2019年北京市密云县中考数学一模试卷及答案(word解析版)
2019年北京市密云县中考数学零模试卷(解析版)
2019年北京市密云县中考数学零模试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的. 1.2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信.月球距离地球的距离约为384000km,将384000用科学记数法表示为( )A.3.84×105B.384×103C.3.84×103D.0.384×1062.如图是某个几何体的侧面展开图,则该几何体为( )A.棱柱B.圆柱C.棱锥D.圆锥3.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.a+c>0B.|a|<|b|C.bc>1D.ac>04.如果m2﹣3m﹣5=0,那么代数式(m﹣)•的值是( )A.﹣5B.﹣1C.1D.55.正多边形内角和为540°,则该正多边形的每个外角的度数为( )A.36°B.72°C.108°D.360°6.如图是北京地铁部分线路图.若车公庄坐标为(﹣3,3),崇文门站坐标为(8,﹣2),则雍和宫站的坐标为( )A.(8,6)B.(6,8)C.(﹣6,﹣8)D.(﹣8,﹣6)7.权威市调机构IDC发布了2018年第四季度全球智能手机出货量报告如下表.手机品牌2018年第四季度市场出货量(万台)2018年第四季度市场份额2017年第四季度市场出货量(万台)2017年第四季度市场份额Samsung 70.418.7%74.518.9%Apple 68.418.2%77.319.6%Huawei 60.516.1%42.110.7%Xiaomi 29.27.8%27.3 6.9%HMDGlobal 28.67.6%28.27.1%Others 118.431.5%145.336.8%总计375.4100.0%394.6100.0%根据上表数据得出以下推断,其中结论正确的是( )A .Huawei 和Xiaomi 2018年第四季度市场份额总和达到25%B .2018年第四季度比2017年第四季度市场份额增幅最大的是Apple 手机C .Huawei 手机2018年第四季度比2017年第四季度市场出货量增加18.4万台D .2018年第四季度全球智能手机出货量同比下降约10%8.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y (元)与上网时间x (小时)的函数关系如图所示,则下列判断错误的是( )A .每月上网不足25小时,选择A 方式最省钱B .每月上网时间为30小时,选择B 方式最省钱C .每月上网费用为60元,选择B 方式比A 方式时间长D .每月上网时间超过70小时,选择C 方式最省钱二、填空题(本题共16分,每小题2分)9.如图所示的网格是正方形网格,则线段AB 和CD 的长度关系为:AB CD (填“>”,“<”或“=”)10.若使分式有意义,则x的取值范围是 .11.已知是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .12.比例规是一种画图工具,利用它可以把线段按一定比例伸长或缩短.它是由长短相等的两脚AD 和BC交叉构成的,其中AD与BC相交于点O.如图,OA=OB,CD=2,AB=2CD,OC=3,则OB= .13.新能源汽车环保节能,越来越受到消费者的喜爱.某品牌新能源汽车2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍.求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格x 万元,则可列出方程为 .14.一般地,如果在一次实验中,结果落在区域D中的每一点都是等可能的,用A表示“实验结果落在区域D中的一个小区域M”这个事件,那么事件A发生的概率为P(A)=,如图是一个正方形及其内切圆,随机的向正方形内投一粒米,落在圆内的概率为 .15.如图,AB为⊙O的直径,C、D是⊙O上两点,AC=BC,AD与CB交于点E.∠DAB=25°,则∠E= .16.在平面直角坐标系xOy中,点A(﹣1,2),B(﹣2,1),将△AOB绕原点顺时针旋转90°后再沿x轴翻折,得到△DOE,其中点A的对应点为点D,点B的对应点为点E.则D点坐标为 .上面由△AOB得到△DOE的过程,可以只经过一次图形变化完成.请你任写出一种只经过一次图形变化可由△AOB得到△DOE的过程 .三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.(5分)下面是小明设计的“已知底和底边上的高作等腰三角形”的尺规作图过程.已知:如图1,已知线段a和线段b.求作:等腰三角形ABC,使得AC=BC,AB=a,CD⊥AB于D,CD=b.作法:①如图2,作射线AM,在AM上截取AB=a;②分别以A、B为圆心,大于AB长为半径作弧,两弧交于E、F两点;③连结EF,EF交AB于点D;④以点D为圆心,以b为半径作弧交射线DE于点C.⑤连结AC,BC.所以,△ABC为所求作三角形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留痕迹);(2)完成下面的证明.∵AE=BE=AF=BF,∴四边形AEBF为 .∵AB与EF交于点D,∴EF⊥AB,AD= .∵点C在EF上,∴BC=AC(填写理由: )18.(5分)计算:6cos30°﹣﹣()﹣1+|﹣2|.19.(5分)解不等式组:20.(5分)如图,菱形ABCD中,AC与BD交于点O.DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连结AE,交OD于点F,连结CF.若CF=CE=1,求AE长.21.(5分)已知方程x2+mx+n=0(1)当n=m﹣2时,求证:方程总有两个不相等的实数根.(2)若方程有两个不相等实数根,写出一组满足条件的m,n值,并求出此时方程的根.22.(5分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词3首4首5首6首7首8首诵背数量人数13561015请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(6分)已知直线y=kx+3k与函数y=(x>0)交于A(3,2).(1)求k,m值.(2)若直线y=kx+3k与x轴交于点P,与y轴交于点Q.点B是y轴上一点,且S△ABQ=2S△POQ.求点B的纵坐标.24.(6分)如图,AB为⊙O的直径,E为OB中点,过E作AB垂线与⊙O交于C、D两点.过点C作⊙O的切线CF与DB延长线交于点F.(1)求证:CF⊥DF;(2)若CF=,求OF长.25.(6分)如图△ABC中,∠BAC=30°,AB=5cm,AC=2cm,D是线段AB上一动点,设AD 长为xcm,CD长为ycm(当点A与点D重合时,x=0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小慧的探究过程,请补充完整:(1)经过取点、画图、测量,得到x与y的几组对应值,如下表:x/cm00.51 1.52 2.53 3.54 4.552.7 2.3 2.0 1.8 1.7 1.8 2.0 2.3 2.7y/cm 3.5 (说明:补全表格时,结果保留一位小数)(2)在平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点,并画出函数图象;(3)结合函数图象解决问题,当CD≥2cm时,x的取值范围是 .26.(6分)已知抛物线y=x2﹣2mx+m2﹣4,抛物线的顶点为P.(1)求点P的纵坐标.(2)设抛物线x轴交于A、B两点,A(x1,y1),B(x2,y2),x2>x1.①判断AB长是否为定值,并证明.②已知点M(0,﹣4),且MA≥5,求x2﹣x1+m的取值范围.27.(7分)已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.(1)依题意补全图1并判断AD与BE的数量关系.(2)过点A作AF⊥EB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.28.(7分)在平面直角坐标系xoy中,已知P(x1,y1)Q(x2,y2),定义P、Q两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P、Q两点的直角距离,记作d(P,Q).即d(P,Q)=|x2﹣x1|+|y2﹣y1|如图1,在平面直角坐标系xoy中,A(1,4),B(5,2),则d(A,B)=|5﹣1|+|2﹣4|=6.(1)如图2,已知以下三个图形:①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P是上面某个图形上的一个动点,且满足d(O,P)=2总成立.写出符合题意的图形对应的序号 .(2)若直线y=k(x+3)上存在点P使得d(O,P)=2,求k的取值范围.(3)在平面直角坐标系xOy中,P为动点,且d(O,P)=3,⊙M圆心为M(t,0),半径为1.若⊙M上存在点N使得PN=1,求t的取值范围.2019年北京市密云县中考数学零模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的. 1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:数据384000用科学记数法表示为3.84×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】由图可知展开侧面为三角形,则该几何体为棱锥【解答】解:由图可知展开侧面为三角形,则该几何体为棱锥故选:C.【点评】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.3.【分析】根据数轴可以发现a<0<b<c,而|a|>|c|>|b|,可以逐一判断每个选项即可得出正确答案.【解答】解:由数轴可以发现a<0<b<c,而|a|>|c|>|b|,∴a+c<0,|a|>|b|,ac<0又由数轴可发现1<b<2,2<c<3∴bc>1正确.故选:C.【点评】本题考查的是实数与数轴的相关内容,会利用数轴比较实数的大小是解决问题的关键.4.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m2﹣3m=5代入计算可得.【解答】解:原式=•=•=m(m﹣3)=m2﹣3m,∵m2﹣3m﹣5=0,即m2﹣3m=5,∴原式=5,故选:D.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.5.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算求得边数,然后根据多边形的外角和即可得到结论.【解答】解:设它是n边形,则(n﹣2)•180°=540°,解得n=5.360°÷5=72°.故选:B.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键.6.【分析】根据车公庄和崇文门站的坐标建立如图所示平面直角坐标系,据此可得答案.【解答】解:由题意可建立如图所示平面直角坐标系,则雍和宫站的坐标为(8,6),故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.7.【分析】根据表中信息列式计算即可得到结论.