第三章 X射线计算机体层成像要点
计算机X线成像解析
颗粒增大,发光强,清晰度降低
基板:PSL物质的支持体,厚度在200~350μm
避免激光在PSL物质层和基板之间反射,基板制成黑色
背面保护层:聚酯类纤维,防止使用过程中与IP 之间的摩擦损伤。
2、IP的规格与类型
激光阅读器 (IP受到激光的激励)
机制:
第一次对IP激励的光:X线
第二次对IP激励的光:激光
(2)IP可重复使用 机制: IP的第一次激励:
Eu2+
IP的第二次激励:
Eu3+
Eu3+ Eu2+
(3)IP的发射光谱与激励光谱不同
IP的发射光谱
IP的激励光谱 (激光发射光谱)
IP的激励光谱 (激光发射光谱)
2.熟悉 CR的成像理论;影响CR图像质量的因素。
CR的历史:
计算机X线摄影(Computed Radiology,CR), 是以成像板(Imaging Plate,IP)作为载体,经X 线曝光及信息读出处理形成数字影像的摄影技术。
1983年由日本富士公司研制成功。
第一节 CR成像基本条件
CR系统由X线机、IP、影像阅读器、后处理工作站 和存储装置等组成 。
频率增强程度(RE):
频率类型(RT):12类型
频率等级(RN): 0~9
低频等级(0~3):大结构 中频等级(4~5):普通结构
高频等级(6~9):小结构
4、减影处理 减影方式
时间减影——DSA 能量减影
能量减影
两次曝光法 一次曝光法
能量减影原理:
一次曝光法能量减影:
使用两块同样大小的IP, 夹着一0.6mm厚金属铜板。
关于X射线计算机体层摄影设备成像原理与描述共57页文档
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
关于X射线计算机体层摄影设备成像 原理与描述
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
X射线计算机断层成像PPT课件
❖ 1974年美国George-town大学医学中心的Ledly研制成第一台全身CT扫 描机。
❖ 为此Hounsfield和Cormack共同获得了1979年的诺贝尔生理和医学奖。
伦琴与X-Ray
1895年,X-Ray 第一次被发现
CT图像重建的数理基础(1)
X射线通过非均匀介质:
N1 N2 N3
Nn
I0
μ1 μ2 μ3 μm μn
In
Δx Δx Δx
Δx
Im-1
Im
Δx
n
I I e I e I e nx
( 1 2 n )x
(x• i )
i1
n
n 1
0
0
二.X-CT基础知识
CT图像重建的数理基础(2)
狄拉克函数( 函数)
CT值的定义式:
人体各组织CT值约为-1000~1000HU,即约有2000个CT值
二.X-CT基础知识
灰度显示—在图像上,表现各像素黑白或明暗程度的量 1000
0
-1000
三.传统X-CT的扫描方式
传
静止-旋转
(S/R)
统
C
T
扫 单束平移-旋转
描
(T/R)
扫描方式
旋转-旋转 (R/R)
方
式
窄扇形平移-旋转
严重的环状伪影
homogeneuous CT va种原因,对相同强度的入射X 线,探测器不可能始终输出同样的扫描信号。
当探测器输出错误信号甚至无 信号,会导致图像中的“环状 伪影”。
可通过每天开机或连续几小时 不工作后,作系统校正测量及 其定期地作系统维护来防止, 而一旦排除不了,须由维修工 程师来解决 !
