.答案为:B ;解析:由等差中项的性质知a 3=5,又a 4=7,∴公差d=a 4-a 3=7-5=2. 15.答案为:D ;解析:∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a a -4=146,∴5(a 1+a n )=180,a 1+a n =36,S n =2)(1n a a n +=236⨯n =234. ∴n=13,S 13=13a 7=234.∴a 7=18.16.答案为:D ;17.答案为:A;解析:∵{a n }是等差数列,∴a 4+a 6=2a 5=-6,即a 5=-3,d=2,∴{a n }是首项为负数的递增数列,所有的非正项之和是S n 的最小值.∵a 6=-1,a 7=1, ∴当n=6时,S n 最小,故选A.18.答案为:D ;∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n[-1+-2n +2=-n 2,∴S n n =-n 2n=-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.19.答案为:B ;设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n≤2时,a n <0,当n≥3时,a n >0, ∴a 2a 3=-12为a n a n +1的最小值; 当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7, 此时a n =-7n +53,a 7=4,a 8=-3,易知当n≤7时,a n >0,当n≥8时,a n <0, ∴a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12.20.答案为:A.解析:作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n , 则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|,∴|C n C n +1|=|C n +1C n +2|. 设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a(n≥3),∴S n =12c[(n -1)b -(n -2)a]=12c[(b -a)n +(2a -b)],∴S n +1-S n =12c[(b -a)(n +1)+(2a -b)-(b -a)n -(2a -b)]=12c(b -a),∴数列{S n }是等差数列.一、填空题21.答案为:1; 22.答案为:0.5; 23.28;解析:∵a 3+a 4+a 5=3a 4=12,∴a 4=4.∴a 1+a 2+a 3+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28. 24.答案为:64; 25.答案为:60; 26.答案为:4 700;解析:由a 1=-7,a n +2=a n +2,可得a n +2-a n =2,∴a 1,a 3,a 5,a 7,…,a 99是以-7为首项,公差为2的等差数列,共50项.∴a 1+a 3+a 5+…+a 99=50×(-7)+2)150(50-⨯×2=2 100.同理,a 2,a 4,a 6,…,a 100是以3为首项,公差为2的等差数列,共50项. ∴a 2+a 4+a 6+…+a 100=50×3+2)150(50-⨯×2=2 600.∴S 100=2 100+2 600=4 700.27.答案为:3;28.答案为:21;解析:由题意得,该女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有+a 302=390,解得a 30=21,即该女最后一天织21尺布.29.答案为:8;解析:∵a 7+a 8+a 9=3a 8>0,∴a 8>0.∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0.∴数列的前8项和最大,即n=8. 30.答案为:1,3,5;解析:5个数成等差数列,则a 1=-1,a 5=7,∴d=415a a -=2, ∴插入的三个数依次为1,3,5.。
2020年高考理数全国卷3 试题详解
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2 B.3C.4D.6【答案】C【解析】∵A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,∴满足8x y +=的有(1,7),(2,6),(3,5),(4,4),∴A B 中元素的个数为4.故选C.2.复数113i-的虚部是()A.310-B.110-C.110D.310【答案】D 【解析】∵1131313(13)(13)1010i z i i i i +===+--+,∴113z i =-的虚部为310.故选D.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p p ====B.14230.4,0.1p p p p ====C.14230.2,0.3p p p p ====D.14230.3,0.2p p p p ====【答案】B【解析】对于A 选项,数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.综上,B 选项这一组的标准差最大.故选B.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】()()0.23531t K I t e--=+ ,∴()()0.23530.951t KI t K e **--==+,则()0.235319t e *-=,∴()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选C.5.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为()A.1,04⎛⎫ ⎪⎝⎭B.1,02⎛⎫ ⎪⎝⎭C.(1,0)D.(2,0)【答案】B【解析】∵直线2x =与抛物线22(0)y px p =>交于,E D 两点且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,∴()2,2D ,代入抛物线方程44p =,求得1p =,∴其焦点坐标为1(,0)2,故选B.6.已知向量,a b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ()A.3135-B.1935-C.1735D.1935【答案】D【解析】∵5a = ,6b = ,6a b ⋅=-,∴()225619a a b a a b ⋅+=+⋅=-= .∴7a b +=,∴()1919cos ,5735a a b a a b a a b⋅+<+>===⨯⋅+ .故选D.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12D.23【答案】A【解析】∵在ABC ∆中,2cos 3C =,4AC =,3BC =根据余弦定理2222cos AB AC BC AC BC C=+-⋅⋅2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选A.8.下图为某几何体的三视图,则该几何体的表面积是()A.B.C.D.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AD DB ==∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S ABAD =⋅⋅︒=⋅△∴该几何体的表面积是632=⨯++ C.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2B.–1C.1D.2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭ ,∴tan 12tan 71tan θθθ+-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选D.10.若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1 B.y =2x +12 C.y =12x +1 D.y =12x +12【答案】D【解析】设直线l 在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k=,设直线l 的方程为)0y x x =-,即00x x -+=,由于直线l与圆2215x y+==,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选D.