【解答】解:A、Huawei和Xiaomi2018年第四季度市场份额总和达到16.1%+7.8%=23.9%,故A 错误;B、2018年第四季度比2017年第四季度市场份额增幅最大的是Others手机,故B错误;C、Huawei手机2018年第四季度比2017年第四季度市场出货量增加60.5﹣42.1=18.4万台,故C正确;D、2018年第四季度全球智能手机出货量同比下降约×100%=5%,故D错误;故选:C.【点评】本题考查了统计表,正确的理解表中信息是解题的关键.8.【分析】根据函数图象得出信息解答即可.【解答】解:A、每月上网不足25小时,选择A方式最省钱,正确;B、每月上网时间为50~70小时,选择B方式最省钱,错误;C、每月上网费用为60元,选择B方式比A方式时间长,正确;D、每月上网时间超过70小时,选择C方式最省钱,正确;故选:B.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题共16分,每小题2分)9.【分析】利用勾股定理求出AB、CD的长比较即可.【解答】解:∵AB==,CD==,∴AB<CD,故答案为:<.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.10.【分析】分母不为零,分式有意义可得x﹣2≠0,再解即可.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义,故答案为:x≠2.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.【分析】把方程组的一个解代入,即得到关于a、b的一个方程,有无数个解,任意写出一个即可.【解答】解:把代入方程ax+by=3可得:2a+b=3∴a=1时,有b=1故答案为:1,1.【点评】本题考查了二元一次方程的解的意义,确定不定方程的解可用试错的方法.12.【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:由题意得:△AOB∽△DOC,∵AB=2CD,∴,∴==,∵CD=2,OC=3,∴OB=2OC=6,故答案为:6.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.13.【分析】设2018年每辆车的销售价格x万元,则2017的销售价格为(x+1)万元/辆,根据“2018年销售量是2017年销售量的2倍”可列方程.【解答】解:设2018年每辆车的销售价格x万元,根据题意列方程得:,故答案为:.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.14.【分析】设正方形的边长为2a,根据概率公式即可得到结论.【解答】解:设正方形的边长为2a,∴P(落在圆内)==,故答案为:.【点评】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意.15.【分析】根据圆周角定理求出∠ACB=90°,求出∠ABC=45°,根据三角形外角性质求出即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CBA=∠CAB=45°,∵∠DAB=25°,∴∠E=∠CBA﹣∠DAB=20°,故答案为:20°.【点评】本题考查了圆周角定理,三角形的外角性质,三角形的内角和定理,等腰三角形的性质等知识点,能求出∠ACB=90°是解此题的关键.16.【分析】先在网格中画出将△AOB绕原点顺时针旋转90°后得到的图形△A′OB′,得出点A的对应点A′、点B的对应点B′的坐标,再根据关于x轴对称的点的坐标特征写出D点坐标.根据两对对应点的坐标以及△AOB与△DOE在网格中的位置,得出△AOB只经过一次图形变化得到△DOE的过程.【解答】解:如图,设将△AOB绕原点顺时针旋转90°后得到△A′OB′,∵A(﹣1,2),B(﹣2,1),∴点A的对应点A′(2,1),点B的对应点B′(1,2),∵再将△A′OB′沿x轴翻折,得到△DOE,∴点A′的对应点D(2,﹣1),点B′的对应点E(1,﹣2).∵A与D,B与E的横坐标与纵坐标分别交换位置,∴将△AOB沿直线y=x翻折得到△DOE.故答案为(2,﹣1),将△AOB沿直线y=x翻折得到△DOE.【点评】本题考查了翻折变换(折叠问题),坐标与图形变化﹣对称,坐标与图形变化﹣旋转,掌握网格特征正确画出图形是解题的关键.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.【分析】(1)根据作图步骤画出图形即可.(2)利用菱形的判定和性质以及线段的垂直平分线的性质解决问题即可.【解答】解:(1)如图,△ABC即为所求.(2)∵AE=BE=AF=BF,∴四边形AEBF为菱形,∵AB与EF交于点D,∴EF⊥AB,AD=DB.∵点C在EF上,∴BC=AC.故答案为:菱形,DB,线段垂直平分线上的点到线段的两个端点距离相等.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=6×﹣2﹣2+2﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:由①得:x>2由②得:x>﹣1∴不等式组的解集为x>2.【点评】此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大取中间;大大小小无解.20.【分析】(1)根据菱形的性质得到AC⊥BD,OA=OC,根据矩形的判定定理即可得到结论;(2)根据直角三角形的性质得到CF=AF=EF,根据勾股定理即可得到结论.【解答】解:(1)∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,∴∠DOC=90°,∵DE∥AC,DE=AC,∵四边形DOCE为平行四边形,又∵∠DOC=90°,∴四边形DOCE是矩形;(2)∵OF∥CE,O是AC中点,∴F为AE中点,∴CF=AF=EF,∵CF=CE=1,∴CF=1,∴AE=2.【点评】本题考查了矩形的判定和性质,菱形的性质,直角三角形的性质,熟练掌握矩形的判定和性质是解题的关键.21.【分析】(1)先计算判别式得到△=(m﹣2)2+4,根据非负数的性质得到△>0,然后根据判别式的意义得到结论;(2)取m=2,n=0,则方程化为x2+2x=0,然后利用因式分解法解方程.【解答】解:(1)∵△=m2﹣4n=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴方程总有两个不相等的实数根.(2)令m=2,n=0,则方程变形为x2+2x=0,x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.22.【分析】(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可;(3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案.【解答】解:(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是=6(首);故答案为:6;(2)根据题意得:1200×=930(人),估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.(3)活动初40名学生平均背诵首数为=5.7(首),活动1个月后40名学生平均背诵首数为=6.65(首);活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量为7;根据以上数据分析,该校经典诗词诵背系列活动效果好.【点评】本题考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【分析】(1)运用待定系数法即可求出k,m的值;(2)由可得直线表达式为,进而求出点P、Q的坐标,再根据S△ABQ=2S△POQ即可解答.【解答】解:(1)由已知,直线y=kx+3k与函数y=交于A(3,2)∴3k+3k=2,,解得k=,m=6;(2)由(1),,故此直线表达式为,令x=0,则y=1;令y=0,则,x=﹣3.∴P(﹣3,0),Q(0,1).过点A作AD⊥y轴,垂足为D.∵S△ABQ=2S△POQ,∴,即,∴BQ=2,∴B点纵坐标为3或﹣1.【点评】本题为一次函数的综合应用,涉及三角形的面积等知识,难度适中.24.【分析】(1)连结OC,根据垂径定理证得CE=ED,然后通过证得△OCE≌△BDE,得出∠OCE=∠CDB,从而证得OC∥BF,由切线的性质得出OC⊥CE,根据平行线的性质即可证得结论;(2)由OE=OB,则OE=OC,得出∠OCE=30°,即可证得∠CDF=30°,则FC=CD=CE=,解直角三角形OCE求得OC,最后根据勾股定理即可求得OF.【解答】(1)证明:连结OC.∵AB为⊙O直径,CD为弦,AB⊥CD于E∴CE=ED,在△OCE和△BDE中,∴△OCE≌△BDE(SAS),∴∠OCE=∠CDB,∴OC∥BF,∵CF切⊙O于点C∴∠OCF=90°∴∠CFD=90°即CF⊥FD(2)解:∵OE=OB,OB=OC,∴OE=OC,∴在Rt△OEC中,∠OCE=30°,∴∠CDF=30°,∴FC=CD,∵CE=CD,∴CE=FC=.在Rt△OEC中,OC===2,∴在Rt△OCF中,OF==.【点评】本题考查了切线的性质三角形全等的判定和性质,平行线的判定和性质,解直角三角形等,是掌握性质定理是解题的关键.25.【分析】(1)过点D作DE⊥AC于点E,当AD=0.5cm时,由直角三角形的性质得出DE =AD =cm ,关键勾股定理求出AE ==(cm ),得出CE =AC ﹣AE =(cm ),再由勾股定理求出CD 即可;(2)在平面直角坐标系xoy 中,描出x =0.5cm 、y =3.0所对应的点,画出函数图象即可;(3)由函数图象可知,当CD ≥2cm 时,0≤x ≤2或4≤x ≤5;即可得出结果.【解答】解:(1)过点D 作DE ⊥AC 于点E ,如图1所示:当AD =0.5cm 时,∵∠BAC =30°,∴DE =AD =cm ,∴AE ===(cm ),∴CE =AC ﹣AE =2﹣=(cm ),∴CD ===≈3.0(cm );故答案为:3.0;(2)在平面直角坐标系xoy 中,描出x =0.5cm 、y =3.0所对应的点,画出函数图象;如图2所示:(3)由函数图象可知,当CD ≥2cm 时,0≤x ≤2或4≤x ≤5;故答案为:0≤x ≤2或4≤x ≤5.【点评】本题是三角形综合题目,考查了含30°角的直角三角形的性质、勾股定理、描点法画函数图象、函数图象的性质以及应用等知识;理解函数图象的意义,熟练掌握勾股定理是解题关键.26.【分析】(1)把一般式配成顶点式即可得到P点坐标;(2)①令y=0,可求得A、B两点的坐标,则AB长可求;②由MA=5时,求得A点坐标,结合图象可得取值范围.【解答】(1)∵y=(x﹣m)2﹣4,∴P(m,﹣4),即顶点P的纵坐标为﹣4;(2)①AB长为定值,令y=0,则x2﹣2mx+m2﹣4=0则(x﹣m)2=4,解得x=m+2或x=m﹣2,AB长为:m+2﹣(m﹣2)=4,②当MA=5时,可求A点坐标为(﹣3,0)或(3,0)∵AB=4,∴MA=5时,m=﹣1或m=1∵x2﹣x1+m=4+m,结合图象可知,x2﹣x1+m的取值范围为x2﹣x1≤﹣1或x2﹣x1+m≥5.【点评】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.27.