医学图像处理-第3章-X射线计算机体层成像
3.灰度
灰度:指图像面黑白或明暗的程度。 从全黑到全白可有无数个不同的灰度。 CT 影像是以灰度分布的形式显示的图像 。
CT图像的本质是μ成像。
若CT值按2000个计算,相应的灰度值也有 2000个,即从全黑(CT值为-l000)到全白 (CT值为+1000)有2000个不同的黑白或明 暗等级(灰度),CT像是一个灰度不同、且 灰度变化不连续的图像。
造成CT图像的不均匀性。
22
2.CT值
μ是一个物理量,CT值表达人体组织对X线
衰减的量值 。
CT值定义:CT影像中每个像素对应的物质 对X线线性平均衰减量大小的表示。应用中 CT值:人体被测组织的吸收系数与水的吸收
系数的相对值: CT值x wK w
CT值单位“HU” 。μw为73keV能量X线在水
解出180×180个单元体所对应的μ 。 32
3.2.2 数据采集基本原则
CT成像数据采集是利用X线管和检测器等的 同步扫描来完成。 检测器是一种X线光子转换为电流信号的换 能器。 1.须按空间位置有规律地进行 X线束经被测人体层面吸收的投影是X线束 扫描位置的函数。 数据采集须按照被测人体层面的空间位置有 规律地进行。
主要内容 3.1 CT成像技术发展 3.2 CT成像原理 3.3 数据采集与扫描方法 3.4 CT图像重建 3.5 CT图像处理 3.6 图像重建方法
4
第一节 CT成像技术发展
5
3.1 CT成像技术发展
1917年,雷登(J.Radon) 指出对二维或三 维的物体,可以从各个不同方向上的投影,用 数学方法计算出唯一的一张重建图像。称之谓 雷登变换。
7
1967年,豪斯菲尔德(Godfrey Hounsfield)制成了 第一台可用于临床的CT。1971年9月第一台头扫 描CT机安装在英国的一所医院中。
医学影像物理学试题及答案(三)
医学影像物理学试题及答案第三章 X射线计算机断层成像(X-CT)3-1 普通X射线摄影像与X-CT图像最大不同之处是什么?答:普通X射线摄影像是重叠的模拟像,而X-CT图像是数字化的断层图像。
3-2 何谓体层或断层? 何谓体素和像素? 在重建中二者有什么关系?答:体层或断层是指在人体上欲重建CT像的薄层。
体素是人体中欲重建CT像断层上的小体积元,是人为划分的,是采集(或获取)成像参数(衰减系数值)的最小体积元(实际中是扫描野进行划分);像素是构成图像的最小单元,是人为在重建平面上划分的,其数值是构成CT图像数据的最小单元。
要注意的是CT图像的像素和工业上的像素不是同一个概念。
体素和像素的关系是二者一一对应。
按重建的思想是体素的坐标位置和成像参数值被对应的像素表现(坐标位置对应、衰减系数值以灰度的形式显示在CT图像上)。
3-3 何谓扫描? 扫描有哪些方式? 何谓投影?答:所谓扫描系指在CT的重建中使用的采集数据的物理技术,具体言之就是以不同的方式,沿不同的角度,按一顶的次序用X射线对受检体进行投照的过程称为扫描。
扫描方式从总体上说有平移扫描和旋转扫描两种。
扫描的目的是为了采集足够的重建数据。
所谓投影的本意系指透射物体后的光投照在屏上所得之影。
若物体完全透明,透射光强等于投照光强,则影是完全亮的;若物体半透明, 透射光强小于投照光强,则影是半明半暗;若物体完全不透明,透射光强等于零,则影是完全暗的。
按此种考虑,所谓投影的本质就是透射光的强度。
对重建CT 像过程中投影p 的直接含义就是透射人体后的X 射线强度,即书中X 射线透射一串非均匀介质(或人体)后的出射X 射线的强度I n ,即p =I n 。
广义之,这个投影p 又是由I n 决定的书中表述的i i d μ∑=p 。
3-4 请写出射线束透射下列非均匀介质后广义下的投影值(见书中习题3-4图)。
答案:(a)17;(b)∑==71n i i μ3-5 何谓层厚? 它与哪些因素有关?答:层厚的本意系指断层的厚度。
X线计算机体层摄影
【编号】B4.2.2.29【名称】X线计算机体层摄影【别名】【适应证】X线计算体层摄影(computed tomography,CT)是X线与电子计算机技术相结合,对物体的体层面进行图像重建的一种新技术。