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1 B.2 C.4 D.8【答案】A【解析】∵5ca=,∴5c a =,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,∵12F P F P ⊥,∴()22212||2PF PF c +=,∴()22121224PF PF PF PF c -+⋅=,即22540a a -+=,解得1a =,故选A.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <c B.b <a <c C.b <c <a D.c <a <b 【答案】A【解析】由题意可知a 、b 、()0,1c ∈,58log 3lg3lg8log 5lg5lg5a b ==⋅()22221lg3lg8lg3lg8lg 24122lg5lg 25lg5⎛⎫⎛⎫++⎛⎫<⋅==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴a b <;由8log 5b =,得85b =,由5458<,得5488b <,∴54b <,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,∴54c >,可得45c >.综上所述,a b c <<.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.【答案】7【解析】不等式组所表示的可行域如图∵32z x y =+,∴322x z y =-+,易知截距2z越大,则z 越大,平移直线32xy =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,∴max 31227z =⨯+⨯=.故答案为7.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240【解析】 622x x ⎛⎫+ ⎪⎝⎭,其二项式展开通项()62612rrr r C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅,令1230r -=得4r =,∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是664422161516240C C ⋅=⋅=⨯=.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O,由于AM =,∴122S =⨯⨯=△ABC 设内切圆半径为r ,则ABC AOB BOC AOCS S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得r =,其体积34233V r π==.故答案为3.16.关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】∵152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66ff ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象不关于y 轴对称,命题①错误;∵函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,∴函数()f x 的图象关于原点对称,命题②正确;11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线2x π=对称,命题③正确;∵当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.∴答案为②③.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.∴对任意的*n N ∈,都有21n a n =+成立;(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k )0.0500.0100.001k3.8416.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好3337空气质量好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2)427.【解析】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,∵112C G CG =,12BF FB =,∴112233CG CC BB BF ===且CG BF =,∴四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,∴1//C E DG 且1C E DG =,∴1//C E AF 且1C E AF =,则四边形1AEC F 为平行四边形,∴点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =-- ,()2,0,2AF =-- ,()10,1,2A E =- ,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos ,7m n m n m n⋅<>===⋅,设二面角1A EF A --的平面角为θ,则cos 7θ=,∴sin 7θ==.∴二面角1A EF A --的正弦值为7.20.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52.【解析】(1) 222:1(05)25x y C mm +=<<,∴5a =,bm =,∴离心率4c ea ====,解得54m =或54m =-(舍),∴C 的方程为22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方,点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,∴PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得21612525P x +=,解得3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,∴Q 点为(6,2),画出图象,如图 (5,0)A -,(6,2)Q ,∴直线AQ 的直线方程211100x y -+=,∴P 到直线AQ的距离为5d ===,∴AQ ==,APQ ∆面积为15252⨯=;②当P 点为(3,1)-时,5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,∴Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为811400x y -+=,∴P 到直线AQ 的距离为:d===,AQ ==,∴APQ ∆面积为522=,综上所述,APQ ∆面积为52.21.设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b =-;(2)证明见解析【解析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-;(2)由(1)可得33()4f x x x c =-+,'2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<,∴()f x 在11(,22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(,(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-.当14c >时,111(1)0,()0424f c f c -=->-=+>,111(0,(1)0244f c f c =->=+>又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,111(1)0,()0424f c f c -=-<-=+<,111()0,(1)0244f c f c =-<=+<又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.2020年全国卷3理数第11页共11页(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.∴AB ==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c.【答案】(1)证明见解析(2)证明见解析.【解析】(1)2222()2220a b c a b c ab ac bc ++=+++++= ,∴()22212ab bc ca a b c ++=-++.∵1abc =,∴,,a b c 均不为0,∴2220a b c ++>,∴()222210ab bc ca a b c ++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,∵1,a b c a bc =--=,∴()222322224b c b c bc bc bc a a a bc bc bc++++=⋅==≥=.当且仅当b c =时,取等号,∴a ≥max{,,}a b c .。