【分析】(1)根据题意补全图形,由等边三角形的性质得出AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,得出∠ACD=∠BCE,证明△ACD≌△BCE,即可得出结论;(2)由全等三角形的性质得出AD=BE,∠CBE=∠CAD=60°,求出∠ABF=180°﹣∠ABC﹣∠CBE=60°,在Rt△ABF中,由三角函数得出=sin60°=,AB=AF=AF,即可得出结论.【解答】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)EB+DB=AF;理由如下:由(1)得:△ACD≌△BCE,∴AD=BE,∠CBE=∠CAD=60°,∴∠ABF=180°﹣∠ABC﹣∠CBE=60°,∵AF⊥EB,∴∠AFB=90°,在Rt△ABF中,=sin60°=,∴AB=AF=AF,∵AD+DB=AB,∴EB+DB=AB,∴EB+DB=AF.【点评】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、三角函数等知识;熟练掌握旋转的性质,证明三角形全等是解题关键.28.【分析】(1)分三种情况设出点P的坐标,按照两点的直角距离的定义可以直接求出结果,即可判断各结论是否符合题意;(2)分别求出直线y=k(x+3)经过特殊点(0,2),(0.﹣2)时k的值,由运动过程写出k的取值范围;(3)由(1)可判断满足d(O,P)=3的点是在以原点为中心,对角线在坐标轴上,且对角线长为6的正方形ABCD上,再分别求出⊙M与正方形在y轴左右两边最远距离为2时t的值,即可写出结果.【解答】解:(1)①如图1,点P在以原点为圆心,2为半径的圆上,设P点横坐标为1,则纵坐标为=,∴P(1,),根据定义两点的直角距离,d(P,O)=|2﹣0|+|﹣0|=2+≠2,故①不符合题意;②如图2,点P在以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形上时,设P(2,a)(a≠0),则d(P,O)=|2﹣0|+|a﹣0|=2+a≠2,故②不符合题意;③如图3,点P在以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形上时,将点A(0,2),D(2,0)代入y=kx+b,得,,解得,k=﹣1,b=2,∴y AD=﹣x+2,设点P在AD上,坐标为(a,﹣a+2)(0≤a≤2),则d(P,O)=|a﹣0|+|﹣a+2﹣0|=2,故③符合题意;故答案为:③;(2)当直线经过(0,2)时,将(0,2)代入直线y=k(x+3),得,3k=2,∴k=;当直线经过(0,﹣2)时,将(0,﹣2)代入直线y=k(x+3),得,3k=﹣2,∴k=﹣;运动观察可知,k的取值范围为﹣≤k≤;(3)由题意,满足d(O,P)=3的点是在以原点为中心,对角线在坐标轴上,且对角线长为6的正方形ABCD上(如图4),当M在正方形ABCD外时,若MA=2,则t=﹣5,若MC=2,则t=5,当M在正方形ABCD内部时,若M到正方形AD,AB边的距离恰好为2,则t=﹣3+2,若M到正方形DC,BC边的距离恰好为2,则t=3﹣2,运动观察可知,t的取值范围为﹣5≤t≤﹣3+2或3﹣2≤t≤5.【点评】本题考查了新定义,类比法,点与圆的位置关系等,解题的关键是要有较强的理解能力及自学能力等.。
北京市密云县2019-2020学年第四次中考模拟考试数学试卷含解析
北京市密云县2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF2.如果340x y -=,那么代数式23()x y y x y -⋅+的值为( )A .1B .2C .3D .43.如图,在平面直角坐标系xOy 中,点A 从(3,4)出发,绕点O 顺时针旋转一周,则点A 不经过()A .点MB .点NC .点PD .点Q4.下列各式计算正确的是( )A .a 4•a 3=a 12B .3a•4a=12aC .(a 3)4=a 12D .a 12÷a 3=a 45.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣86.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .87.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )A.B.C.D.8.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.169.如图的几何体中,主视图是中心对称图形的是()A.B.C.D.10.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是A.B.C.D.11.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.3 2 D.4﹣312.﹣0.2的相反数是()A.0.2 B.±0.2 C.﹣0.2 D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB为⊙O的直径,C、D为⊙O上的点,»»AD CD.若∠CAB=40°,则∠CAD=_____.14.分解因式:x2y﹣y=_____.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.16.如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.17.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.18.下列说法正确的是_____.(请直接填写序号)①“若a>b,则ac>bc.”是真命题.②六边形的内角和是其外角和的2倍.③函数1x的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.(1)求抛物线的解析式及点D 的坐标;(2)连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;(3)平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长.20.(6分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.21.(6分)如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,且DH 是⊙O 的切线,连接DE 交AB 于点F .(1)求证:DC=DE ;(2)若AE=1,23EF FD =,求⊙O 的半径.22.(8分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”.(1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y 的顶点坐标(用含,,a b c 的式子表示).23.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率. 24.(10分)如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).求灯杆CD 的高度;求AB 的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)25.(10分)关于x 的一元二次方程x 2+(m -1)x -(2m +3)=1.(1)求证:方程总有两个不相等的实数根;(2)写出一个m 的值,并求出此时方程的根.26.(12分)某商场计划购进A ,B 两种新型节能台灯共100盏,A 型灯每盏进价为30元,售价为45元;B 型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A 型、B 型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A 型B 型 购进数量(盏)x _____ 购买费用(元) _____ _____(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?27.(12分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式=223 x yy x y-•+=()()3 x y x yy x y +-•+=33 x yy-∵3x-4y=0,∴3x=4y原式=43y yy-=1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3.C【解析】【分析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:22345+=,22345+=,22345+=,222425+=OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.4.C【解析】【分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.5.A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.6.A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=3OC=23,∴AC=2CD=43.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.7.C【解析】【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形; 8.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.C【解析】解:球是主视图是圆,圆是中心对称图形,故选C.10.B【解析】【分析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】Q二次函数y=a(x﹣h)2+k(a<0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.11.C【解析】【分析】先判断出PQ⊥CF,再求出AC=23,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴AF=2,CF=2AF=4,∴S △ACF =12AF×AC=12×2× 过点P 作PM ⊥AF ,PN ⊥AC ,PQ 交CF 于G , ∵点P 是△ACF 的内心, ∴PM=PN=PG ,∴S △ACF =S △PAF +S △PAC +S △PCF=12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×PG+12×4×PG=()PG=(PG∴1,∴1-2. 故选C. 【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义. 12.A 【解析】 【分析】根据相反数的定义进行解答即可. 【详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A. 【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.25° 【解析】 【分析】连接BC ,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.