自1972年第一台适用于头颅检查的CT机研制成功以来,该技术的临床应用日益广泛,检查范围也扩展到全身各个部位。
1.头部(1)头部外伤:特别是对颅内出血的定位、定性、定量具有特殊意义。
而且可协助指导颅内血肿的处理。
(2)颅内肿瘤:CT为较为安全无创而可靠的方法。
经平扫及增强检查多数能够诊断。
(3)颅内感染:对诊断颅内脓肿效果理想。
对脑炎的鉴别诊断及对脑膜炎并发症的诊断及处理也有帮助。
(4)脑积水:CT有特殊效果,可将阻塞部位和原因、伴随病变、脑室的大小及脑皮质的厚度准确显示。
(5)其他:CT对眼眶、中耳、鼻窦及口腔疾病的诊断也有较大帮助。
2.体部 目前主要用于腹部脏器,特别是肝脏、胰腺和腹膜后病变的诊断。
对于盆腔病变及胸部病变,由于有其他有效的诊断方法,CT应用相对较少。
CT 还可应用于检查脊柱和椎管内病变,与脊髓造影结合检查可进一步提高诊断效果。
【禁忌证】一般无特殊禁忌,但CT也有一定的局限性,例如对脑干病变、乳房病变的诊断尚不理想。
对心脏病变的诊断尚在研究阶段。
检查费用昂贵也在某些情况下限制了其应用。
【准备】1.患儿的制动 检查过程中,患儿的制动十分重要,因为轻微的活动就会产生伪影,影响图像质量。
除取得患儿合作外,头部和躯干均需固定。
一般需给予镇静剂甚至在麻醉下进行。
2.用药前应做碘过敏试验。
3.应准备好抢救用品。
【方法】1.原理 CT装置由扫描装置、计算机系统和图像显示与记录系统组成。
扫描装置即收集透过被查体X线信息的部分,主要由X线管和探测器组成。
X线管发射的X线经准直器形成狭窄的射线束,限制在某一体层面进行扫描。
X线透射物体后的强度,随物体的吸收系数或组织密度的增加而减弱。
测定透过的X线量,数字化后经过计算得出该层组织各个单位容积的吸收系数,然后用迭代法、褶积法或傅利叶变换法进行图像重建。
XCT成像原理课件ppt
间距(采样间隔)↓→ 空间分辨力↑
图像重建算法(滤波函数的选择)。
体素(矩阵越大)——空间分辨力↑
空间分辨力取决于 检测器有效受照宽度(与线束宽度相对应) 检测器有效受照高度(与线束高度相对应)
■空间分辨力的检测:高密度测试体模 线对数LP/Cm; 分辨最小圆孔的直径(mm)
多层探测器
X 光管
检测器结构:单排、多排(64)、等宽、不等宽
三、超高速扫描 [第5代(1987)]
1、动态空间扫描 28个X线管(半圆),28个检测器(半圆); 电子开关控制轮流发射X射线脉冲束;时间<1s 。 应用范围:心、肺动态器官
2、电子束扫描 钟形X射线管和静止排列的检测器环 时间约 10ms 应用范围: 心、肺等动态器官
基本原理
X射线被准直后成为一条很窄的射线束。当X 射线管沿一个方向平移时,与之相对应的检测器 也跟着作平移运动。这样,射线束就对整个感兴 趣的平面进行了一次扫描,检测器接收到了与脏 器衰减系数直接相关的投影数据。
基本原理
一次扫描过程结束后,整个X射线源 及检测器系统将沿圆弧旋转一个角度(如 每次旋转1°),然后再重复平移扫描过 程,直至在整个180°圆周上扫描一遍。 当把全部投影数据送入计算机后,就可以 通过图像重建算法来重构关于探测平面的 二维图像,图像的灰度值与组织的衰减系 数相对应。这就是X-CT的基本工作原理。
“旋转-平移”的试验,实现了最早的图像重 建 • 1963年,美国教授cormark进一步发展了从X线 投影重建图像的准确数学方法(79年诺贝尔奖) • 1967~1970年,hounsfield提出了断层的方法
(79年诺贝尔奖)
CT发展简史
计算机体层成像
计算机体层成像(computed tomography,CT)作为影像学检查方法之一,在临床上有着不可替代的作用。
自1998年,多层螺旋CT开始了真正意义的起步,主要表现在同步扫描的能力越来越强(4层/圈—6~8层/圈—10~16层/圈—32~40层/圈—64层/圈),扫描速度越来越快(0.5 s—0.42 s—0.37 s—0.33 s),图像分辨率越来越高(以Z轴分辨率为例:1 mm—0.75 mm—0.6 mm—0.33 mm)。