湖南省__高考数学真题(理科数学)(附答案)_历年历届试题
2006年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)1. 函数2log 2-=x y 的定义域是A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞ 2. 若数列}{n a 满足: 311=a , 且对任意正整数n m ,都有n m n m a a a ⋅=+, 则 =++++∞→)(lim 21n n a a aA .21 B .32 C .23D .2 3. 过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面11D DBB 平行的直线共有A .4条B .6条C .8条D .12条 4. “1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5. 已知,0||2||≠=b a 且关于x 的方程0||2=⋅++b a x a x 有实根, 则a 与b 的夹角的取值范围是 A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ6. 某外商计划在4个候选城市投资3个不同的项目, 且在同一个城市投资的项目不超过2个, 则该外商不同的投资方案有A . 16种B .36种C .42种D .60种7. 过双曲线1:222=-by x M 的左顶点A 作斜率为1的直线l , 若l 与双曲线M 的两条渐近线分别相交于点C B ,, 且||||BC AB =, 则双曲线M 的离心率是A . 10B .5C .310D .25 8. 设函数1)(--=x ax x f , 集合}0)(|{},0)(|{>'=<=x f x P x f x M , 若P M ⊂, 则实数a 的取值范围是A .)1,(--∞B .)1,0(C .),1(+∞D .),1[+∞9. 棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截 面如图1,则图中三角形(正四面体的截面)的面积是A .22B .23C .2D .310. 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是 A . ]412[ππ, B .]12512[ππ, C .]36[ππ, D .]20[π, 11. 若5)1-ax (的展开式中3x 的系数是80-, 则实数a 的值是__________. 12. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是_____________.13. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 ___________. 14. 若)0)(4sin()4sin()(≠-++=ab x b x a x f ππ是偶函数, 则有序实数对),(b a 可以 是__________.(注: 写出你认为正确的一组数字即可)15. 如图2, AB OM //, 点P 在由射线OM , 线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动, 且OB y OA x OP +=,则x 的取值范围是__________; 当21-=x 时, y 的取值范围是__________. 16.如图3, D 是直角ABC ∆斜边BC 上一点, βα=∠=∠=ABC CAD AD AB ,,记.(Ⅰ)证明: 02cos sin =+βα; (Ⅱ)若DC AC 3=,求β的值.图2OABPM图3CDBA17.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检), 若安检不合格, 则必须整改. 若整改后经复查仍不合格, 则强制关闭. 设每家煤矿安检是否合格是相互独立的, 且每家煤矿整改前合格的概率是5.0, 整改后安检合格的概率是8.0,计算(结果精确到01.0);(Ⅰ) 恰好有两家煤矿必须整改的概率; (Ⅱ) 平均有多少家煤矿必须整改; (Ⅲ) 至少关闭一家煤矿的概率 . 18.如图4, 已知两个正四棱锥ABCD Q ABCD P --与的高分别为1和2, 4=AB (Ⅰ) 证明: ABCD PQ 平面⊥ ;(Ⅱ) 求异面直线PQ AQ 与所成的角;(Ⅲ) 求点P 到平面QAD 的距离. 19.已知函数x x x f sin )(-=, 数列}{n a 满足: 101<<a , a n+1=f (a n ), ,3,2,1=n 证明: (Ⅰ) 101<<<+n n a a ; (Ⅱ) 3161n n a a <+ .D图4CBAQ P20.对1个单位质量的含污物体进行清洗, 清洗前其清洁度(含污物体的清洁度定义为:)物体质量(含污物)污物质量-1为8.0, 要求清洗完后的清洁度为99.0. 有两种方案可供选择, 方案甲: 一次清洗; 方案乙: 分两次清洗. 该物体初次清洗后受残留水等因素影响, 其质量变为)31(≤≤a a . 设用x 单位质量的水初次清洗后的清洁度是18.0++x x )1(->a x , 用y 单位质量的水第二次清洗后的清洁度是ay acy ++, 其中c )99.08.0(<<c 是该物体初次清洗后的清洁度.(Ⅰ)分别求出方案甲以及95.0=c 时方案乙的用水量, 并比较哪一种方案用水量较少; (Ⅱ)若采用方案乙, 当a 为某定值时, 如何安排初次与第二次清洗的用水量, 使总用水量最小? 并讨论a 取不同数值时对最少总用水量多少的影响. 21.已知椭圆134:221=+y x C , 抛物线)0(2)(:22>=-p px m y C , 且21,C C 的公共弦 AB 过椭圆1C 的右焦点 .(Ⅰ) 当轴时x AB ⊥, 求p m ,的值, 并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ) 是否存在p m ,的值, 使抛物线2C 的焦点恰在直线AB 上? 若存在, 求出符合条件的p m ,的值; 若不存在, 请说明理由 .2006年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考答案1.D ;2.A ;3.D ;4.A ;5.B ;6.D ;7.A ;8.C ;9.C ; 10.B ; 11.2-; 12.5; 13.34; 14.(1,1-) ; 15.(,0-∞) ,13(,)22; 16、解 (I)如图, 因为(2)2222BAD πππαπββ=-∠=--=-,所以 sin sin(2)cos 22παββ=-=-,即 sin cos 20αβ+=。
2020全国一卷高考理科数学试题及答案
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率。
20.(12 分)
已知
A,B
分别为椭圆
E:
x2 a2
y2
1(a
1)
的左、右顶点,G
为
E
的上顶点,
AG
GB
=8。P
为直
线 x=6 上的动点,PA 与 E 的另一交点为 C,PB 与 E 的另一交点为 D。
5.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x(单位:℃)的关系,在 20 个不同的温度条
件下进行种子发芽实验,电邮实验数(xi,yi)(i=1,2,…,20)得到下面的散点图:
由此散点图,在 10℃40℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的
。
15.已知 F 为双曲线
C:
x2 a2
y2 b2
1(a
0,b
0)
的右焦点,A
为
C
的右项点,B 为
C
上的点,且
BF
垂直
于 x 轴。若 AB 的斜率为 3,则 C 的离心率为
。
16.如图,在三棱锥 P-ABC 的平面展开图中,AC=1,AB=AD= 3 ,AB⊥AC,AB⊥AD,∠CAE=30°,
是
A.y=a+bx
B.y=a+bx2
C.y=a+bex
D.y=a+blnx
6.函数 f(x)=x4-2x3 的图像在点(1,f(1))处的切线方程为
A.y=-2x-1
B.y=-2x+1
C.y=2x-3
2020年全国高考Ⅰ卷理科第20题解法赏析
中钙皋浬化知识篇知识结构与拓展高二数学2021年1月■河南省郑州101中学冯连福2017年发布的《普通高中数学课程标准》强调培养学科核心素养,圆锥曲线试题很好地考查了数学学科核心素养中的数学抽象、逻辑推理、数学运算等核心素养,下面我们通过研究2020年全国高考数学新课标!卷理数第20题,来分析高考试题是怎么来考查数学学科核心素养的,希望对同学们的学习有所帮助。
如图1,已知A、2B分别为椭圆E:—/a/上「一十y2&1(a>1)的J左、右顶点,G为椭____一圆E的上顶点,图1AG・GB=8,P为直线%&6上的动点,PA与椭圆E的另一交点为CPB与椭圆E的另一交点为+o(1)求椭圆E的方程;#)证明:直线CD过定点。
解析:(1)第一问可以有以下几种解题角度。
角度一(平面向量的坐标运算):设A(—a,0),B(a,0),G(0,1),a>0。