【详解】如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵»»AD CD,∴∠ABD=∠CBD=12∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为25°.【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.14.y(x+1)(x﹣1)【解析】【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.13【解析】试题解析:因为正方形AECF的面积为50cm2,所以25010AC cm =⨯=,因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13. 16.(5,10) 【解析】 【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可. 【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 的面积是△ABC 面积的5倍, 则△DEF 的边长是△ABC 边长的5倍,∴点F 的坐标为(1×5,2×5),即(5,10), 故答案为:(5,10). 【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k . 17.2【解析】 【分析】只要证明△PBC 是等腰直角三角形即可解决问题. 【详解】解:∵∠APO =∠BPO =30°, ∴∠APB =60°,∵PA =PC =PB ,∠APC =30°, ∴∠BPC =90°,∴△PBC 是等腰直角三角形, ∵OA =1,∠APO =30°, ∴PA =2OA =2, ∴BC =PC =2,故答案为2.【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC 是等腰直角三角形. 18.②④⑤ 【解析】 【分析】根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错. 【详解】①“若a >b ,当c <0时,则a c <bc,故①是假命题; ②六边形的内角和是其外角和的2倍,根据②真命题; ③函数1x +的自变量的取值范围是x≥﹣1且x≠0,故③是假命题; ④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题; ⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题; 故答案为②④⑤ 【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 21262y x x =--,点D 的坐标为(2,-8) (2) 点F 的坐标为(7,92)或(5,72)(3) 菱形对角线MN 65+1651. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB ,tan ∠FAG=tan ∠BDE ,求出F 点坐标.(3)分类讨论,当MN 在x 轴上方时,在x 轴下方时分别计算MN. 详解:(1)∵OB=OC=1, ∴B(1,0),C(0,-1).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩,解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--.∵21262y x x =--=()21282x --, ∴点D 的坐标为(2,-8).(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --. ∵∠FAB=∠EDB , ∴tan ∠FAG=tan ∠BDE ,即21261222x x x --=+, 解得17x =,22x =-(舍去). 当x=7时,y=92, ∴点F 的坐标为(7,92). 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-). 综上所述,点F 的坐标为(7,92)或(5,72-). (3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点. ∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n). ∵点M 在抛物线上, ∴()()212222262n n n =+-+-,即2280n n --=. 解得11654n +=,21654n -=(舍去). ∴MN=2MT=4n=65+1.当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n). ∵点M 在抛物线上, ∴()()212222262n n n -=+-+-, 即22+80n n -=. 解得11654n -+=,21654n --=(舍去). ∴MN=2MT=4n=651-.综上所述,菱形对角线MN 的长为65+1或651-. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x ()(2,0)x ,利用双根式,y=()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点,122x x x +=. 2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙. 20.(1);(2);(3)【解析】 【分析】(1)OA=6,即BC=6,代入,即可得出点B 的坐标(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.【详解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B在直线上,,解得x=8故点B的坐标为(8,6)故答案为(8,6)(2)把点的坐标代入得,解得:∴(3))∵一次函数,必经过),要使y随x的增大而减小∴y值为∴代入,解得.【点睛】本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.21.(1)见解析;(2)3 2 .【解析】【分析】(1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC ,进而∠C=∠DEC ,可证结论成立; (2)证明△OFD ∽△AFE ,根据相似三角形的性质即可求出圆的半径. 【详解】(1)证明:连接OD ,由题意得:DH ⊥AC ,由且DH 是⊙O 的切线,∠ODH=∠DHA=90°, ∴∠ODH=∠DHA=90°, ∴OD ∥CA , ∴∠C=∠ODB , ∵OD=OB , ∴∠OBD=∠ODB , ∴∠OBD=∠C , ∵∠OBD=∠DEC , ∴∠C=∠DEC , ∴DC=DE ;(2)解:由(1)可知:OD ∥AC , ∴∠ODF=∠AEF , ∵∠OFD=∠AFE , ∴△OFD ∽△AFE , ∴,∵AE=1, ∴OD=, ∴⊙O 的半径为.【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.22.(1)任意写出两个符合题意的答案,如:2243,43y x x y x x =-+=++;(2)21222y y ax c +=+,顶点坐标为()0,2c【解析】 【分析】(1)根据关于y 轴对称的二次函数的特点,只要两个函数的顶点坐标根据y 轴对称即可;(2)根据函数的特点得出a=m ,-2b a -2n m =0,224444ac b mp n a m--=,进一步得出m=a ,n=-b ,p=c ,从而得到y 1+y 2=2ax 2+2c ,根据关系式即可得到顶点坐标. 【详解】解:(1)答案不唯一,如2243,43y x x y x x =-+=++;(2)∵y 1=ax 2+bx+c 和y 2=mx 2+nx+p 是“关于y 轴对称的二次函数”,即a=m ,-2b a -2n m =0,224444ac b mp n a m--=, 整理得m=a ,n=-b ,p=c ,则y 1+y 2=ax 2+bx+c+ax 2-bx+c=2ax 2+2c , ∴函数y 1+y 2的顶点坐标为(0,2c ). 【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键. 23.(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12. (2)用表格列出所有可能的结果:白球(白球,红球1)(白球,红球2)(白球,黑球) 黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. ∴P (两次都摸到红球)=212=16. 考点:概率统计24.(1)10米;(2)11.4米 【解析】 【分析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在 Rt △ADH 中求出AH 即可解决问题. 【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°, ∴∠BDH=30°, ∵∠CBH=30°, ∴∠CBD=∠BDC=30°, ∴BC=CD=10(米); (2)在Rt △BCH 中,CH=12BC=5,3≈8.65, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ≈150.75=20,∴AB=AH ﹣BH=20﹣8.65=11.4(米). 【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.25.(1)见解析;(2)x 1=1,x 2=2【解析】【分析】(1)根据根的判别式列出关于m 的不等式,求解可得;(2)取m =-2,代入原方程,然后解方程即可.【详解】解:(1)根据题意,△=(m -1)2-4[-(2m +2)]=m 2+6m +12=(m +2)2+4,∵(m +2)2+4>1,∴方程总有两个不相等的实数根;(2)当m =-2时,由原方程得:x 2-4x +2=1.整理,得(x -1)(x -2)=1,解得x 1=1,x 2=2.【点睛】本题主要考查根的判别式与韦达定理,一元二次方程ax 2+bx +c =1(a≠1)的根与△=b 2-4ac 有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.26.(1)30x , y ,50y ;(2)商场购进A 型台灯2盏,B 型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【解析】【分析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为y 盏,然后根据“A ,B 两种新型节能台灯共100盏”、“进货款=A 型台灯的进货款+B 型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再求出x 的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A 型台灯x 盏,则B 型台灯为y 盏,根据题意得:10030503500x y x y +=⎧⎨+=⎩解得:7525x y =⎧⎨=⎩. 答:应购进A 型台灯75盏,B 型台灯2盏.故答案为30x ;y ;50y ;(2)设商场应购进A 型台灯x 盏,销售完这批台灯可获利y 元,则y=(45﹣30)x+(70﹣50)(100﹣x )=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【点睛】本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.27.(1)见解析;(2)1 3 .【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.。
