LINGO在图论讲义中的应用

合集下载

LINGO在数学建模中的应用

LINGO在数学建模中的应用

一、LINGO简介LINGO[1]是美国LINDO系统公司开发的求解数学规划系列软件中你的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO的不同版本对模型的变量总数、非线性变量数目、整型变量数目和约束条件的数量做出不同的限制.LINGO的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强.(4)内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;(6)能方便地与EXCEL、数据库等其他软件交换数据.LINGO像其他软件一样,对他的语法有规定,LINGO的语法规定如下:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以字母开头,由字母、数字和下划线所组成,昌都不超过32个字符,不区分大小写;(3)每个语句必须以分号“;”结束,每行可以有多个语句,语句可以跨行;(4)如果对变量的取值范围没有特殊说明,则默认所有决策变量都非负;(5)LINGO模型以语句“MODEL”开头,以语句“END”结束,对于比较简单的模型,这这两个语句可以省略.LINGO提供了五十几个内部函数,使用这些函数可以大大减少编程工作量,这些函数都是以字符@开头,下面简单介绍其中的集合操作函数和变量定界函数及用法.集合是LINGO建模语言中最重要的概念,使用集合操作函数能够实现强大的功能,LINGO提供的常用集合操作函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等.@FOR(s:e)常用在约束条件中,表示对集合s中的每个成员都生成一个约束条件表达式,表达式的具体形式由参数e描述;@SUM(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值的和;@MAX(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最大值;@MIN(s:e) 表示对集合s中的每个成员,分别得到表达式e的值,然后返回所有这些值中的最小值.LINGO默认变量的取值可以从零到正无穷大,变量定界函数可以改变默认状态,如对整数规划,限定变量取整数,对0-1规划,限定变量取0 1或.LINGO提供的变量定界函数有:@BIN(X)、@BND(L,X,U)、@GIN(X)、@FREE(X).@BIN(X)限定X为0或1,在0-1规划中特别有用;@GIN(X)限定X为整数,在整数规划中特别有用;@BND(L,X,U)限定L<X<U,可用作约束条件;@FREE(X)取消对X的限定,即X可以取任意实数.二、LINGO 在线性规划中的应用具有下列三个特征的问题称为线性规划问题(Linear program)[2]简称LP 问题,其数学模型称为线性规划(LP)模型.线性规划问题数学模型的一般形式为:求一组变量(1,2,,)j x j n =的值,使其满足1122max(min),n n z c x c x c x =+++2111122111211222221122***.0,1,2,,,,..n j n n n n nn nn n n x j na x a x a xb a x a x a x b s t a x a x a x b ⎧⎪⎪⎪⎨⎪⎪≥=⎪⎩+++++++++ 式中“*”代表“≥”、“ ≥”或“=”.上述模型可简写为1max(min),nj j j z c x ==∑1*0,1,2,,,1,2,,..nij j j ji a x x j n b i ms t =⎧⎪⎨⎪≥=⎩=∑其中,变量j x 称为决策变量,函数1nj jj z c x==∑称为目标函数,条件1*nj jij c x b =∑称为约束条件,0j x ≥ 称为非负约束.在经济问题中,又称j c 为价值系数,i b 为资源限量. 线性规划在科学决策与经营管理中实效明显[3],但是对于规模较大的线性模型,其求解过程非常繁琐,不易得出结果.而 LINGO 中的内部集合函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等,可以用这些集合函数使程序编程简单可行,下面举例说明.例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩ 编写LINGO 程序如下: MODEL : SETS :SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA :A=1,2 ; B=100,120; C=200,300; ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00 Total solver iterations: 0 Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price 1 29000.00 1.000000 2 0.000000 50.00000 3 90.00000 0.000000 4 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.三、LINGO 在整数规划和0-1规划中的应用1 求解整数规划整数规划[4]分为整数规划和混合整数规划,要求全部变量都为非负整数的数学规划称为纯整数规划,只要求部分变量为非负整数的数学规划称为混合整数规划.下面只讨论约束条件和目标函数均为线性的整数规划问题,即整数线性规划问题(以下简称整数规划,记为ILP),其数学模型的一般形式是()1max min nj j j z c x ==∑,()()11,2,,..01,2,,ni j j i j j j a x b i n s t x j n x =⎧≤=⎪⎪⎪≥=⎨⎪⎪⎪⎩∑全为整数或部分为整数。

LIN讲义GO在图论中的应用

LIN讲义GO在图论中的应用
点与边相连接称为关联,与边e关联的顶点称 为该边的端点,与同一条边关联的两个顶点称为 相邻顶点,与同一个顶点关联的边称为相邻边.
具有相同顶点的边称为平行边,两个端点重合 的边称为环.在无向图中,没有环和平行边的图 称为简单图,任意一对顶点都有一条边相连的简 单图称为完全图.任意两个顶点之间有且只有一 条弧相连的有向图称为竞赛图.
在图中,两个顶点u和v之间由顶点和边构成的 交错序列(使u和v相通)称为链(通道),没有 重复边的通道称为迹,起点与终点重合的通道称 为闭通道,不重合的称为开通道,没有重复顶点 (必然边也不重复)的开通道称为路,起点与终 点重合的路称为圈(回路).如果顶点u和v之间 存在通道,称u和v是连通的,任意两个顶点都连 通的图称为连通图.
一步是i --> j,否则就不是。由此,我们就可方便的确 定出最短路径;
@for(roads(i,j): P(i,j)=@if(FL(i) #eq# W(i,j)+FL(j),1,0));
end
部分计算结果: FL(A) 6 FL(B) 4 FL(C) 3 FL(D) 1 FL(E) 3 FL(F) 4 FL(G) 0 最短路线为 A B D G 以上计算程序是通用程序,对其它图,只需在 此程序基础上对数据作一些修改即可。
j1
所有从其它顶点到达该顶点的弧中必然也有一条
弧在最短路上,因而必有:
n
X ji 1
2.0-1规划法
用0-1规划法也能求解最短路问题,其思路如 下.
设起点为1,终点为n.引入0-1型决策变量Xij, 如果弧(i , j)在最短路上,则Xij=1,否则Xij=0.
对于除了起点1和终点n以外的任意一个顶点i,
如果,
说明从i出发的所有弧中必然有一条弧