故AG&(a,1),GB=(a,—1),a>0。
由AG・GB=8,得a2—1=8,a=3。
故椭圆E的方程为$+y2&1。
角度二(数量积的定义):设(AGB&2!,(AGO&!。
AG・GBB&AG|GB cos(#—2!)&8O分析可知AG&GB&la2+1,121—a2 cos!=,cos2!&2cos!—1&丐。
a+f1+a2故(/a2+1)・a21&8,得a2&9O下十1面同角度一,过程略。
角度三(平面向量的加法运算法则):因为ag十GB=#B,所以(AG+GB)&AB2也即AG2+GB2+2AG・GB&AB2。
故a2十1+a2十1+16&((a)。
下面同角度一,过程略。
角度四(极化恒等式):由等得:GA・G.&GO2—O.2&1—a2O故AG・GB&—G A・GB&a2—1&8。
2020高考数学(理数)题海集训38 分类加法计数原理与分步乘法计数原理(30题含答案)
2020高考数学(理数)题海集训38分类加法计数原理与分步乘法计数原理一、选择题1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )A.13种B.16种C.24种D.48种2.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.483.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.194. (a1+a2+a3+a4)·(b1+b2)·(c1+c2+c3)展开后共有不同的项数为( )A.9B.12C.18D.245.如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开从不同的路线同时传递,则单位时间内传递的最大信息量为( )A.26B.24C.20D.196.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( )A.C28A23B.C28A66C.C28A26D.C28A257.已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为( )A.8个B.12个C.10个D.9个8.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( )A.8种B.9种C.10种D.11种9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是( )A.30 B.42 C.36 D.3510.用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.27911.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40B.16C.13D.1012.体育老师把9个相同的足球放入编号为1,2,3的三个箱子中,要求每个箱子放球的个数不小于其编号,则不同的放球方法有( )A.8种B.10种C.12种D.16种13.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( )A.14B.23C.48D.12014.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.615.下图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一个颜色,相邻区域颜色不相同,则不同的涂色方法有( )A.24种B.72种C.84种D.120种16.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A、B的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条17.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.818.甲与其四位同事各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )A.5B.24C.32D.6419.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14B.13C.12D.1020.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( )A.480B.240C.120D.96二、填空题21.直线方程Ax +By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A ,B 的值,则可表示 条不同的直线.22.在连接正八边形的顶点而成的三角形中,与正八边形有公共边的三角形有 个. 23.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.24.现有五种不同的颜色,要对图形中的四个部分进行着色,要求有公共边的两块不能用同一种颜色,不同的涂色方法有 种.25.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有________种.26.已知△ABC 三边a,b,c 的长都是整数,且a ≤b ≤c,如果b=25,则符合条件的三角形共有个.27.从数字1,2,3,4,5,6中取两个数相加,共得 个不同的偶数.28.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛 ,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有 种.(用数字作答)29.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答)30.从集合{1,2,3,4,5,6}中任取两个元素作为双曲线x 2a 2-y 2b2=1中的几何量a 、b 的值,则“双曲线渐近线的斜率k 满足|k|≤1”的概率为 .答案解析1.A.[解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A.2.B.解析:A 有4种选择,B 有3种选择,若C 与A 相同,则D 有3种选择,若C 与A 不同,则C 有2种选择,D 也有2种选择,所以共有4×3×(3+2×2)=84种.3.D.[解析]本题考查计数原理与古典概型,∵两数之和为奇数,则两数一奇一偶,若个位数为奇数,则共有4×5=20个数,若个位数为偶数,共有5×5=25个数,其中个位为0的数共有5个,∴P=520+25=19.4.D.解析:由分步乘法计数原理得共有不同的项数为4×2×3=24.故选D.5.D.[解析] 因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从A 向B 传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D.6.C.解析:从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.7.D.解析:分两步:第一步,在集合{2,3,7}中任取一个值,有3种不同的取法;第二步,在集合{-3,-4,8}中任取一个值,有3种不同取法.故x ·y 可表示3×3=9(个)不同的值.故选D.8.B.[解析]设四个班级分别是A 、B 、C 、D ,它们的老师分别是a 、b 、c 、d ,并设a 监考的是B ,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a 监考C 、D 时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.另外,本题还可让a 先选,可从B 、C 、D 中选一个,即有3种选法.若选的是B ,则b 从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法.9.答案为:C.解析:因为a +bi 为虚数,所以b≠0,即b 有6种取法,a 有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.10.B.[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900, 其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.11.C.解析:分两类:第1类,直线a 与直线b 上8个点可以确定8个不同的平面;第2类,直线b 与直线a 上5个点可以确定5个不同的平面.故可以确定8+5=13个不同的平面.12.B.[解析]首先在三个箱子中放入个数与编号相同的球,这样剩下三个足球,这三个足球可以随意放置,第一种方法,可以在每一个箱子中放一个,有1种结果;第二种方法,可以把球分成两份,1和2,这两份在三个位置,有3×2=6种结果;第三种方法,可以把三个球都放到一个箱子中,有3种结果.综上可知共有1+6+3=10种结果.13.C.解析:分两步:第一步,取多面体,有5+3=8种不同的取法,第二步,取旋转体,有4+2=6种不同的取法.