2019年北京市密云区初三数学一模试题和答案(Word版,可编辑)
A.(8,6)D.(-8,-6)北京市密云区2019届初三零模考试数学试卷2019. 4考生须知1 •本试卷共8页,共三道大题,28道小题,满分100分•考试时间120分钟.2 •在试卷和答题卡上准确填写学校、名称、姓名和考号.3 •试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用2B铅笔.4 •考试结束,请将本试卷和答题纸一并交回.、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个选项是符合题意的1.2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信•月球距离地球的距离约为384000km,将384000用科学记数法表示为A. 3.84 105B. 384 103C. 3.84 103D. 0.384 1062•下图是某个几何体的侧面展开图,则该几何体为A. 棱柱B. 圆柱C. 棱锥D. 圆锥3.实数a, b,1 a1 II I b • 丁 1 »-5 -4 -3 -2 -1 012 3 4-5A.a+c>0B. |a|<|b|C.bc>1D. ac>04•如果m2 3m 520,那么代数式(m 9).卫m m的值是(3)A.- 5B.- 1C. 1D. 55.正多边形内角和为540,则该正多边形的每个外角的度数为A. 36B. 72C. 108D.3606.如图是北京地铁部分线路图•若车公庄坐标为(-3,3),崇文门站坐标为(8, -2),则雍和宫站的坐标为c在数轴上的对应点的位置如图所示,则正确的结论是B.(6,8)C.(-6,-8)A. Huawei和Xiaomi 2018年第四季度市场份额总和达到25%B. 2018年第四季度比2017年第四季度市场份额增幅最大的是Apple手机C. Huawei手机2018年第四季度比2017年第四季度市场出货量增加18.4万台D. 2018年第四季度全球智能手机出货量同比下降约10%8•某通讯公司推出三种上网月收费方式•这三种收费方式每月所收的费用y (元)与上网时间x(小时)的函数关系如图所示,则下列判断错误..的是A. 每月上网不足25小时,选择A方式最省钱B. 每月上网时间为30小时,选择B方式最省钱C. 每月上网费用为60元,选择B方式比A方式时间长D. 每月上网时间超过70小时,选择C方式最省钱二、填空题(本题共16分,每小题2分)9. 如图所示的网格是正方形网格,则线段AB和CD的长度关系为:AB___ CD (填“ >”,“<”或“=”)F -- —p ------- ----- 厂--- --- 110. 分式亠 有意义,则x 的取值范围是x 211. 已知X 2是方程ax by 3的一组解(a 0, b 0 ),任写出一组符合题意的 a 、b 值,y 1贝 H a= ____ , b= ______ .12. 比例规是一种画图工具,禾U 用它可以把线段按一定比例伸长或缩短 •它是由长短相等的两脚AD 和BC 交叉构成的,其中 AD 与BC 相交于点 O •如图,OA=OB,CD=2 AB=2CD, OC=3,贝U OB=__________ .13. 新能源汽车环保节能,越来越受到消费者的喜爱 •某品牌新能源汽车 2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格 x 万元,则可列出方程为 ___________________________________ .14. 一般地,如果在一次实验中,结果落在区域 D 中的每一点都是等可能的,用 A 表示“实 验结果落在区域 D 中的一个小区域 M ”这个事件,那么事件 A 发生的概率为P(A)F 图是一个正方形及其内切圆,随机的向正方形内投一粒米,落在圆内的概率为 _______________15. __________ 如图,AB 为O O 的直径,C 、D 是O O 上两点,AC=BC AD 与CB 交于点E. DAB25 , 则 E = __ .M 的面积 D 的面积 ADO916. ____________ 在平面直角坐标系 xoy 中,点A (-1, 2), B (-2, 1 )将厶AOB 绕原点顺时针旋转 90°后 再沿x 轴翻折,得到 DOE ,其中点A 的对应点为点D ,点B 的对应点为点E.则D 点坐标 为 _________________ .上面由厶AOB 得到 DOE 的过程,可以只经过一次图形变化完成.请你任 写出一种只经过一次图形变化可由△ AOB 得到 DOE 的过程 _________________________________三、解答题(共 68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7 分) 17. 下面是小明设计的“已知底和底边上的高作等腰三角形”的尺规作图过程 已知:如图1,已知线段a 和线段b.求作:等腰三角形 ABC,使得AC=BC AB=a, CD 丄AB 于D, CD=b.ABM图2作法:① 如图2,作射线 AM ,在AM 上截取 AB=a ;1② 分别以A 、B 为圆心,大于 AB 长为半径作弧,两弧交于E 、F 两点;2③ 连结EF, EF 交AB 与点D ;④ 以点D 为圆心,以b 为半径作弧交射线 DE 于点C. ⑤ 连结AC, BC.所以,ABC 为所求作三角形. 根据小明设计的尺规作图过程,(1 )使用直尺和圆规,补全图形(保留痕迹) ;(2 )完成下面的证明.Q AE=BE=AF=BF四边形AEBF 为 ______________ .Q AB 与EF 交于点D,EF ± AB, AD= ______ .Q 点C 在EF 上,BC=AC(填写理由: _________________________________________ )18.计算:6cos30 V 12 (扩 I 3 2| .(x 1) x 1 19. 解不等式组: 2x 5x 2 3120. 如图,菱形 ABCD 中,AC 与 BD 交于点 O.DE//AC , DE —AC .2(1) 求证:四边形OCED 是矩形;(2) 连结AE,交OD 于点F ,连结CF 若CF=CE=1求AE 长.221.已知方程x mx n 0(1 )当n=m-2时,求证:方程总有两个不相等的实数根 (2)若方程有两个不相等实数根,写出一组满足条件的m , n 值,并求出此时方程的根lllllllJ 首q 苒§首点首了膏 aw 歆量22.为积极响应“弘扬传统文化”的号召,某学校组织全校 1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛, 为了解本次系列活动的持续效果, 学校团委在活动 启动之初,随机抽取 40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图 如图所示.f 人数925. 如图 ABC 中, BAC 30 , AB=5cm , AC=2 .3cm , D 是线段 AB 上一动点,设 长为xcm , CD长为ycm (当点A 与点D 重合时,x=0).3首 4首 5首 6首 诵背数量 人数1356请根据调查的信息分析:(1)活动启动之初学生“ 一周诗词诵背数量”的中位数为7首 8首 1015(2) 估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3) 选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典 诗23.已是y 轴上一点,且S ABQ = 2S POQ •求点B 的纵坐标.1- !— 5 -5 -4 -3 -2 -1O1 2> __ _L _ 1iiii —一卜 一土――卜一 —11卜Ti1111 11111卜T r_ L 一 Y1 1_一|1111 一L 丄_IIII1111—1 ---------- 1 —4— H —-=6-1___ J1 1 ---- +24. 如图,AB 为O O 的直径,E 为OB 中点,过E 作AB 垂线与O O 交于C D 两点•过点 O O 的切线CF 与DB 延长线交于点F.(1) 求证:CF 丄 DF (2 )若 CF=、3,求 OF 长.AD大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词 i -一 1 -_L _ JL 丄13FD小明根据学习函数的经验,对函数 y 随自变量x 的变化而变化的规律进行了探究. F 面是小慧的探究过程,请补充完整:(1)经过取点、、画图、测量, 得到 x 与y 的几组对应值, 如卜表:x /cm0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y /cm3.5 2.7 2.3 2.0 1.8 1.7 1.8 2.0 2.32.7(说明:补全表格时,结果保留一位小数) (2)在平面直角坐标系xoy 中,描出补全后的表中各组数值所对应的点,并画出函数图象;(3)结合函数图象解决问题,当CD 》2cm 时,x 的取值范围是-3 -4-527. 已知 ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60得到线段CE 连结DE 、BE.(1) 依题意补全图1并判断AD 与BE 的数量关系.(2) 过点A 作AF EB 交EB 延长线于点F 用等式表示线段 EB DB 与AF 之间的数量关系 并证明.26.已知抛物线y x 2 2mx m 2 4,抛物线的顶点为 P (1) 求点P 的纵坐标.(2) 设抛物线x 轴交于A 、B 两点,人(为,yj, B(x 2, y 2), x 2为. ① 判断AB 长是否为定值,并证明.② 已知点 M ( 0, -4),且MA > 5,求X 2-/ m 的取值范围. y 5 4 3 2 1-5-4-3-2-11-1 .. -2C C28.在平面直角坐标系 xoy 中,已知P(x i , y i )Q(x 2, y 2),定义P 、Q 两点的横坐标之差的绝对 值与纵坐标之差的绝对值的和为P 、Q 两点的直角距离,记作d(P, Q).即d(P,Q)=|x 2-x i |+|y 2-y i |如图 1,在平面直角坐标系 xoy 中,A ( 1,4),B (5,2),贝U d(A , B)=|5-1|+|2-4|=6.(1) 如图2,已知以下三个图形:① 以原点为圆心,2为半径的圆;② 以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形; ③ 以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P 是上面某个图形上的一个动点, 且满足d(0, P) 2总成立.写出符合题意的图形 对应的序号 ______________(2) 若直线y k(x 3)上存在点P 使得d(O, P) 2,求k 的取值范围.