数学建模必备知识——lingo处理实例(多目标问题)

数学建模必备知识——lingo处理实例(多目标问题)

一个简单的LINGO程序
LINGO的基本用法的几点注意事项
•LINGO中不区分大小写字母;变量和行名可以超过8个字符,但 不能超过32个字符,且必须以字母开头。 •用LINGO解优化模型时已假定所有变量非负(除非用限定变量取 值范围的函数@free或@BND另行说明)。 •变量可以放在约束条件的右端(同时数字也可放在约束条件的左 端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达 式定义目标和约束(如果可能的话)。 •语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编 写程序时应注意模型的可读性。例如:一行只写一个语句,按照 语句之间的嵌套关系对语句安排适当的缩进,增强层次感。 •以感叹号开始的是说明语句(说明语句也需要以分号结束))。
LINGO中定义集合及其属性
LP模型在LINGO中的一个典型输入方式
以“MODEL:”开 始


集合定义部分从 (“SETS:”到 “ENDSETS” ): 定义集合及其属性 给出优化目标 和约束 集合定义部分从 (“DATA:”到 “ENDDATA” )
以“END”结 束
目标函数的定义方式 @SUM(集合(下标):关于集合的属性的表达式) 对语句中冒号“:”后面的表达式,按照“:”前 面的集合指定的下标(元素)进行求和。 本例中目标函数也可以等价地写成
LINGO软件的基本使用方法
内容提要
1. LINGO入门 2.在LINGO中使用集合
3. 运算符和函数
4. LINGO的主要菜单命令 5. LINGO命令窗口
6.习题
1. LINGO入门 2.在LINGO中使用集合
3. 运算符和函数
1. LINGO入门 4. LINGO的主要菜单命令 5. LINGO命令窗口

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]第一篇:运筹学的应用简介及实例(lindo,lingo,ahp)运筹学的应用简介及实例(lindo,lingo,ahp)一.运筹学可以用于物流中心选址:配送中心合理选址的目的是为了提高物流企业的服务质量,最大限度地增加物流企业的经济效益。

科学合理的选址不仅能够减少货物运输费用,大幅度地降低运营成本,而且能为客户带来方便快捷的服务。

二.运筹学可以用于路线选择:利用运筹学中的图论和线性规划方法,对已有的空运、水运、公路运输、管道运输、铁路运输组成的交通网,根据不同的决策目标制定不同的调运方案,可以是最短时间的运输路线、最少费用的运输路线或是最大运输量最低运费的运输线路等,从而达到降低物流成本的目的。

三.运筹学中排队论在物流中应用:排队论主要研究具有随机性的拥挤现象,在物流中有许多问题涉及,诸如机场跑道设计和机场设施数量问题, 如何才能既保证飞机起降的使用要求, 又不浪费机场资源又如码头的泊位设计和装卸设备的购置问题, 如何达到既能满足船舶到港的装卸要求, 而又不浪费港口资源等等。

四.运筹学中库存论在物流中应用:库存论主要是研究物资库存策略的理论, 即确定物资库存量、补货频率和一次补货量。

合理的库存是生产和生活顺利进行的必要保障, 可以减少资金的占用, 减少费用支出和不必要的周转环节, 缩短物资流通周期, 加速再生产的过程等。

在物流领域中的各节点如工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存。

五.运筹学中对策论在物流中应用:对策论研究有利害冲突的双方在竞争性的活动中是否存在自己制胜对方的最优策略, 以及如何找出这些策略等问题。

在这些问题中, 把双方的损耗用数量来描述, 并找出双方最优策略。

对策论的发展, 考虑有多方参加的竞争活动, 在这些活动中, 竞争策略要通过参加者多次的决策才能确定。

参考文献:[1] 左元斌.运筹学在物流配送中心的应用研究[J].商场现代化,2006(458):125-127.[2] 李宇鸣.浅谈运筹学在物流管理中应用与发展[J].吉林工商学报,2007(4):55-56.[3] 田进波.运筹学在管理物流管理中的应用[J].石油工程建设,2010(36):153-155.LINDO求解目标规划:题目:一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。

lingo-TSP问题

lingo-TSP问题

LINGO 课程试验专题——TSP前言:TSP 问题,即巡回旅行商问题,也称为货担郎问题,早期是1759年Euler 提出的骑士旅行问题。

1948年,有美国兰德公司推动,成为近代组合优化问题中的一个典型难题,它被证明为是NP 难题。

图论描述就是给定一个有向或者是无向的图,并给定他们各边的权值,找一个Hamilton 圈使得总权最小。

例:设有一个销售员从10个城市中的某一个城市出发,去其他的9个城市推销产品。

10个城市相互距离如下表所示。

要求每个城市到达且仅到达一次,回到方法一:设城市之间的距离用矩阵d 来表示,其中d 为下三角矩阵,ij d 表示城市i 与城市j 之间的距离。

设0-1矩阵x 用来表示经过的各城市之间的路线。

设01ij i j x i j⎧=⎨⎩若城市不到城市若城市到城市则建立该TSP 问题的模型如下:()121121min ..22,3,4,...,01n i ij iji j j j ik ji k ij i ijz x d x s t x x i n x -===><>=⎧⎪⎪+==⎨⎪⎪=⎩∑∑∑∑∑或 它的主要思想就是与第一个城市相连的有两个城市,与第i 个城市相连的有两个城市,每个城市都有相连的两个城市,这个自然就够成一个Hamilton 圈,但是不保证有多个圈的情况。