时至今日,CT扫描的速度和分辨率均以达到前所未有的水平,极大程度上满足临床各种检查的需要,多层螺旋CT(包括64层及更多层数、排数的单源CT)在临床上一直面临着难以逾越的问题: ①在高心率及不规则心率情况下无法实现有效的心脏成像(时间分辨率需要低于100 ms)当机架旋转一圈时的时间最短达到0.33 s时,对机械制造业来说已经达到了一个新的极限速度,其高速旋转的离心力达到28 G,心脏成像的时间分辨率达到165 ms。
而为了适应心率的波动情况,特别是在高心率和心率失常的情况下,时间分辨率需要小于100 ms,此时相应的机架旋转时间须在0.2 s左右,离心力则将达到75 G[1,2],而这是单源CT难以达到和维持的。
②一次扫描难以完成整个器官的扫描:目前所有的多层螺旋CT均采用在扫描方向上(Z轴)的多排亚毫米级的探测器组合,单圈扫描的最大覆盖范围仅为20~40 mm,难以完成整个器官的瞬间扫描。
尤其对心脏等运动器官的扫描时,其采集方式为螺距小于1(pitch值一般为0.2-0.4)即多实相重叠扫描方式,需要多圈次的扫描来产生容积数据用于图像重建,但是通过这种方式无法观察到整个器官随时间变化的血流灌注情况,而且图像的空间分辨率难以进一步提高到常规X线平片的水平。
③难以最大的容积覆盖速度和足够的功率来完成高清晰的成像:现在临床上越来越多需要大范围、高速度、超薄层的扫描。
X线计算机体层成像
第三代:旋转-旋转
第四代:旋转-固定
第五代:电子束CT
(EBCT)
医学影像学(第8版)
三、 CT检查方法
平扫
不用对比剂增强或造影的扫描
扫描方位多采用横断层面
检查颅脑以及头面部病变有时可加用冠状层面扫描 增强扫描ຫໍສະໝຸດ 常规增强扫描
动态CT增强扫描(dynamic CT enhancement scan) 延迟增强扫描
医学影像学(第8版)
五、CT图像特点
CT图像是数字化模拟灰度图像
经数字转换的重建模拟图像 一定数目从黑到白不同灰度的像素(pixel)按固有矩阵排列而成 像素的灰度反映的是相应体素(voxel)的X线吸收系数
CT图像具有较高的密度分辨力
密度分辨力较常规X线图像高,相当于10~20倍 清楚显示由软组织构成的器官,空间分辨力不及常规X线图像 CT增强检查有利于病变的检出和诊断
CT图像为断层图像
CT横轴位断层图像是含有一定层面厚度的组织结构的重建图像 密度并非代表任何一种组织(平均值),为部分容积效应或部分容积现象 利用计算机软件对CT轴位断面图像信息进行图像重组,为CT图像后处理技术
医学影像学(第8版)
五、CT图像特点
肺窗(W:1000 L:-700)
2003年 2001年 第一台8排CT 第一台32排CT
1976年 第一台旋转-旋转CT
0.5s 0.5s 0.5s 0.35s 0.35s 2s 1min 10s 1s
0.5s
2s
1991
1998
医学影像学(第8版)
二、 CT设备与CT成像性能
x射线计算机体层摄影设备通用技术要求
x射线计算机体层摄影设备通用技术要求x射线计算机体层摄影设备(CT)是一种医学成像设备,通过使用x射线来获取人体内部的图像。
它可以提供高分辨率、三维的图像,对于医生来说是一种非常重要的诊断工具。
在使用x射线计算机体层摄影设备之前,我们需要了解一些基本的技术要求。
首先是设备的辐射安全性。
由于x射线具有一定的辐射性,因此设备必须符合相关的辐射安全标准,以确保患者和医护人员的安全。
同时,设备还应具备辐射剂量监测和报警系统,以及紧急停机装置,以便在紧急情况下及时停止辐射。
其次是设备的成像质量要求。
x射线计算机体层摄影设备应具备高分辨率和良好的对比度,以确保图像的清晰度和准确性。
设备应具备适当的技术参数调节功能,以适应不同患者的需要。
同时,设备还应具备快速成像的能力,以减少患者的不适和运动模糊。
设备的操作和控制要求也是非常重要的。
设备应具备人性化的操作界面和易于理解的操作流程,以方便医护人员的使用。
设备还应具备自动化的控制系统,以确保图像的稳定性和一致性。