(3) 在平面直角坐标系 xoy 中,P 为动点,且d (0, P ) =3, e M 圆心为M (t , 0),半径为1.若e M 上存在点N 使得PN=1,求t 的取值范围■5 -4 -3 -2 -1-1-2 -3 ■ -4 -5图1图2y-5-4 -3 -2 -1 1-1 -ii I I-5 -4 -3 -2-1-1-2 -3 -4 -5-2 -3 -4 -5备用图1 备用图2密云区2018-2019学年度第二学期初三零模试题参考答案、选择题16分,每小题2分)960 100013.14.15.2016.(2 ,-1),将△ AOB 沿直线 y=x 翻折得到厶 DOE.x x 14三、解答题(共 68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分) 17.( 1)................................ 2分Q AE=BE=AF=BF四边形AEBF 为菱形.................. 3分 Q AB 与EF 交于点D,EF 丄 AB, AD=DB................................. 4 分Q 点C 在EF 上,BC=AC(填写理由:线段垂直平分线上的点到线段两端距离相 等)................. 5分18.原式=6cos30 '、石(?)1 \ -3 2|............................... 1 分 . (2)分由②得:2x+5<3x+63分3( 1)x 1①2x 5 x 2② 319.解不等式组:9. <10.x 211•如a 1,b 1 (本题答案不唯一)12. 6=6 — 2、、3 2 2 、、32=0................................ 4分 ................................ 5分解:由①得 3x-3>x+1 解得:x>2解得:x>-1 4 分••不等式组的解集为x>2 5 分20.(1)证明:••四边形ABCD为菱形••AC丄BD,OA=OC•••/ DOC=90 °1 “••DE//AC , DE= AC2••四边形DOCE为平行四边形又•••/ DOC=90 °••四边形DOCE矩形................. 2 分(2)••OF//CE , O是AC中点••F为AE中点••CF=AF=EF•CF=CE=1• CF=1, AE=2在Rt△ ACE 中,/ ACE=90• AC= AE221. (1)m 2CE2屈........................ 5分4n m2 4(m 2)2= m4m8........................ 1分= (m2)2 4 0••方程总有两个不相等的实数根... ........................ 2分(2) 令m=2,则n=0........................ 3分代入得x22x 0解得捲0x 2........................ 5分22.(1) 6........................ 1分3 1930(人)........................ 3分40估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为 930人。
初三数学一模试题 (含答案) (2)
密云县初三毕业暨升学一模考试数学试卷考 生须知1.本试卷分为第I 卷、第II 卷,共10页,共九道大题,25个小题,满分120分,考试时间120分钟.2.在试卷密封线内认真填写学校、姓名、班级和学号. 3.考试结束,请将试卷和机读卡一并交回.第I 卷(机读卷 共32分)考生须 知1.第I 卷共2页,共一道大题,8个小题.2. 试卷答案一律填涂在机读答题卡上.一.选择题(本大题共8小题,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.53-的绝对值是 A .35- B .53- C .53 D .352.下列计算正确的是A .330--=B .02339+=C .331÷-=-D .()1331-⨯-=-3.如图,由几个小正方体组成的立体图形的左视图是4.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为A .15×107 元B .1.5×108元 C .0.15×109元 D .1.5×107元5.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是A.15B.25C.23D.126.正方形网格中,AOB∠如图放置,则tan∠AOB的值为A.55B.255C.12D.27. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S=甲,乙组数据的方差2110S=乙,则以下说法正确的是A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较8.下列说法正确的有(1)如图(a),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c),两次使用丁字尺(CD所在直线垂直平分线段AB)可以找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角,就是从P点看A点时仰角的度数.A.1个B.2个C.3个D.4个(a)(b)(c)(d)ABO考 生 须 知 1.第II 卷共8页,共八道大题,17个小题. 2.答题时字迹要工整,画图要清晰,卷面要整洁.3.除画图可以用铅笔外,答题必须用蓝色或黑色钢笔、圆珠笔.题 号 二 三 四 五 六 七 八 九 总 分 得 分 阅卷人 复查人二.填空题(共4个小题,每小题4分,满分16分)把答案直接填写在题中横线上. 9.函数y =61-x 中的自变量x 的取值范围是 . 10. 如图,AB ∥CD,∠A=48°, ∠C=∠E, 则∠C 的度数为 .11.已知,如图,正比例函数与反比例函数的图象相交 于A 、B 两点,A 点坐标为(2,1),分别以A 、B 为圆心的圆与x 轴相切,则图中两个阴影部分面积 的和为 .12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~~十六进制 0 1 2 3 4 5 6 7 8 9 ABCDEF十进制12345678910 11 12 13 14 15例如,用十六进制表示:E + F = 1D ,则 A ×B = . 三、解答题(共4个小题,满分20分) 13.(本小题满分5分) 14.(本小题满分5分)计算:101(12)42-⎛⎫++-- ⎪⎝⎭. 分解因式:y x y x -+-22 .解: 解:15.(本小题满分5分) 16.(本小题满分5分)解方程:341x x=-. 解不等式组: ⎩⎨⎧-≤-->+2334)1(223x x x x四、解答题(共4个小题,满分18分) 17.(本小题满分4分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个小正方形,使它们成为轴对称图形.18.(本小题满分4分) 如图,Rt△ABC 的斜边AB =5,cosA =53. (1) 用尺规作图作线段AC 的垂直平分线l (保留作图痕迹,不要求写作法.证明); (2) 若直线l 与AB 、AC 分别相交于D 、E 两点,求DE 的长.方法一 方法二ACB19.(本小题满分5分)已知,如图,12∠=∠, .求证:AB AC =. (1) 写出证明过程. 证明: (2)20.(本题满分5分)如图,已知正方形ABCD 的边长是2,E 是AB 的中点,延长BC 到点F 使CF =AE . (1)若把ADE △绕点D 旋转一定的角度时,能否与CDF △重合?(2)现把DCF △向左平移,使DC 与AB 重合,得ABH △,AH 交ED 于点G . 求证:AH ED ⊥,并求AG 的长. (1)答:(2)证明:五、解答题(本题满分6分)羽毛球 25% 体操40%21.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整. 解: (1)(2)六、解答题(本题满分6分)22. 已知:二次函数c bx ax y ++=2的图象的一部分如图所示.(1) 试确定c b a 、、的符号; (2) 试求c b a ++的取值范围.七、解答题(本题满分7分)23.如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是∽O 的切线. (1)证明:(2)解:(3)证明:八、解答题(本题满分7分)24. 如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴,B (3,3),现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在同一直线上.(1)求折痕AD 所在直线的解析式; (2)求经过三点O ,1C ,C 的抛物线的解析式;(3)若∽P 的半径为r ,圆心P 在直线AD 上,当⊙P 与两坐标轴都相切时,求半径r 的值. 解: (1)(2)(3)九.解答题(本题满分8分)25.已知:如图,ABC是边长为6的等边三角形,点D、E分别在AB、AC上,且==.若点F从点B开始以每秒1个单位长度的速度沿射线BC方向移动,当点F运AD AE2x x秒时,射线FD与过点A且平行于BC的直线交于点G,连结GE交AD于点O,并动(0)延长交BC延长线于点H.(1)求EGA的面积S与点F运动时间x的函数关系;⊥;(2)当时间x为多少秒时,GH AB(3)证明GFH的面积为定值.解:2008年初三年级毕业考试数学试题参考答案及评分标准说明:1. 如果考生的解法和本解法不同,可根据试题的主要内容,参照评分标准相应的评分. 2. 解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 题 号 1 2 3 4 5 6 7 8 答 案CDABBDBD二、 填空题(本题共4小题,每小题4分,共16分).9.x ≠6 10.240 11.π 12.6E 三、(本题共4小题,满分20分). 13.(本小题满分5分)解:原式124=+- ··················································· 3分(一处计算正确给1分) 1=-.------------------------------------------------------------------------------------------5分 14.(本小题满分5分)解: 原式)()(22y x y x -+-= -----------------------------------------------------------------1分 )())((y x y x y x ++-+=----------------------------------------------------------------3分 )1)((++-=y x y x . --------------------------------------------------------------------5分 15.