LINGO 具体程序如下:model:sets:city/1..10/;link(city,city)|&1#GT#&2:d,x;endsetsdata:d=74 35 10 58 9 9 146 14 10 9 712 5 21 10 8 1313 14 8 9 7 5 2311 17 27 23 20 25 21 1818 17 12 16 19 13 18 12 16;enddatamin=@sum(link:d*x);@sum(city(j)|j#GT#1:x(j,1))=2;@for(city(i)|i#GT#1:@sum(city(j)|j#GT#i:x(j,i))+@sum(city(k)|k#LT#i:x(i,k))=2);@for(link:@bin(x));得到的结果:Global optimal solution found.Objective value: 77.00000Objective bound: 77.00000Infeasibilities: 0.000000 Extended solver steps: 0Total solver iterations: 12结果分析:从这个结果我们可以看出,该TSP 问题的最短距离是77km ,其最短路线为:143275681091→→→→→→→→→→。

利用LinGo求解几种有向图最短路问题

利用LinGo求解几种有向图最短路问题
LIU Lin
(Fujian Communication Technology College Basic Courses Department, Fuzhou Fujian 350007)
Abstract: In this paper, there are several shortest paths to the weighted graph using Lingo software path length and the solution, and analyzed with a simple solution Lingo place and how to empower a directed graph of the negative rights. Provides a good way to solve this kind of this problem.
CAI Ze- huan,LI Xiang- fu
(Xiangfan Vocational and Technical College, Xiangfan Hubei 441050, China)
Abstract: This paper presents methods to achieve training standards for the effective connection with the needs of employers from five aspects, which is on the basis of vocational education in the training standards and the employer needs the existence of dislocation.
路的优点在于,程序书写简单易懂,容易掌握,答案 直观明了,比传统解题节约不少时间。Lingo不仅仅 在线性规划解题方面有其独特的优越性,在图论解 题中也有其可取之处,简便易懂的程序取得意想不 到的效果。

4.3 图论中最优树问题的Lingo求解

4.3 图论中最优树问题的Lingo求解

图论中最优树问题的Lingo求解树连通且不含圈的无向图称为树.常用T表示。

树中的边称为树枝,树中度为1的顶点称为树叶图1 树的示例在许多实际问题中,如在许多城市间建立公路网、输电网或通信网络,都可以归结为赋权图的最优树问题。

如在一个城市中,对若干个居民点要供应自来水,已经预算出连接各点间管道的造价,要求给出一个总造价最小的铺设方案。

图论中最优树的的求解通常有两种算法:Kruskal算法(或避圈法)和Prim算法(破圈法). 这里我们给出利用LINGO求解最优树的方法。

总线性规划模型为:问题1 某有10个城镇见下图,它们之间的距离见表1。

城镇1处有一条河流,现需要从各城镇之间铺设管道,使城镇1处的水可以输送到各城镇,求铺设管道最少的设计方式。

表1 10个地区之间的距离(单位:公里)地区12345678910 10859121412161722 28091516811181422 359079117121217 4915703171071515 5121693081061515 6148111780914816 7121171010908611 81618127614801111 917141225158611010 102222171515161111100该问题实际上是求从点1出发的最优树问题。

Lingo实现程序为:! 最优树的Lingo程序; model:sets:point/1..10/:u;link(point,point):d,x; endsetsdata:d=0,8,5,9,12,14,12,16,17,22, 8,0,9,15,16,8,11,18,14,22, 5,9,0,7,9,11,7,12,12,17, 9,15,7,0,3,17,10,7,15,15,12,16,9,3,0,8,10,6,15,15,14,8,11,17,8,0,9,14,8,16,12,11,7,10,10,9,0,8,6,11,16,18,12,7,6,14,8,0,11,11,17,14,12,25,15,8,6,11,0,10,22,22,17,15,15,16,11,11,10,0; @text()=@writefor(link(i,j)|x(i,j) #GT#0:'x(',i,',',j,')=',x(i,j),' ');enddatamin=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));n=@size(point);@sum(point(j)|j#gt#1:x(1,j))>=1;@for(point(i)|i#ne#1:@sum(point(j)|j#ne#i:x(j,i))=1); @for(link(i,j):@bin(x(i,j)));@for(link(i,j)|i#ne#j:u(i)-u(j)+n*x(i,j)<=n-1); !不构成圈;end结果为minZ=60x(1,2)=1 x(1,3)=1 x(3,4)=1 x(4,5)=1x(9,6)=1 x(3,7)=1 x(7,9)=1 x(5,8)=1x(9,10)=1故最优树(最佳铺设管道方式)见图.谢谢!。

Lingo的典型应用举例

Lingo的典型应用举例

假设预先准备的箱子总数为n个,即使每件物品单 独装一个箱子也够用,用决策变量yi=1或0表示第j个箱 子是用还是不用,用变量xij=1或0表示第i件物品是否放 入第j个箱子中,建立0-1规划模型如下:
n
min
z y j,
j1
n
w i x ij Cy
j , j 1,2 ,...,
n,
i1
s
表2.1 当前可供蔬菜养分含量(mg)和价格
养分
蔬菜