同时,设备还应具备故障自诊断和报警功能,以及数据存储和管理功能,方便医生的诊断和病历管理。
设备的维护和质量控制要求也是非常重要的。
设备应具备定期维护和校准的功能,以确保设备的正常工作和成像质量的稳定性。
设备还应具备自动质量控制和质量保证功能,以确保图像的准确性和一致性。
同时,设备还应具备远程维护和升级的功能,以方便厂商的技术支持和设备的更新。
除了以上的技术要求,x射线计算机体层摄影设备在使用过程中还需要遵守一些操作规范和安全要求。
医护人员需要接受相关的培训,了解设备的使用方法和注意事项。
在操作过程中,需要注意患者的辐射剂量控制,避免过度暴露。
同时,还需要注意设备的消毒和维护,以确保设备的卫生和正常工作。
总结而言,x射线计算机体层摄影设备的通用技术要求包括辐射安全性、成像质量、操作和控制、维护和质量控制等方面。
在使用这种设备的过程中,需要遵守相关的操作规范和安全要求,以确保患者的安全和图像的准确性。
第三章 X射线计算机体层成像
第三章 X射线计算机体层成像第5题第9题第11题第14题第16题第18题第21题3-1 普通X射线影像与X-CT影像最大的不同之处是什么?答:二者最大的不同之处在于:X-CT像是断层图,而普通X射线摄影像是多器官的重叠像。
3-2 何为体层?何为体素?何为像素?在重建CT像的过程中,体素与像素有什么关系?答:所谓体层,指的是受检体中的一个薄层,又称之为切层。
在建立CT图像的扫描过程中,受检体中被X射线束透射的部分就是此切层。
所谓体素,是指在受检体内欲成像的层面上按一定的大小和一定的坐标人为划分的形如一小段火柴杆状的小体积元。
对划分好的体素要进行空间位置编码(即在层面上按体素的划分顺序,对体素进行位置编号),从而形成编好排序的体素阵列。
所谓像素系指构成图像的基本单元。
对于二维图像来说,这些像素就是图像平面的小面积元。
像素是按一定的大小和一定的坐标人为划分的。
对划分好的像素也要进行空间位置编码(即在图像平面上按像素的划分顺序,对像素进行位置编号),从而形成编好排序的像素阵列。
根据重建CT图像的思想,体素和像素的关系是:二者一一对应,使体素的坐标排序和像素的坐标排序要完全相同,并使各体素的特征参数(即线性吸收系数或衰减系数)值的大小被对应的像素以灰度的方式表现,从而在图像画面上形成灰度分布的图像。
3-3 重建CT图像都要通过扫描来采集足够的投影数据,请问何为扫描?扫描有哪些方式?答:扫描是采集重建图像数据而使用的物理技术。
在X-CT重建图像过程中,首先要进行的就是对受检体的扫描。
所谓扫描,是用近于单能窄束的X射线束以不同的方式、按一定的顺序、沿不同的方向对划分好体素的受检体切层进行投照,这就是X-CT重并用高灵敏度的探测器接受透射各体素后的出射X线束的强度I。
建图像中采用的获取投影数值的物理技术,也即通常所说的采集数据的扫描技术。
扫描的方式有平移扫描、旋转扫描、平移加旋转扫描等。
扫描方式的选择着眼于加快重建图像的速度,同时,扫描方式的采用也与算法互相制约。
计算机体层成像(CT)PPT课件
CT在安全检查中的应用案例
机场安检
01
CT扫描能够快速检测行李中的危险物品,提高机场安检的效率
和准确性。
海关检查
02
CT扫描能够检测出走私物品和违禁品,为海关检查提供重要手
段。
工业检测
03
在制造业中,CT扫描能够检测产品内部缺陷和问题,提高产品
质量和可靠性。
THANKS FOR WATCHING
微结构。
多角度成像
通过旋转扫描,CT可以 获取不同角度的图像, 有助于医生全面了解病
变情况。
快速扫描
相比于传统的X光成像, CT的扫描速度更快,减 少了患者的等待时间。
定量分析
CT图像可以进行定量分 析,为医生提供更准确
的诊断依据。
缺点
01
02
03
04
辐射暴露
CT扫描过程中会产生一定剂 量的辐射,长期或频繁接受 CT检查可能对人体造成损伤
CT在科学研究中的应用案例
1 2
材料科学
通过CT扫描,科学家可以观察材料内部结构,了 解材料的力学性能和物理性质,为材料科学研究 和工程应用提供支持。
地质学
CT扫描能够揭示地质样本内部的矿物分布和结构, 为地质学研究和矿产资源勘探提供重要信息。