所以不同的取法种数是8×6=48种.14.B.[解析](1)当从0,2中选取2时,组成的三位奇数的个位只能奇数,只要2不排在个位即可,先排2再排1,3,5中选出的两个奇数,共有2×3×2=12(个).(2)当从0,2中选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,只要排好从1,3,5中选出的两个奇数.共有3×2=6(个).综上,由分类加法计数原理知共有12+6=18(个).15.答案为:C ;解析:如图,设四个直角三角形依次为A,B,C,D,下面分两种情况:(1)A,C 不同色(注意:B,D 可同色、也可不同色,D 只要不与A,C 同色即可,所以D 可以从剩余的2种颜色中任意取一色):有4×3×2×2=48(种)涂色方法.(2)A,C 同色(注意:B,D 可同色、也可不同色,D 只要不与A,C 同色即可,所以D 可以从剩余的3种颜色中任意取一色):有4×3×1×3=36(种)涂色方法,综上,共有48+36=84种涂色方法.故选C.16.A.解析:第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.17.D.[解析] 当公比为2时,等比数列可为1、2、4,2、4、8.当公比为3时,等比数列可为1、3、9.当公比为32时,等比数列可为4、6、9. 同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.18.D.解析:5日至9日,有3天奇数日,2天偶数日,第一步安排奇数日出行,每天都有2种选择,共有23=8(种),第二步安排偶数日出行分两类,第一类,先选1天安排甲的车,另外一天安排其他车,有2×2=4(种).第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8,根据分步乘法计数原理,不同的用车方案种数共有8×8=64.故选D.19.B.解析:当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.20.B.解析:先把5本书中的两本捆起来,再分成4份即可,∴分法种数为C25A44=240.一、填空题21.答案为:22;[解析]若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.22.答案为:40;解析:分两类:①有一条公共边的三角形共有8×4=32个;②有两条公共边的三角形共有8个.故共有32+8=40个.23.答案为:20,10.解析:产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.24.答案为:180;[解析]依次给区域Ⅰ、Ⅱ、Ⅲ、Ⅳ涂色分别有5、4、3、3种方法,根据分步乘法计数原理,不同的涂色方法的种数为5×4×3×3=180.25.答案为:9;解析:父母应为A或B或O,C13·C13=9(种).26.答案为:325;解析:根据三角形的三边关系可知,c<25+a.第一类,当a=1,b=25时,c可取25,共1个;第二类,当a=2,b=25时,c可取25,26,共2个;……当a=25,b=25时,c可取25,26,…,49,共25个.所以符合条件的三角形的个数为1+2+…+25=325.27.答案为:4.[解析]由两个数相加是偶数知两个数都是偶数或两个数都是奇数,分两类,第一类,两个数都是偶数,2+4=6,2+6=8,4+6=10,共得3个偶数,第二类,两个数都是奇数,1+3=4,1+5=6,3+5=8,共得3个偶数,∵2+6=3+5,2+4=1+5,∴从数字1,2,3,4,5,6中取两个相加,共得4个不同的偶数,28.答案为:48;[解析]本题可分为两类完成:两老一新时,有3×2×2=12(种)排法;两新一老时,有2×3×3×2=36(种)排法,即共有48种排法.29.答案为:480.解析:按C 的位置分类计算.①当C 在第一或第六位时,有A 55=120(种)排法;②当C 在第二或第五位时,有A 24A 33=72(种)排法;③当C 在第三或第四位时,有A 22A 33+A 23A 33=48(种)排法.所以共有2×(120+72+48)=480(种)排法.30.答案为:12; [解析]所有可能取法有6×5=30种,由|k|=b a≤1知b ≤a ,满足此条件的有(2,1),(3,2),(3,1),(4,3),(4,2),(4,1),(5,4),(5,3),(5,2),(5,1),(6,5),(6,4),(6,3),(6,2),(6,1)共15种,∴所求概率P=1530=12.。
2020年高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)
函数与导数12 导数及其应用 导数的概念及运算一、具体目标:1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2y x =,1y x=的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 【考点透析】 【备考重点】(1) 熟练掌握基本初等函数的导数公式及导数的四则运算法则; (2) 熟练掌握直线的倾斜角、斜率及直线方程的点斜式. 二、知识概述: 1.由0()()'()limx f x x f x f x x∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限.2.基本初等函数的导数公式及导数的运算法则原函数导函数 f (x )=c (c 为常数)f ′(x )=0()()Q n x x f n ∈= ()1-='n nx x f()x x f sin = ()x x f cos =' ()x x f cos =()x x f sin -=' ()x a x f =()a a x f x ln ='【考点讲解】1)基本初等函数的导数公式2)导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)(4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.函数()y f x =在0x x =处的导数几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.()x e x f = ()x e x f ='()x x f a log =()a x x f ln 1=' ()x x f ln =()xx f 1='2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.1. 【2019年高考全国Ⅲ卷】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D2.【2019年高考全国Ⅱ卷】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【解析】本题要注意已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.【真题分析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【答案】C3.【2018年高考全国Ⅰ卷】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D. 【答案】D4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )【解析】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 【答案】D5.【2019年高考全国Ⅰ卷】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【答案】30x y -=6.【变式】【2018年理数全国卷II 】曲线()1ln 2+=x y在点()00,处的切线方程为__________. 【解析】本题主要考查导数的计算和导数的几何意义,先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.由题中条件可得:12+='x y ,所以切线的斜率为2102=+=k ,切线方程为()020-=-x y ,即x y 2=.【答案】x y 2=7.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=. 【答案】220x y +-=8.【2018年高考天津文数】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 【解析】由函数的解析式可得,则.即的值为e.【答案】e9.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y , 则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)10.【2018年全国卷Ⅲ理】曲线()()x e ax x f 1+=在点()10,处的切线的斜率为2-,则=a ________.【解析】本题主要考查导数的计算和导数的几何意义,并利用导数的几何意义求参数的值.由题意可知:()()x x e ax ae x f 1++=',则()210-=+='a f ,所以3-=a ,故答案为-3.【答案】3-【变式】已知函数错误!未找到引用源。