(本小题满分5分)解:去分母,得344x x =-. ········································································ 2分解得,4x =. ······················································································ 3分 经检验,4x =是原方程的根.-----------------------------------------------------------------4分 ∴ 原方程的根是4x =. ··········································································· 5分 16.(本小题满分5分)解:解不等式① 得x >-4.-------------------------------------------------------------------------2分 解不等式② 得x ≤1.----------------------------------------------------------------------------4分 ∴ 不等式组的解集为:-4<x ≤1.---------------------------------------------------------------5分 四、解答题(共4个小题,满分18分) 17.(本小题满分4分)(此题答案不唯一,只要在方格内添的二个正方形使整个图形是对称图形就给分,每答对一个给2分)18.(本小题满分4分)解:(1)作图正确给 --------------------------------------1分(2)在Rt△ABC 中,cos ACA AB =. AB =5,cosA =53.∴ 355AC =, ∴ 3.AC =∴ 由勾股定理 得 4BC =.--------------------------------------------------------------2分 ∵ DE 垂直平分AC ,∴ DE ∥BC ,AE =CE .∴ AD =BD .----------------------------------------------------------------------------------3分∴114222DE BC ==⨯=.----------------------------------------------------------------4分 19.(本小题满分5分)(1)(BD=DC)B C BAD CAD ∠=∠∠=∠或或. ········································· 2分 仅就“B C ∠=∠”证明,其他条件的证明参照给分) (2)证明:∵12∠=∠,∴18011802-∠=-∠.即 ADB ADC ∠=∠.-----------------------------------------------------------3分 在ACD ABD 和中,,,.B C ADB ADC AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ACD ABD ≅.-------------------------------------------------------------------4分 ∴AB AC =.----------------------------------------------------------------------------5分 20.(本题满分5分)解:(1)答:把ADE △ADE ∆绕点D 旋转一定的角度时能与CDF △重合.--------------------------------1分 (2)由(1)可知12∠=∠ ,∵2390∠+∠=︒,∴1390∠+∠=︒,即90EDF ∠=︒. ········································· 2分由已知得AH DF ∥,∴90EGH EDF ∠=∠=︒, ∴AH ED ⊥. ··········································· 3分 由已知AE =1,AD =2, ∵2222125ED AE AD =+=+=, ··························································· 4分∴1122AE AD ED AG =,即1112522AG ⨯⨯=⨯⨯,∴255AG =. ················· 5分 (注:本题由三角形相似或解直角三角形同样可求AG .)五、解答题(本题满分6分) 21. 解:(1)设该校报名总人数为x 人,则由两个统计图可得 40%160x =.∴x =16016040040%0.4==(人). ························································ 1分 (2)设选羽毛球的人数为y ,则由两个统计图可得 y =40025%100⨯=(人). ······························ 2分因为选排球的人数是100人,所以10025%400=, ································· 3分 因为选篮球的人数是40人,所以4010%400=, ····································· 4分 即选排球.篮球的人数占报名的总人数分别是25%和10%. (3)如图 ··························································································· 6分六、解答题(本题满分6分) 22. 解:(1)∵ 抛物线的开口方向向上,∴ a >0;----------------------------------------------------1分∵ 抛物线与y 轴的交点在x 轴的下方,∴ c <0; ----------------------------------2分观察图象,可见对称轴在y 轴的右侧,∴ 2ba->0,∴b <0.---------------------3分 (2)∵ 抛物线过点(-1,0)和点(0,-1), ∴ 0,1.a b c c -+=⎧⎨=-⎩--------------------------------------------------------------------------4分∴ 1a b -=.∴ 1a b =+ ①,或 1b a =- ②. 又 由(1)知 a >0; b <0. ∴ 有 1b +>0 ,1a - <0.∴ -1<b <0, 0<a <1.---------------------------------------------------------------------5分∴ -1<a b +<1.又 1c =-, ∴ -2<a b c ++<0.-------------------------------------------------------6分七、解答题(本题满分7分)23.(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .由 已知3BC DC ==,∵AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ ()222223312AB AC CB =+=+=. ∴23AB =.∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 3分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 6032CF BC =︒=⨯=, ∴ 333322BCD S OB CF =⨯=⨯=菱形O . ··················································· 5分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ···································································· 7分八、解答题(本题满分7分)24. 解: (1)由已知得3,30OA OAD =∠=︒. ∴3tan 30313OD OA =︒=⨯=. ∴()()0310A D ,,,. 设直线AD 的解析式为y kx b =+.则有 3,0.b k b ⎧=⎪⎨+=⎪⎩ 解得:3,3.k b ⎧=-⎪⎨=⎪⎩∴ 折痕AD 所在的直线的解析式是 33y x =-+ . ····································· 2分 (2)过1C 作1C F OC ⊥于点F ,由已知得160ADO ADO ∠=∠=︒, ∴160C DC ∠=︒. 又DC =3-1=2, ∴12DC DC ==.∴在1Rt C DF △中, 111sin 2sin603C F DC C DF =∠=⨯︒=.1112DF DC ==, ∴()12,3C ,而已知()3,0C .设 经过三点O ,C 1,C 的抛物线的解析式是2,(0)y ax bx c a =++≠. 把O ,C 1,C 的坐标代入上式得: 0,423,930.c a b c a b c =⎧⎪++=⎨⎪++=⎩解得 3,33,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴经过三点O ,C 1,C 的抛物线的解析式是:2333y x x =-+. ························ 5分 (3)设圆心(),P x y ,则依题意知 点P 即为两坐标轴的角平分线与直线AD 的交点.∴有,y=-x,3 3.y=-3 3.y x y x x =⎧⎧⎪⎪⎨⎨=-++⎪⎪⎩⎩或 解得 33333((311x -+=+-3或)或x=或)3. ∴所求⊙P 的半径33333r ((311-+=+-3或)或r=或)3. ···················· 7分九.解答题(本题满分8分)。
北京市密云县2019-2020学年中考数学模拟试题含解析