3
生ห้องสมุดไป่ตู้学
通过CT扫描,生物学家可以观察动物和植物的内 部结构,了解其生长和发育过程,为生物学研究 提供有力支持。
个性化医疗
根据患者的个体差异,制定个性 化的治疗方案,提高治疗效果。
面临的挑战
数据安全与隐私保护
随着CT数据的不断增加,如何确保数据的安全和隐私成为重要问 题。
医疗资源分配
如何合理分配医疗资源,使CT技术在更多地区得到普及和应用。
第三章 X射线计算机体层成像要点
静止-旋转(S/R)方式
第四代CT
特点: ➢扇形扫描束 ➢连续或脉冲方式的X射线 ➢环形整圈探测器 ➢探测器共600-1500个 ➢球管每次旋转360度 ➢检测一个层面1-5S
49
传统CT扫描的缺撼
1
单电缆供电 X射线管不 能进行连续 的扫描
2
单次扫描结 束后要停止 扫描,并回 到扫描的起 始位置
➢使用电扫描方式控制球管依
次曝光
➢每10毫秒可采集14幅图像
➢1S内重复60次,可达840幅
图像
三、X线-CT的扫描方式
第五代CT
超高速CT扫描机 (电子速CT)
UFCT: Ultrafast CT Scanner EBIS: Electronic Beam Imaging System
➢4个紧挨的环状钨靶,半径90CM,围成210度 ➢两排环形探测器阵列,半径67.5CM,围成210度 ➢第一个环864个探测器,第二个环432个探测器
46
窄扇形束扫描平移-旋转(T/R) 方式
第二代CT
特点: ➢直线多路笔形扫描束 ➢探测器3-52个 ➢每次旋转3-30度 ➢检测一个层面20-120S
47
旋转-旋转(R/R)方式
第三代CT
特点: ➢扇形扫描束 ➢连续或脉冲方式的X射线 ➢环形阵列探测器300-800个 ➢每次旋转360度 ➢检测一个层面3-5S
电子束扫描示意图
四、X线-CT的一些基本参数
1. CT值(Hounsfield值)
1000 60
Spleen脾
Kidneys肾
Blood血
Liver肝脏
Heart心脏
Tumor瘤
40 Bone 骨
Pancreas 胰腺
X射线计算机断层成像PPT课件
扫描方式
• 宽扇束旋转—旋转方式(第三代)
第 3 代 CT 探测器数目一 般多超过 100 个,有的接 近1000 个,X 线扇形束扩 大到 40º~50º,足以覆盖 人体的横径,这样扫描就不 需要再平移,而只需要旋 转就可以了,故称为旋转/旋 转型。扫描时间一般均在 几秒钟,最快速度 0.5s,实 现了亚秒级扫描。
扫描方式
• 宽扇束旋转—静止方式(第四代)
第 4 代 CT 机与早先产 品不同,探测器呈 360º 环状固定排列在机架内 (目前有的机型多达 4800 个探测器),X 线管则围 绕人体和机架作 360º旋 转,把第 4 代称固定/旋转 型(螺旋 CT 属此型)。
扫描方式
• 电子束方式(第五代)
第 5 代 CT 机与第 1 到第 4 代 CT 机不同,在成像 过程中 X线管不需环绕机架作机械运动,它是用电 子束方法产生旋转的 X线源,再穿透人体由探测器接 受,这种 CT 机称为电子束 CT,也称超高速 CT,特 点是扫描速度很快, 50~100ms /层,每秒最多可扫 34 层,就其扫描速度是普通 CT 的 40 倍,螺旋 CT 的 20 倍,可用于心脏一类运动器官的扫描。
扫描方式
基本原理
• 扫描和投影:
扫描:用X射线束以不同方式、按一定顺序、 沿不同方向对体层进行投照,并用高灵敏度的 探测器接受出射X射线的强度 。
投影:投照受检体后出射X线束的强度;投影 值的分布为投影函数。
基本原理
基本原理
• 物理原理:ቤተ መጻሕፍቲ ባይዱ
X射线计算机体层成像(
扫描方式 运动方式
扫描时间
笔束扫描 平移/旋转方式
3min
扇束扫描 连续扫描方式
1s~10s 更快
10s~2min 2.8s~10s
主要用途 头颅扫描
全身扫描,观察除 心脏外的脏器
可用于血管造影 和心脏造影
CT成像技术
• 以测定X射线在人体内的衰减系统为基础, 采用图象重建法求解出衰减系数值在人 体某剖面上的二维分布矩阵,再把此二 维分布矩阵转变为图象画面上的灰度分 布,从而建立断层图像的现代医学成像 技术。