【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)
【高考复习】2020年高考数学(理数)函数与导数 大题1.已知函数f(x)=ln xx +a (a∈R),曲线y=f(x)在点(1,f(x))处的切线与直线x +y +1=0垂直.(1)试比较2 0172 018与2 0182 017的大小,并说明理由;(2)若函数g(x)=f(x)-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.2.已知函数f(x)=kx-ln x-1(k>0).(1)若函数f(x)有且只有一个零点,求实数k 的值;(2)证明:当n∈N *时,1+12+13+ (1)>ln(n +1).3.已知函数f(x)=ax-ln x ,F(x)=e x+ax ,其中x>0,a<0.(1)若f(x)和F(x)在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a∈⎝⎛⎦⎥⎤-∞,-1e 2,且函数g(x)=xe ax-1-2ax +f(x)的最小值为M ,求M 的最小值.4.已知函数f(x)=ln x +tx-s(s ,t∈R).(1)讨论f(x)的单调性及最值;(2)当t=2时,若函数f(x)恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4.5.已知函数f(x)=(2+x +ax 2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a.6.已知函数f(x)=ln x +2ax +1(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,求证:f(x)≤x +12.7.已知函数f(x)=ln x-a(x +1),a∈R 的图象在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x 0>1,当x∈(1,x 0)时,恒有f(x)-x 22+2x +12>k(x-1)成立,求k 的取值范围.8.已知函数f(x)=xe x-a 3x 2-a 2x ,a≤e,其中e 为自然对数的底数.(1)当a=0,x>0时,证明:f(x)≥ex 2; (2)讨论函数f(x)极值点的个数.9.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:⎝ ⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).10.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a=2时,求函数f(x)的单调区间;(2) 若方程f(-x)+f(x)=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m-n|≥1,使得f(m)=f(n),求证:1≤ae -1≤e.答案解析1.解:(1) 20172 018>2 0182 017.理由如下:依题意得,f′(x)=x +ax-ln x +2,因为函数f(x)在x=1处有意义,所以a≠-1.所以f′(1)=1+a +2=11+a, 又由过点(1,f(1))的切线与直线x +y +1=0垂直可得,f′(1)=1,即11+a=1,解得a=0.此时f(x)=ln x x ,f′(x)=1-ln xx2, 令f′(x)>0,即1-ln x>0,解得0<x<e ; 令f′(x)<0,即1-ln x<0,解得x>e.所以f(x)的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f(2 017)>f(2 018),即ln 2 0172 017>ln 2 0182 018,则2 018ln 2 017>2 017ln 2 018,所以2 0172 018>2 0182 017.(2)证明:不妨设x 1>x 2>0,因为g(x 1)=g(x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0.可得ln x 1+ln x 2=k(x 1+x 2),ln x 1-ln x 2=k(x 1-x 2),要证x 1x 2>e 2,即证ln x 1+ln x 2>2,也就是k(x 1+x 2)>2,因为k=ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>1-x 2x 1+x 2,令x 1x 2=t ,则t>1,即证ln t>-t +1.令h(t)=ln t--t +1(t>1).由h′(t)=1t -4+2=-2+2>0得函数h(t)在(1,+∞)上是增函数,所以h(t)>h(1)=0,即ln t>-t +1.所以x 1x 2>e 2. 2.解:(1) f(x)=kx-ln x-1,f′(x)=k-1x =kx -1x(x>0,k>0),当x=1k 时,f′(x)=0;当0<x<1k 时,f′(x)<0;当x>1k时,f′(x)>0.∴f(x)在⎝ ⎛⎭⎪⎫0,1k 上单调递减,在⎝ ⎛⎭⎪⎫1k ,+∞上单调递增, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1k =ln k , ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1.(2)证明:由(1)知x-ln x-1≥0,即x-1≥ln x,当且仅当x=1时取等号,∵n∈N *,令x=n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).3.解:(1)由题意得f′(x)=a-1x =ax -1x,F′(x)=e x+a ,x>0,∵a<0,∴f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减, 当-1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意, 当a<-1时,由F′(x)>0,得x>ln(-a),由F′(x)<0,得0<x<ln(-a), ∴F(x)的单调递减区间为(0,ln(-a)),单调递增区间为(ln(-a),+∞). ∵f(x)和F(x)在区间(0,ln 3)上具有相同的单调性, ∴ln(-a)≥ln 3,解得a≤-3, 综上,a 的取值范围是(-∞,-3].(2)g′(x)=e ax-1+axe ax-1-a-1x =(ax +1)⎝⎛⎭⎪⎫e ax -1-1x ,由e ax-1-1x =0,解得a=1-ln x x ,设p(x)=1-ln x x ,则p′(x)=ln x -2x 2, 当x>e 2时,p′(x)>0,当0<x<e 2时,p′(x)<0,从而p(x)在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p(x)min =p(e 2)=-1e2,当a≤-1e 2时,a≤1-ln x x ,即e ax-1-1x≤0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,ax +1>0,g′(x)≤0,g(x)单调递减, 当x∈⎝ ⎛⎭⎪⎫-1a ,+∞时,ax +1<0,g′(x)≥0,g(x)单调递增,∴g(x)min =g ⎝ ⎛⎭⎪⎫-1a =M , 设t=-1a ∈(0,e 2],M=h(t)=t e2-ln t +1(0<t≤e 2),则h′(t)=1e 2-1t ≤0,h(t)在(0,e 2]上单调递减,∴h(t)≥h(e 2)=0,即M≥0, ∴M 的最小值为0. 4.解:(1)f′(x)=x -tx2(x>0),当t≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,f(x)无最值; 当t>0时,由f′(x)<0,得x<t ,由f′(x)>0,得x>t , f(x)在(0,t)上单调递减,在(t ,+∞)上单调递增,故f(x)在x=t 处取得最小值,最小值为f(t)=ln t +1-s ,无最大值. (2)∵f(x)恰有两个零点x 1,x 2(0<x 1<x 2),∴f(x 1)=ln x 1+2x 1-s=0,f(x 2)=ln x 2+2x 2-s=0,得s=2x 1+ln x 1=2x 2+ln x 2,∴2-x 1x 1x 2=ln x 2x 1,设t=x 2x 1>1,则ln t=-tx 1,x 1=-tln t,故x 1+x 2=x 1(t +1)=2-tln t ,∴x 1+x 2-4=2⎝ ⎛⎭⎪⎫t 2-1t -2ln t ln t,记函数h(t)=t 2-1t-2ln t ,∵h′(t)=-2t2>0,∴h(t)在(1,+∞)上单调递增, ∵t>1,∴h(t)>h(1)=0,又t=x 2x 1>1,ln t>0,故x 1+x 2>4成立.5.