A1 青 豆 0.45
A2 胡萝卜 0.45
A3 花 菜 0.65
A4 卷心菜 0.4
A5 芹 菜 0.5
A6 土 豆 0.5
每周最低需求 6
每份蔬菜所含养分数量
每份价格
磷 维生素A 维生素C 烟酸 (元)
20
415
22
0.3
2.1
28
4065
例2.1 某疗养院营养师要为某类病人拟定本周蔬菜类菜单, 当前可供选择的蔬菜品种、价格和营养成分含量,以及病 人所需养分的最低数量见表2.1所示。病人每周需14份蔬 菜,为了口味的原因,规定一周内的卷心菜不多于2份, 胡萝卜不多于3份,其他蔬菜不多于4份且至少一份。在满 足要求的前提下,制订费用最少的一周菜单方案。
.t
.
n
x ij 1 , i 1 , 2 ,...,
n,
j1
yj x ij
0或 0或
1, j 1, i,
j
1,2 ,..., n , 1,2 ,..., n .
例5.1 已知30个物品,其中6个长0.51m,6个长 0.27m,6个长0.26m,余下的12个长0.23m,箱子长为 1m。问最少需要多少个箱子才能把30个物品全部装进箱 子。

第2章 LINGO软件使用简介与技巧

第2章  LINGO软件使用简介与技巧

第2章 LINGO 软件使用简介与技巧LINGO 是一种专门用于求解数学规划问题的软件包.由于LINGO 执行速度快,易于方便地输入、求解和分析数学规划问题,因此在教学、科研和工业界得到广泛应用. LINGO 主要用于求解线性规划、非线性规划、二次规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等.本章介绍的LINGO 可在LINGO5.0,LINGO8.0,LINGO9.0中使用.一.LINGO 使用介绍1.1 LINGO 编写格式LINGO 模型以MODEL 开始,以END 结束.中间为语句,分为四大部分(SECTION ): (1) 集合部分(SETS ):这部分以“SETS :”开始,以“ENDSETS ”结束.这部分的作用在于定义必要的变量,便于后面进行编程进行大规模计算,就象C 语言在在程序的第一部分定义变量和数组一样.在LINGO 中称为集合(SET )及其元素(MEMBER 或ELEMENT ,类似于数组的下标)和属性(A TTRIBUTE ,类似于数组).LINGO 中的集合有两类:一类是原始集合(PRIMITIVE SETS ),其定义的格式为:SETNAME/member list(or 1..n)/:attribute,attribute,etc. 另一类是导出集合(DERIVED SETS ),即引用其它集合定义的集合,其定义的格式为:SETNAME (set1,set2,etc.):attribute ,attribute ,etc.如果要在程序中使用数组,就必须在该部分进行定义,否则可不需要该部分.(2) 目标与约束:这部分定义了目标函数、约束条件等.一般要用到LINGO 的内部函数,可在后面的具体应用中体会其功能与用法.求解优化问题时,该部分是必须的. (3) 数据部分(DA TA ):这部分以“DA TA :”开始,以“END DA TA ”结束.其作用在于对集合的属性(数组)输入必要的数值.格式为:attribut=value_list.该部分主要是方便数据的输入. (4) 初始化部分(INIT ):这部分以“INIT :”开始,以“END INIT ”结束.作用在于对集合的属性(数组)定义初值.格式为:attribute=value_list.由于非线性规划求解时,通常得到的是局部最优解,而局部最优解受输入的初值影响.通常可改变初值来得到不同的解,从而发现更好的解.编写LINGO 程序要注意的几点:(1) 所有的语句除SETS 、ENDSETS 、DA TA 、ENDDA TA 、INIT 、ENDINIT 和MODEL ,END 之外必须以一个分号“;”结尾.(2) LINGO 求解非线性规划时已约定各变量非负.1.2 LINGO 内部函数使用详解.LINGO 建立优化模型时可以引用大量的内部函数,这些函数以“@”符号打头. (1)常用数学函数@ABS(X) 返回变量X 的绝对数值. @COS( X)返回X 的余弦值,X 的单位为弧度 @EXP( X)返回e x 的值,其中e 为自然对数的底,即 71828.2 @FLOOR( X)向0靠近返回X的整数部分.如@FLOOR(3.7),则返回3;@FLOOR(-3.7),则返回-3.@LGM( X)返回Γ函数的自然对数值.@LOG( X)返回变量X的自然对数值.@SIGN( X)返回变量X的符号值,当X<0时为-1;当X>0时为1.@SIN( X)返回X的正弦值,X的单位为弧度@SMAX( X1, X2,..., XN)返回一列值X1, X2,..., XN的最大值.@SMIN( X1, X2,..., XN)返回一列值X1, X2,..., XN的最小值.@TAN( X)返回X的正切值,X的单位为弧度(2)集合函数集合函数的用法如下:set_operator (set_name|condition:expression)其中set_operator部分是集合函数名(见下),set_name是数据集合名,expression部分是表达式,|condition部分是条件,用逻辑表达式描述(无条件时可省略).逻辑表达式中可以三种逻辑算符(#AND#(与),#OR#(或),#NOT#(非))和六种关系算符(#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)).常见的集合函数如下:@FOR (set_name:constraint_expressions)对集合(set_name)的每个元素独立地生成约束,约束由约束表达式(constraint_expressions)描述.@MAX(set_name:expression)返回集合上的表达式(expression)的最大值.@MIN(set_name:expression)返回集合上的表达式(expression)的最小值.@SUM(set_name:expression)返回集合上的表达式(expression)的和.@SIZE(set_name)返回数据集set_name中包含元素的个数.@IN(set_name,set_element)如果数据集set_name中包含元素set_element则返回1,否则返回0.(3)变量界定函数变量函数对变量的取值范围附加限制,共有四种.@BND(L,X,U)限制L≤X≤U@BIN(X)限制X为0或1.@FREE(X)取消对X的符号限制(即可取任意实数值).@GIN(X)限制X为整数值.二、LINGO 求解优化模型实验1.某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?从第一班开始排,试建立线性模型.