Table
Data Acquisition System (DAS)
Pre-Collimator Post-Collimator
Source Filter
Scattering
Detector
Patient
(From G. Wang)
Data Acquisition System (DAS)
X-ray Tube Source Filter
Third Generation
Multiple detectors Translation-rotation Large fan-beam
(From G. Wang)
• 第四代(旋转-静止)CT 扫描方式:探测器排成圆周固定,只有 X线管旋转。 可从探测器数量划分:1200个 :低档CT 4800个: 高档CT 扫描时间:2秒
(From G. Wang)
15 1 15 0 15 0 15 1 15 0 15 0 15 1 15 0
1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
x线计算机体层成像名词解释
x线计算机体层成像名词解释
X线计算机体层成像(CT)是一种医学影像技术,通过使用X
射线和计算机处理技术来生成人体内部的横断面图像。
这种成像技
术利用X射线通过人体的不同部位,然后通过计算机对X射线的吸
收情况进行处理,生成高分辨率的人体组织横截面图像。
CT扫描可
以提供关于骨骼、器官和组织的详细信息,有助于医生诊断疾病和
损伤。
CT成像通过使用旋转式X射线装置,患者平躺在扫描床上,X
射线管和探测器围绕患者旋转,同时进行X射线扫描。
这些数据被
传输到计算机中,计算机重建出横截面图像,医生可以通过这些图
像来观察人体内部的结构和异常情况。
CT成像在临床诊断中起着重要作用,可以用于检测肿瘤、骨折、出血、感染和其他疾病。
它还可以用于引导手术和放射治疗,以及
评估器官的功能和血液供应情况。
总的来说,X线计算机体层成像是一种通过X射线和计算机技
术生成人体横断面图像的医学影像技术,对于临床诊断和治疗起着
重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、X线-CT的历史
❖1967年至1970年间英国EMI公司的工程师豪 斯菲尔德(G.N.Hounsfield)研制成功世界 上第一台用于医学临床的X线CT扫描机,于 1971年9月被安装在伦敦的AtkinsonMorley’s医院。
9
一、X线-CT的历史
• 1972年利用这台X线CT首次为一名妇女诊断 出脑部的囊肿,并取得了世界上第一张CT 照片。
23
投影(Projection)
投照受检体后出射X射线束的强 度I称为投影,投影的数值称为投影 值;投影值的空间分布,称为投影 函数。获取的投影就是运用扫描技 术而采集到的数据。
Example: Projection
Projection
Projection
Ideal Image
Sinogram
近似单能窄束的X射线束-cont.
层厚和在体层厚度内沿轴向的X射 线能量分布情况将影像图像的质量。
21
二、X线-CT成像原理
体素
把体层分成很小的体积单 位称 “voxels(体素)” 通常 体素长和宽都为1mm, 与体 积相对应; 体素的大小在CT图像上的 表现即为 “pixels(像素)”
扫描的方式
• 平移扫描 • 旋转扫描 • 平移加旋转扫描
• 1974年美国George-town大学医学中心的 Ledly研制成第一台全身CT扫描机。
• 为此Hounsfield和Cormack共同获得了1979年 的诺贝尔生理和医学奖。
10
CT会是什么样?
一、X线-CT的历史
人体被“切成”一 层、一层...
➢ 耗时太长(10 分 / 幅)。 ➢ 分辨率尚需提高。
官或组织的解剖结构。 • 3 能分辨人体内器官或组织密度微
小的变化。
二、X线-CT成像原理
CT
X-ray 发生
数据 获取
如 何
重建 & 后处理
工
作
?