解:(1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x ,f′(x)=ln(1+x)-x1+x. 设函数g(x)=ln(1+x)-x 1+x ,则g′(x)=x+2. 当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 且仅当x=0时,g(x)=0,从而f′(x)≥0,且仅当x=0时,f′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=2+x +ax 2=ln(1+x)-2x2+x +ax2.由于当|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,2+x +ax 2>0, 故h(x)与f(x)符号相同. 又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点.h′(x)=11+x -+x +ax 2-++x +ax 22=x 22x 2+4ax +6a ++2+x +2.若6a +1>0,则当0<x<-6a +14a, 且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)>0, 故x=0不是h(x)的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x∈(x 1,0),且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)<0,所以x=0不是h(x)的极大值点.若6a +1=0,则h′(x)=x 3-+2-6x -2,则当x∈(-1,0)时,h′(x)>0; 当x∈(0,1)时,h′(x)<0. 所以x=0是h(x)的极大值点, 从而x=0是f(x)的极大值点.综上,a=-16.6.解:(1)f(x)的定义域为(0,+∞),f′(x)=x 2+-+1+2.考虑y=x 2+2(1-a)x +1,x>0.①当Δ≤0,即0≤a≤2时,f′(x)≥0,f(x)在(0,+∞)上单调递增. ②当Δ>0,即a>2或a<0时,由x 2+2(1-a)x +1=0,得x=a-1±a 2-2a.若a<0,则f′(x)>0恒成立,此时f(x)在(0,+∞)上单调递增;若a>2,则a-1+a 2-2a>a-1-a 2-2a>0,由f′(x)>0,得0<x<a-1-a 2-2a 或x>a-1+a 2-2a ,则f(x)在(0,a-1-a 2-2a)和(a-1+a 2-2a ,+∞)上单调递增.由f′(x)<0,得a-1-a 2-2a<x<a-1+a 2-2a ,则f(x)在(a-1-a 2-2a ,a-1+a 2-2a)上单调递减.综上,当a≤2时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为(0,a-1-a 2-2a),(a-1+a 2-2a ,+∞),单调递减区间为(a-1-a 2-2a ,a-1+a 2-2a).(2)证明:当a=1时,f(x)=ln x +2x +1.令g(x)=f(x)-x +12=ln x +2x +1-x +12(x>0), 则g′(x)=1x -2+2-12=2-x -x 3+2=--2+x ++2. 当x>1时,g′(x)<0,当0<x<1时,g′(x)>0,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 即当x=1时,g(x)取得最大值,故g(x)≤g(1)=0,即f(x)≤x +12成立,得证.7.解:(1)由已知可得f(x)的定义域为(0,+∞).∵f′(x)=1x -a ,∴f′(1)=1-a=0,∴a=1,∴f′(x)=1x -1=1-xx,令f′(x)>0得0<x<1,令f′(x)<0得x>1,∴f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f(x)-x 22+2x +12>k(x-1)可化为ln x-x 22+x-12>k(x-1),令g(x)=ln x-x 22+x-12-k(x-1),则g′(x)=1x -x +1-k=-x 2+-+1x,令h(x)=-x 2+(1-k)x +1,则h(x)的对称轴为直线x=1-k 2,①当1-k 2≤1,即k≥-1时,易知h(x)在(1,+∞)上单调递减,∴x∈(1,+∞)时,h(x)<h(1)=1-k , 若k≥1,则h(x)<0,∴g′(x)<0, ∴g(x)在(1,+∞)上单调递减, ∴g(x)<g(1)=0,不符合题意. 若-1≤k<1,则h(1)>0,∴存在x 0>1,使得x∈(1,x 0)时,h(x)>0,即g′(x)>0, ∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.②当1-k 2>1,即k<-1时,易知存在x 0>1,使得h(x)在(1,x 0)上单调递增,∴h(x)>h(1)=1-k>0, ∴g′(x)>0,∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意. 综上,k 的取值范围是(-∞,1). 8.解:(1)证明:依题意,f(x)=xe x ,故原不等式可化为xe x ≥ex 2,因为x>0,所以只要证e x-ex≥0即可,记g(x)=e x-ex(x>0),则g′(x)=e x-e(x>0),当0<x<1时,g′(x)<0,g(x)单调递减; 当x>1时,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=0,即f(x)≥ex 2,原不等式成立.(2)f′(x)=e x -13ax 2-12ax +xe x -23ax -12a=(x +1)e x -ax(x +1)=(x +1)(e x-ax),记h(x)=e x -ax ,h′(x)=e x-a.(ⅰ)当a<0时,h′(x)=e x-a>0,h(x)在R 上单调递增,h(0)=1>0,h 1a =e 1a-1<0,所以存在唯一的x 0∈1a,0,使h(x 0)=0,且当x<x 0时,h(x)<0;当x>x 0,h(x)>0.①当x 0=-1,即a=-1e时,对任意x≠-1,f′(x)>0,此时f(x)在R 上单调递增,无极值点;②若x 0<-1,即-1e<a<0时,此时当x<x 0或x>-1时,f′(x)>0,即f(x)在(-∞,x 0),(-1,+∞)上单调递增;当x 0<x<-1时,f′(x)<0,即f(x)在(x 0,-1)上单调递减, 此时f(x)有一个极大值点x 0和一个极小值点-1.③若-1<x 0<0,即a<-1e时,此时当x<-1或x>x 0时,f′(x)>0,即f(x)在(-∞,-1),(x 0,+∞)上单调递增;当-1<x<x 0时,f′(x)<0,即f(x)在(-1,x 0)上单调递减,此时f(x)有一个极大值点-1和一个极小值点x 0.(ⅱ)当a=0时,f(x)=xe x ,所以f′(x)=(x +1)e x ,显然f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅲ)当0<a<e 时,由(1)可知,对任意x≥0,h(x)=e x -ax>e x -ex≥0,从而h(x)>0,而对任意x<0,h(x)=e x -ax>e x >0,所以对任意x ∈R ,h(x)>0,此时令f′(x)<0,得x<-1,令f′(x)>0,得x>-1,所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅳ)当a=e 时,由(1)可知,对任意x ∈R ,h(x)=e x -ax=e x -ex≥0(当且仅当x=1时,取等号),此时令f′(x)<0,得x<-1,令f′(x)≥0,得x≥-1,所以f(x)在(-∞,-1)上单调递减,在[-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.综上所述,①当a<-1e 或-1e<a<0时,f(x)有两个极值点; ②当a=-1e时,f(x)无极值点; ③当0≤a≤e 时,f(x)有一个极值点.9.解:(1) f ′(x)=1-a x =x -a x(x>0), 当a ≤0时,f ′(x)=1-a x =x -a x>0,所以f(x)在(0,+∞)上是增函数; 当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+1n n <e<1+1nn +1, 两边取对数后,只要证nln1+1n <1<(n +1)ln1+1n ,即只要证1n +1<ln1+1n <1n,令x=1+1n ,则只要证1-1x<lnx<x-1(1<x ≤2). 由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +1x -1(1<x ≤2),则φ′(x)=x -1x 2>0, 所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +1x -1>0,所以1-1x<lnx(1<x ≤2). 综上,原命题得证.10.