分析与求解:注意在每一时间段里上班的司机和乘务人员中,既包括在该时间段内开始时报到的人员,还包括在上一时间段工作的人员.因为每一时间段只有四个小时,而每个司乘人员却要连续工作八个小时.因此每班的人员应理解为该班次相应时间段开始时报到的人员.设i x 为第i 班应报到的人员(i =1,2,…,6),则应配备人员总数为:∑==61i ixZ按所需人数最少的要求,可得到线性模型如下:==61min i i x Z161223344556112660706050..203060,,,0x x x x x x x x s t x x x x x x x x +≥⎧⎪+≥⎪⎪+≥⎪+≥⎪⎨+≥⎪⎪+≥⎪≥⎪⎪≥⎩ LINGO 程序如下:MODEL:min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20;x5+x6>=30;END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人.2. 公司在各地有4项业务,选定了4位业务员去处理.由于业务能力、经验和其它情况不同,4业务员去处理4项业务的费用(单位:元)各不相同,见下表:表3.2 业务的费用表解:这是一个最优指派问题.引入如下变量: ⎩⎨⎧=项业务个人做第若不分派第项业务个人做第若分派第j i j i x ij 01设矩阵44A ⨯为指派矩阵,其中(,)a i j 为第i 个业务员做第j 项业务的业务费. 则可以建立如下模型:∑∑===4141min i j ij ijx aZ⎪⎪⎪⎩⎪⎪⎪⎨⎧======∑∑==4,3,2,1,104,3,2,114,3,2,11..4141j i x i x j x t s ij j ij i ij 或 LINGO 程序如下: MODEL:SETS:person/1..4/; task/1..4/;assign(person,task):a,x; ENDSETS DATA:a=1100,800,1000,700,600,500,300,800,400,800,1000,900,1100,1000,500,700;ENDDATAmin=@sum(assign:a*x);@for(person(i):@sum(task(j):x(i,j))=1);@for(task(j):@sum(person(i):x(i,j))=1);@for(assign(i,j):@bin(x(i,j)));END得到的结果如下:x(1,1)=0,x(1,2)=0,x(1,3)=0,x(1,4)=1;x(2,1)=0,x(2,2)=1,x(2,3)=0,x(2,4)=0;x(3,1)=1,x(3,2)=0,x(3,3)=0,x(3,4)=0;x(4,1)=0,x(4,2)=0,x(4,3)=1,x(4,4)=0;最小费用为2100元.即第1个业余员做第4项业务,第2个业余员做第2项业务,即第3个业余员做第1项业务,第4业余员做第3项业务.总费用达到最小,为2100元.LINGO程序中输入的数据也可以从文本文件中读入,特别是数据比较多时,将程序与数据分开,显得更方便.如上面程序也可以这样写:MODEL:SETS:person/1..4/;task/1..4/;assign(person,task):a,x;ENDSETSDATA:a=@file(data.txt);ENDDATAmin=@sum(assign:a*x);@for(person(i):@sum(task(j):x(i,j))=1);@for(task(j):@sum(person(i):x(i,j))=1);@for(assign(i,j):@bin(x(i,j)));END同时在LINGO目录下建立文本文件data.txt,数据如下:1100,800,1000,700600,500,300,800400,800,1000,9001100,1000,500,700其计算结果同上面相同.3有四种资源被用于生产三种产品,资源量、产品单件可变费用、单件售价、资源单耗量及组织三种商品生产的固定费用见下表.现要求制定一个生产计划,使总收益最大.表3.3 数据详细表解:总收益等于销售收入减去生产产品的固定费用与可变费用之和.问题的困难之处在于事先不知道某种产品是否生产,因而不能确定是否有相应的固定费用.可引入用0-1变量来解决是否需要固定费用问题.设j x 是第j 种产品的产量,1,2,3j =;再设⎪⎩⎪⎨⎧=>=)0(0)0(1jjjx j x j y种产品若不生产第种产品若生产第 3,2,1=j第I 种产品销售一件可收入7-4=3元,第II 种产品销售一件可收入10-6=4元,第III种产品销售一件可收入20-12=8元.则问题的整数规划模型为:321321200150100843m ax y y y x x x Z ---++=⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧===≥≤≤≤≤++≤++≤++≤++3,2,1,103,2,1,070075310032300432500842..333222111321321321321j y j x y M x y M x y M x x x x x x x x x x x x x t s j j 或且为整数 其中j M 为j x 的某个上界.如根据第2个约束条件,可取100,15021==M M ,753=M .也可统一取其最大值150=M .如果生产第j 种产品,则起产量0>j x .由约束条件j j j y M x ≤知1=j y ,此时相应的生产第j 种产品的固定费用在目标函数被考虑.如果不生产第j 种产品,则起产量0=j x .由约束条件j j j y M x ≤知j y 可为0也可为1.但显然只有0=j y 有利于目标函数最大,从而相应的生产第j 种产品的固定费用在目标函数将不被考虑.因此引入j y 是合理的.下面是LINGO 程序.MODEL: DATA: M=150; ENDDATAmax=3*x1+4*x2+8*x3-100*y1-150*y2-200*y3;!目标函数; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; x1+2*x2+3*x3<=100; 3*x1+5*x2+7*x3<=700; x1<=M*y1; x2<=M*y2;x3<=M*y3;@GIN(x1);@GIN(x2);@GIN(x3); !指定产品件数为整数; @BIN(y1);@BIN(y2);@BIN(y3); !指定0-1变量;end得到的解为x1=100,x2=0,x3=0,y1=1,y2=0,y3=0.最大值为Z=200元.3 TSP 问题及LINGO 求解技巧巡回旅行商问题(Traveling Salesman Problem ,TSP),也称为货郎担问题。