二、X线-CT成像原理
体层
进行扫描时,通过受检体的X射线束 是一个薄层,即体层(slice),层厚与束 高相对应,决定了体素的高度。
层厚
在扫描野的中心处,X射线扫描层 的有效高度。
单能窄束X射线强度透射均匀介 质时强度衰减的规律符合朗勃-比尔 (Lambert-Beer)定律:
28
二、X线-CT成像原理
CT影像形成 - A/D/A*
二、X线-CT成像原理
➢ I为穿过某一物质后的
X射线强度; ➢ I0为射入该物质之前的
X射线强度; ➢ μ为该物质的吸收系数
dI I • • dx
获取方法是配准直器。准直器可理解为允 许X射线通过的细长狭窄通道,通过准直器 后的X射线称为窄束X射线。
二、X线-CT成像原理
根据X射线通过介质时衰减的物 理规律,通过对受检体扫描,测出 足够多的投影值,运用一定的数学 方法求解成像剖面上衰减系数的分 布,从而得到CT图像。
朗勃-比尔(Lambert-Beer)定律
二、X线-CT成像原理
CT影像的像素值如何计算出来?(1)
N1 N2 N3
Nn
I0
μ1 μ2 μ3
μn
In
Δx Δx Δx
Δx
Im-1
μm
Im
Δx
P
d
n i 1
i
ln(
I0 ) In
二、X线-CT成像原理
CT影像的像素如何计算出来?(2)
通过射线方向上的投影值,来
计算各像素的衰减系数值。
??
3
所以我们能看到 断层解剖结构 & 且带有不同密度
CT影像质量的进步...
SIRETOM (1974)
SOMATOM Plus 4 UFC (1996)
3D图像的合成
3D Face (threshold: -400 HU)
3D Head (threshold: 150 HU)
CT成像特点
• 1 具有较高的X射线检测能力。 • 2 能显示人体某一断层平面上的器
第三章 X线CT技术
1
CT ( Computed Tomography )
计算机断层摄影
要点
• 一、X线-CT的历史 • 二、X线-CT成像原理 • 三、X线-CT的扫描方式 • 四、X线-CT的一些基本参数 • 五、X线-CT的组成 • 六、螺旋X线-CT介绍 • 七、多层螺旋X线-CT介绍
一、X线-CT的历史 X-Rays的发现...
107 年前, Wilhelm Conrad Roentgen
一、X线-CT的历史
看到人体内部结构...
人们破天荒头一次能无损伤看 到人体内部的解剖结构!
➢ 解剖结构是重叠的。 ➢ 软组织是不能区分的。
一、X线-CT的历史
CT 消除了这 些障碍... 在 1972年, 两位 科学家 Hounsfield and Ambrose- 推出 第一幅临床CT 图像 ...
??
7
直接矩阵求解法 逐次近似法(迭代法)
1
5
46
4
2 5 3
总和法(反投影法) 卷积反投影法
二、X线-CT成像原理
反投影法(总和法) back projection
反投影法又称总和法(累加法),此法是利用投 影数值法近似的复制出μ的二维分布。 定性地说明反投影法的原理就是:沿投影路 径的反方向,把所得投影的数值反投回投影路 径上的各体素中去,求出各体素的μ值而实现 图像重建的方法。
I I oex
(不同物质的μ值不同,
由 物 质 的 物 理 特 性 决 I0
I
定);
➢ X为该物质的厚度;
X
二、X线-CT成像原理
CT影像形成 - “Matrix(矩阵)”
测试到衰减后的X线值, 转换成CT值并传送
到计算机。
35 36 34 39 33 31 34 33 35 32 31 78 80 85 90
一、X线-CT的历史
❖ 1917年奥地利数学家雷当(Radon):根据 面投影到线并重建图像的计算公式。
❖ 1963年美国物理学家柯马克 (A.M.Cormack):在“应用物理杂志” (Journal of Applied Physics)上发表了二篇 题为“用线积分表示一函数的方法及其在 放射学上的应用”的系列文章。
反投影重建原理
二、X线-CT成像原理
反
投
2
2
影
2
22
2
22
法
2
22
2
4
会
2
22
2
22
产
2
22
生
222
222Βιβλιοθήκη 222晕222 2228222
22 2226222 2
状
222 222
22 22
效
222
2
22
应
二、X线-CT成像原理
滤波反投影法(卷积反投影法) (filtered back projection)