解:(1) 当a=2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x -2x ,x ≥0. ①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln2]上递减,在[ln2,+∞)上递增.因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln2],单调递增区间是[ln2,+∞).(2) 当x>0时,f(x)=e x -ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a=x 2+x +3x在区间(0,+∞)上有实数解. 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x 2. 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞. 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(3) 当x ∈[0,2]时,f(x)=e x -ax ,有f ′(x)=e x -a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.所以1<a<e 2,此时可得f(x)在[0,lna]上递减,在[lna ,2]上递增.不妨设0≤m<lna<n ≤2,则f(0)≥f(m)>f(lna),且f(lna)<f(n)≤f(2).由m ,n ∈[0,2],n-m ≥1,可得0≤m ≤1≤n ≤2.(12分)因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,即e-1≤a ≤e 2-e ,所以1≤a e -1≤e.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年普通高等学校招生全国统一考试
数学(理工农医类)
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}
2.命题“若α=4π
,则tan α=1”的逆否命题是
A.若α≠4π,则tan α≠1
B. 若α=4
π
,则tan α≠1
C. 若tan α≠1,则α≠4π
D. 若tan α≠1,则α=4
π
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为
y =0.85x-85.71,则下列结论中不正确的是 A.y 与x 具有正的线性相关关系
B.回归直线过样本点的中心(x ,y )
C.若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg
5. 已知双曲线C :22x a -2
2y b
=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C
的方程为
A 220x -25y =1
B 25x -220y =1
C 280x -220
y =1 D 220x -280y =1
6. 函数f (x )=sinx-cos(x+
6
π
)的值域为 A [ -2 ,2] B [-3,3] C [-1,1 ] D [-32 , 32
] 7. 在△ABC 中,AB=2 AC=3 AB ·BC =
A 3
B 7
C 22
D 23
8 ,已知两条直线l1 :y=m 和 l2 : y=
8
21
m +(m >0),l1与函数y=|log2x|的图像从左至右相交于点A ,B ,l2 与函数y= y=|log2x|的图像从左至右相交于C,D 记
线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,b
a
的最小值为
A 162
B 82
C 84
D 44
二 ,填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上
(一)选做题(请考生在第9.10 11三题中人选两题作答案,如果全做,则按前两题记分 )
9. 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t 为参数)与曲线C2 :x=asin θ
Y= 1-2t y=3cos θ
(θ为参数,a >0 ) 有一个公共点在X 轴上,则a 等于 ———— 10.不等式|2x+1|-2|x-1|>0的解集为_______.
11.如图2,过点P 的直线与圆O 相交于A ,B 两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______
(二)必做题(12~16题)
12.已知复数z=(3+i )2(i 为虚数单位),则|z|=_____.
13.( x x
6
的二项展开式中的常数项为 。
(用数字作答) 14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=
15.函数f (x )=sin ( )的导函数y=f(x)的比分图像如图4所示,其中,P 为图像与轴的交点,A,C 为图像与图像与x 轴的两个交点,B 为图像的最低点。
(1)若,点P 的坐标为(0,33
2
),则 ABC 内的概率为
(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概
率为4。
16.设N=2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N 。
将该排列中分别位于奇数与偶数位置的数取出,并
按原顺序依次放入对应的前2N 个数和后2
N
个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,
将此操作称为C 变换,将P 1分成两段,每段2N
个数,并对每段作C 变换,得到P 2
当2≤i ≤n-2时,将P i 分成2i 段,每段个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置。
(1)当N=16时,x 7位于P 2中的第___个位置;
(2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置。
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。
已知这100位顾客中的一次购物量超过8件的顾客占55%。
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过
...2.5分钟的概率。
(注:将频率视为概率)
18.(本小题满分12分)
如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。
19.(本小题满分12分)
已知数列{an的各项均为正数,记A(n)=a
1+a
2
+……+a
n
,B(n)=a
2
+a
3
+……+a
n+1
,
C(n)=a
3+a
4
+……+a
n+2
,n=1,2,……。
(1)若a
1=1,a
2
=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数
列,求数列{a
n
}的通项公式。
(2)证明:数列{a
n
}是公比为q的等比数列的充分必要条件是:对任意n∈N﹡,三个数A(n),B(n),C(n)组成公比为q的等比数列。
20.(本小题满分13分)
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件)。
已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件。
该企业计划安排200名工人分成三组分别生产这
三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数)。
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。
21.(本小题满分13分)
在直角坐标系xOy中,曲线C
1的点均在C
2
:(x-5)2+y2=9外,且对C1上任意一点
M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值。
(Ⅰ)求曲线C
1
的方程
(Ⅱ)设P(x
0,y
)(y
≠±3)为圆C
2
外一点,过P作圆C
2
的两条切线,分别于曲线
C
1
相交于点A,B和C,D。
证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值。
22.(本小题满分13分)
已知函数f(x)=e ax-x,其中a≠0。
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合。
(2)在函数f(x)的图像上取定两点A(x
1,f(x
1
)),B(x
2
,f(x
2
)(x
1
<x
2
),
记直线AB的斜率为K,问:是否存在x
0∈(x
1
,x
2
),使f′(x
)>k成立?若存在,
求x
的取值范围;若不存在,请说明理由。