全国数学建模lingo实例讲解

全国数学建模lingo实例讲解

全国数学建模lingo 实例讲解LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如下表。

单位 销地 运 价 产地B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 产量 A 1 6 2 6 7 4 2 5 9 60 A 24953858255A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52销量35 37 22 32 41 32 43 38使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

LINGO在数学建模中的应用

LINGO在数学建模中的应用

一、LINGO简介LINGO[1]是美国LINDO系统公司开发的求解数学规划系列软件中你的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO的不同版本对模型的变量总数、非线性变量数目、整型变量数目和约束条件的数量做出不同的限制.LINGO的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强.(4)置建模语言,提供几十个部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;(6)能方便地与EXCEL、数据库等其他软件交换数据.LINGO像其他软件一样,对他的语法有规定,LINGO的语法规定如下:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以字母开头,由字母、数字和下划线所组成,昌都不超过32个字符,不区分大小写;(3)每个语句必须以分号“;”结束,每行可以有多个语句,语句可以跨行;(4)如果对变量的取值围没有特殊说明,则默认所有决策变量都非负;(5)LINGO模型以语句“MODEL”开头,以语句“END”结束,对于比较简单的模型,这这两个语句可以省略.LINGO提供了五十几个部函数,使用这些函数可以大大减少编程工作量,这些函数都是以字符@开头,下面简单介绍其中的集合操作函数和变量定界函数及用法.集合是LINGO建模语言中最重要的概念,使用集合操作函数能够实现强大的功能,LINGO 提供的常用集合操作函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等.@FOR(s:e)常用在约束条件中,表示对集合s 中的每个成员都生成一个约束条件表达式,表达式的具体形式由参数e 描述;@SUM(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值的和;@MAX(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值中的最大值;@MIN(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值中的最小值.LINGO 默认变量的取值可以从零到正无穷大,变量定界函数可以改变默认状态,如对整数规划,限定变量取整数,对0-1规划,限定变量取0 1或.LINGO 提供的变量定界函数有:@BIN(X)、@BND(L,X,U)、@GIN(X)、@FREE(X).@BIN(X)限定X 为0或1,在0-1规划中特别有用;@GIN(X)限定X 为整数,在整数规划中特别有用;@BND(L,X,U)限定L <X <U,可用作约束条件;@FREE(X)取消对X 的限定,即X 可以取任意实数.二、LINGO 在线性规划中的应用具有下列三个特征的问题称为线性规划问题(Linear program)[2]简称LP 问题,其数学模型称为线性规划(LP)模型.线性规划问题数学模型的一般形式为:求一组变量(1,2,,)j x j n =L 的值,使其满足1122max(min),n n z c x c x c x =+++L2111122111211222221122***.0,1,2,,,,..n j n n n n nn nn n n x j na x a x a xb a x a x a x b s t a x a x a x b ⎧⎪⎪⎪⎨⎪⎪≥=⎪⎩+++++++++L L L L L式中“*”代表“≥”、“ ≥”或“=”.上述模型可简写为1max(min),nj j j z c x ==∑1*0,1,2,,,1,2,,..nij j j ji a x x j n b i m s t =⎧⎪⎨⎪≥=⎩=∑L L 其中,变量j x 称为决策变量,函数1nj jj z c x==∑称为目标函数,条件1*nj jij c x b =∑称为约束条件,0j x ≥ 称为非负约束.在经济问题中,又称j c 为价值系数,i b 为资源限量. 线性规划在科学决策与经营管理中实效明显[3],但是对于规模较大的线性模型,其求解过程非常繁琐,不易得出结果.而 LINGO 中的部集合函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等,可以用这些集合函数使程序编程简单可行,下面举例说明.例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件 1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩编写LINGO 程序如下:MODEL:SETS:SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;ENDSETSDATA:A=1,2 ; B=100,120; C=200,300;ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00 Total solver iterations: 0 Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price 1 29000.00 1.000000 2 0.000000 50.00000 3 90.00000 0.000000 4 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.三、LINGO 在整数规划和0-1规划中的应用1 求解整数规划整数规划[4]分为整数规划和混合整数规划,要求全部变量都为非负整数的数学规划称为纯整数规划,只要求部分变量为非负整数的数学规划称为混合整数规划.下面只讨论约束条件和目标函数均为线性的整数规划问题,即整数线性规划问题(以下简称整数规划,记为ILP),其数学模型的一般形式是()1max min nj j j z c x ==∑,()()11,2,,..01,2,,nij j i j j j a x b i n s t x j n x =⎧≤=⎪⎪⎪≥=⎨⎪⎪⎪⎩∑L L 全为整数或部分为整数。

4.2 图论中TSP问题的LINGO求解与应用

4.2 图论中TSP问题的LINGO求解与应用

图论中TSP问题的LINGO求解与应用巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题。

最早可以追溯到1759年Euler提出的骑士旅行问题。

该问题可简单描述为走遍n个城市的最短路。

1948年,由美国兰德公司推动,TSP成为近代组合优化领域的一个典型难题。

它已经被证明属于NP难题。

该问题在数学建模竞赛中也经常碰到。

几十年来,出现了很多近似优化算法。

如近邻法、贪心算法、最近插入法、最远插入法、模拟退火算法以及遗传算法。

这里我们介绍利用LINGO软件进行求解的方法。

问题1 设有一个售货员从10个城市中的某一个城市出发,去其它9个城市推销产品。

10个城市相互距离如下表。

要求每个城市到达一次仅一次后,回到原出发城市。

问他应如何选择旅行路线,使总路程最短。

两种方案比较建立线性规划模型:总线性规划模型LINGO程序:MODEL:SETS:city/1..10/:u;link(city,city):d,x;ENDSETSDATA:d= 0 7 4 58612131118 7 0 31091451417174 3 0 591021827125 10 5 01491092316 8 9 91407872019 6 14 10 9701352513 12 5 2110813023211813 14 8 975230181212 5 2110813023211813 14 8 975230181211 17 27 232025211801618 17 12 1619131812160;@text()=@writefor(link(i,j)|x(i,j)#GT#0:' x(',i,',',j,')=',x(i,j)); ENDDATAMIN=@SUM(link:d*x);@for(city(j):@sum(city(i)|j#ne#i:x(i,j))=1); !城市j前有一个城市相连; @for(city(i):@sum(city(j)|j#ne#i:x(i,j))=1); !城市i后前有一个城市相连; @for(link(i,j)|i#NE#j#and#i#gt#1:u(i)-u(j)+10*x(i,j)<=9);@FOR(link:@BIN(x));End图1 LINGO求解结果最短路线为1→9→10→8→6→5→7→2→3→4→1,最短距离为77公里。

LINGO的使用方法说明大全

LINGO的使用方法说明大全

LINGO的使用方法说明大全LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq# 0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y 的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n 个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7 data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%围,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).。

LINGO在数学建模中的应用

LINGO在数学建模中的应用

LINGO的菜单
1.File(文件菜单) • Export file(输出特殊格式文件) • Database User Info(用户基本信息) 2.Edit Menu(编辑菜单) • Paste Special(选择性粘贴) • Go to Line(光标移到某一行) • Match Parenthesis(匹配括号) • Insert New Object(插入新对象)
3.关系运算符 = 表达式左右相等 <= 表达式左边小于或等于右边 >= 表达式左边大于或等于右边 注:Lingo没有单独的<和>
A<B A B, 是一个小的正数
Lingo函数
• Lingo提供了五十几个内部函数,所有函数都 以字符@开头
• 数学函数 @ABS(x),@SIN(X),@COS(x),@TAN(X), @LOG(X),@EXP(X),@SIGN(X), @SMAX(X1,…,Xn),@SMIN(X1,…,Xn) @FLOOR(X),@LGM(X)
LINGO的菜单
3.LINGO • Debug(调试) • Model Statistics(模型资料统计) • Look(查看)
LINGO的菜单
4.Window • Command Window(命令行窗口) • Status Window(状态窗口) 5.Help • Help Topics(帮助主题) • Register(在线注册) • Auto Update(自动更新) • About Lingo(关于Lingo)
41,52,现有8个客户各要一批货,数量分别为35,37,22,32, 41,32,43,38,各供货栈到8个客户的单位运价如表1. 如何确定各供货栈到8个客户的货物调运量,使总的运费最小?

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO 求解技巧我们介绍使用LINGO 求解图论与网络问题中的一些典型问题。

如最短路问题、最大流问题、关键路径问题、最优树问题,以及TSP 问题。

这里主要介绍使用LINGO 求解的方法,重在应用和解决问题。

1 最短路问题的Lingo 求解设图共有个节点,其赋权图的邻接矩阵为n n n w ×.ij w p =表示节点i 到j 的权值为.当为有向图时,p ji w w ij =;当为无向图时,和ij w ji w 分别由图得到,通常不一样。

当,表示节点i 与节点0ij w =j 不连通。

令0ii w =。

假设图的所有权值 0ij w ≥现求节点a 到节点b 的最短路,其线性规划模型为:模型一、决策变量:设1ij i j x i j ⎧=⎨⎩节点与节点连通节点与节点不连通目标函数为寻找一条节点到节点的通路,使其上权值和最小,故目标函数为:a b 11min .nnij ij i j Z w x ===∑∑1. 对节点恰有一条路出去,却不能有路回来,故有:a 11najj j ax=≠=∑ 且10nkak k a x=≠=∑2. 对节点恰有一条路到达,却不能有路出去,故有:b 11nkbk k bx=≠=∑ 且10nbjj j bx=≠=∑3. 对除起始点a 和目标点之外,其它点进入和出去的路是一样多(可都为0),则:b 11,nnkiijk j xx i a ===≠∑∑b4. 对不通的路不取,约束为:,1,2,ij ijx w i j ≤=L n总的线性规划模型为:11111111min .,10..10,1,2,,01n nij iji j nnki ijk j naj j j a n ka k k a n kb k k a nbj j j a ij ijijZ w x x x i a b x x s t x x x w i j x =====≠=≠=≠=≠=⎧=≠⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎪⎪≤=⎪⎪=⎪⎪⎪⎩∑∑∑∑∑∑∑∑L 或n示例演示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一步是i --> j,否则就不是。由此,我们就可方便的确 定出最短路径;
@for(roads(i,j): P(i,j)=@if(FL(i) #eq# W(i,j)+FL(j),1,0));
end
部分计算结果: FL(A) 6 FL(B) 4 FL(C) 3 FL(D) 1 FL(E) 3 FL(F) 4 FL(G) 0 最短路线为 A B D G 以上计算程序是通用程序,对其它图,只需在 此程序基础上对数据作一些修改即可。
N是终点,1是起点, j是与i相联,上一步考察过, 且与终点相通、f(j)为已知的点。
编写LINGO程序如下: model: sets: cities/A,B,C,D,E,F,G/: FL; !定义7个城市; roads(cities,cities)/
A,B A,C B,D B,E B,F C,D C,E C,F D,G E,G F,G/: W, P; !定义哪些城市之间有路相联,W为里程,P用 来存放最短路的路径; endsets
2.0-1规划法
用0-1规划法也能求解最短路问题,其思路如 下.
设起点为1,终点为n.引入0-1型决策变量Xij, 如果弧(i , j)在最短路上,则Xij=1,否则Xij=0.
对于除了起点1和终点n以外的任意一个顶点i,
如果,
说明从i出发的所有弧中必然有一条弧
n
在最短路X 上ij 1,也就是说最短路经过该顶点,此时
可以用动态规划的方法来求最短路问题,下面 举例说明其算法原理。
2.算法原理
举例:
3
D
1
2
B
3ห้องสมุดไป่ตู้
A
1
E
G
2
3
4
C3
4
1
F
图中A,B,...,G表示7个城市,连线表示城市之间 有道路相通,连线旁的数字表示道路的长度Wij, 现要从城市A到G找出一条最短路线。
该问题有三个阶段,第一阶段从A到B或C,第 二阶段到D,E或F,第三阶段到终点G,我们从终 点向前倒过来找。
精品
LINGO在图论中的应用
图是一种直观形象地描述已知信息的方 式,它使事物之间的关系简洁明了,是分 析问题的有用工具,很多实际问题可以用 图来描述。
一、图的基本概念
图论是以图为研究对象的数学分支,在图论 中,图由一些点和点之间的连线所组成.
称图中的点为顶点(节点),称连接顶点的 没有方向的线段为边,称有方向的线段为弧.所 有线段都没有方向的图称为无向图,所有线段都 有方向的图称为有向图,既有边也有弧的图称为 混合图.
j1
所有从其它顶点到达该顶点的弧中必然也有一条
弧在最短路上,因而必有:
n
X ji 1
无圈的连通图称为树,如果一棵树T包含了图G 的所有顶点,称T为G的生成树.
如果图G的每条边e都对应一个实数C(e),称C(e) 为该边e的权,称图G为赋权图.通常称赋权的有 向图为网络.
二、最短路问题
1.动态规划法
(1)问题的描述
给定N个点Pi(i=1,2,...,n)组成集合{Pi},集合中任 一点Pi到另一点Pj的距离用Wij表示,如果Pi到Pj没 有 弧 联 结 ( 无 通 路 ) , 则 规 定 Wij=+∞ , 又 规 定 , Wii=0 (i=1,2,...,n),指定一个终点PN,要求从Pi点出 发到PN的最短路线。
第 三 阶 段 , 从 D,E,F 到 G 的 最 短 路 分 别 为 1,3,4 , 记 为 f(D)=1,f(E)=3,f(F)=4;
第二阶段,与D,E,F有连线的出发点为B和C,从B出发 分别经过D,E,F,至终点G的里程分别为:
WBD+ f(D)=3+1=4
WBE+ f(E)=3+3=6
WBF+ f(F)=1+4=5 故B到G的最短路是上述三者的最小值(4),可以写成
data: W=2 4 3 3 1 2 3 1 1 3 4;
enddata N=@SIZE(CITIES); FL(N)=0; !终点的F值为0; @for(cities(i) | i #lt# N: FL(i)=@min(roads(i,j):W(i,j)+FL(j)));
!递推计算各城市F值; !显然,如果P(i,j)=1,则点i到点n的最短路径的第
WAB+ f(B)=2+4=6 WAC+ f(C)=4+3=7 故A到G的最短路是上述两者的最小值6,可以 写成f(A)=min{WAj+f(j)}=6,j是上一步考察过的两 个点B,C,现在已经到了起点,结束运算,从A到 G的最短路为6。 上述算法可以简写成
f(i)m j {W iinjf(j),}iN1, ,2,1 f(N )0
点与边相连接称为关联,与边e关联的顶点称 为该边的端点,与同一条边关联的两个顶点称为 相邻顶点,与同一个顶点关联的边称为相邻边.
具有相同顶点的边称为平行边,两个端点重合 的边称为环.在无向图中,没有环和平行边的图 称为简单图,任意一对顶点都有一条边相连的简 单图称为完全图.任意两个顶点之间有且只有一 条弧相连的有向图称为竞赛图.
程序中的语句roads(cities,cities)/ A,B A,C B,D B,E B,F C,D C,E C,F D,G E,G F,G/: W, P; 定义 的集合称为稀疏集合,本例中cities有7个成员,但 是并非每个城市到其它6个城市都有路相通,只有 部分城市之间有路,故定义衍生集合roads时用列 举法列出有路相通的每对城市 。
在图中,两个顶点u和v之间由顶点和边构成的 交错序列(使u和v相通)称为链(通道),没有 重复边的通道称为迹,起点与终点重合的通道称 为闭通道,不重合的称为开通道,没有重复顶点 (必然边也不重复)的开通道称为路,起点与终 点重合的路称为圈(回路).如果顶点u和v之间 存在通道,称u和v是连通的,任意两个顶点都连 通的图称为连通图.
f(B)=min{WBj+f(j)}=4,j是上一步考察过的三个点D,E,F; 同理f(C)=min{WCj+f(j)},而
WCD+ f(D)=2+1=3
WCE+ f(E)=3+3=6
故F(C)=3;
WCF+ f(F)=1+4=5
第一阶段,出发点只有一个A,从A出发分别经 过B,C,至终点G的里程分别为:
相关文档
最新文档