北京市密云县2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各式中,不是多项式2x 2﹣4x+2的因式的是( ) A .2B .2(x ﹣1)C .(x ﹣1)2D .2(x ﹣2)2.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( ) A .0.96a 元B .0.972a 元C .1.08a 元D .a 元3.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .84.估计624的值应在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.如图,已知点A (1,0),B (0,2),以AB 为边在第一象限内作正方形ABCD ,直线CD 与y 轴交于点G ,再以DG 为边在第一象限内作正方形DEFG ,若反比例函数xky =的图像经过点E ,则k 的值是 ( )(A )33 (B )34 (C )35 (D )366.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB BD CD=D.AD ABAB AC=7.方程2131xx+=-的解是()A.2-B.1-C.2D.48.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>09.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形10.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2411.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或512.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.14.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.15.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P 重合,折痕所在直线交矩形两边于点E,F,则EF长为________.16.9的算术平方根是.17.因式分解:2m2﹣8n2= .18.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?20.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE 交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.22.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.23.(8分)为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.24.(10分)如图,已知⊙O 的直径AB=10,弦AC=6,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E .求证:DE 是⊙O 的切线.求DE 的长.25.(10分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.26.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:E F•CG=EG•CB .27.(12分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】原式分解因式,判断即可. 【详解】原式=2(x 2﹣2x+1)=2(x ﹣1)2。
北京密云区中考一模数学试卷及答案(word版)
2019北京密云区中考一模数学试卷及答案(word版)2019年4月北京密云初三数学一模考了哪些题目?数学网中考频道第一时间为大家整理2019北京密云一模数学(即初三下册期中考试)试卷及答案,更多一模试卷及答案详见2019北京各区中考一模试卷及答案(初三下期中试卷)汇总。
2019年北京房山区中考一模数学试卷及答案(word版)2019北京西城区中考一模数学试卷及答案2019北京东城区中考一模数学试卷及答案2019北京朝阳区中考一模数学试卷及答案2019北京海淀区中考一模数学试卷及答案2019北京石景山区中考一模数学试卷及答案2019北京丰台区中考一模数学试卷及答案2019北京顺义区中考一模数学试卷及答案2019北京通州区中考一模数学试卷及答案2019北京密云区中考一模数学试卷及答案2019北京怀柔区中考一模数学试卷及答案2019北京燕山区中考一模数学试卷及答案2019北京大兴区中考一模数学试卷及答案其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
2019北京门头沟区中考一模数学试卷及答案2019北京平谷区中考一模数学试卷及答案“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
北京市密云县2019-2020学年中考数学第一次调研试卷含解析
北京市密云县2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .2.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α3.若点M (﹣3,y 1),N (﹣4,y 2)都在正比例函数y=﹣k 2x (k≠0)的图象上,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定4.若分式11a -有意义,则a 的取值范围是( ) A .a≠1 B .a≠0 C .a≠1且a≠0 D .一切实数5.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v6.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .7.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=6,则DE 的长为( )A .2B .3C .4D .68.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根9.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是()A.4 B.1 C.2 D.310.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.11.下列大学的校徽图案是轴对称图形的是()A.B.C.D.12.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.14.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是______.15.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_.16.如图,已知ABC V ,D 、E 分别是边AB 、AC 上的点,且1.3AD AE AB AC ==设AB a u u u r r =,DE b u u u r r =,那么AC =u u u r ______.(用向量a r 、b r 表示)17.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.18.分解因式:32a 4ab -= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
北京密云区2019年初三数学一模试题(word版)
北京密云区2019年初三数学一模试题(word 版)学校姓名【一】选择题〔此题共32分,每题4分〕以下各题均有四个选项,其中只有一个是符合题意的、1、3的相反数是A 、3B 、3-C 、31D 、31-2、国家体育场“鸟巢”的座席数是91000个,这个数用科学记数法表示应为A 、50.9110⨯B 、3101.9⨯C 、91310⨯D 、4101.9⨯ 3X 的取值范围是A 、X ≥1B 、X ≤1C 、X 》1D 、X ≠14、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等都完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为A 、19B 、13 C 、12 D 、235、在50,20,50,30,50,25,35这组数据中,众数和中位数分别是A 、50,20B 、50,30C 、50,35D 、35,506、如图,在△ABC 中,DE ∥BC ,AD =2,AB =6,DE =3,那么BC 的长为 A 、9B 、6C 、4D 、37、:圆锥的母线长为4,底面半径为2,那么圆锥的侧面积等于 A 、11π B 、10π C 、9π D 、8π8、在正方体的表面上画有如图⑴中所示的粗线,图⑵ 是其展开图的示意图,但只在A 面上画有粗线,那么将图⑴中剩余两个面中的粗线画入图⑵中,画法正确的选项是【二】填空题〔此题共16分,每题4分〕 9、当_______x =时,分式11x x -+的值为0、10、分解因式3222x x y xy -+=、11、如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是CAB 上一点,假设∠ABC =20°,那么∠D 的度数是______、12、在∠A 〔0°《∠A 《90°〕的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如下图,从点A1开始,依次向右画线BACE D段,使线段与线段在两端点处互相垂直,A1A2为第1条线段、设AA1=A1A2=A2A3=1,那么∠A =;假设记线段A2N -1A2N 的长度为AN 〔N 为正整数〕,如A1A2=A1,A3A4=A2,那么此时A2=,AN =〔用含N 的式子表示〕、【三】解答题〔此题共25分,每题5分〕13、计算:1012sin30(2012)3-⎛⎫+- ⎪⎝⎭、 14、解分式方程211x x x +=-、15、:如图,在△ABC 中,D 是BC 边的中点,点F 、E 分别在AD 及其延长线上,且CF ∥BE 、求证:CF =BE 、16、2340x x --=,求2(1)(21)(1)1x x x --+++的值、 17、反比例函数k y x =的图象与一次函数y kx b =+的图象交于点M 〔-2,1〕、 〔1〕试确定一次函数和反比例函数的解析式;〔2〕求一次函数图象与x 轴、y 轴的交点坐标、【四】解答题〔此题共25分,每题5分〕18、如图,在四边形ABCD 中,AD DC ⊥,对角线AC CB ⊥,假设AD =2,AC=3cos 5B =、试求四边形ABCD 的周长、19、:如图,在△ABC 中,∠A =∠B =30º,D 是AB 边上一点,以AD 为直径作⊙O 恰过点C 、〔1〕求证:BC 所在直线是⊙O 的切线;〔2〕假设AD =AC 的长、20、某校初三〔1〕班的两位学生对本校的一次物理考试成绩〔分数取整数,总分值为100分〕进行了抽样统计,80分以上〔含80分〕有17人,但没有总分值,也没有低于30分的、为更清楚了解本次的考试情况,他们分别用两种方式进行了统计分析,如图1和图2所示、请根据图中提供的信息回答以下问题:〔1〕抽样中60分以下〔不含60分〕的有人;〔2〕本次共抽取了名学生的物理考试成绩;〔3〕补全两个图中两个空缺的部分、21、某工厂设计了一款产品,成本价为每件20元、投放市场进行试销,得到如下数据:〔1〕假设日销售量y 〔件〕是售价x 〔元∕件〕的一次函数,求这个一次函数解析式;〔2〕设这个工厂试销该产品每天获得的利润〔利润=销售价-成本价〕为W 〔元〕,当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?22、如图①,将一张直角三角形纸片ABC 折叠,使点A 与点C 重合,这时DE 为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE 的对称轴EF 折叠,这时得到了两个完全重合的矩形〔其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形〕,我们称这样两个矩形为“叠加矩形”、请完成以下问题:〔1〕如图②,正方形网格中的△ABC 能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;〔2〕如图③,在正方形网格中,以给定的BC 为一边,画出一个斜△ABC ,使其顶点A 在格点上,且△ABC 折成的“叠加矩形”为正方形;〔3〕如果一个三角形所折成的“叠加矩形”为正方形,那么他必须满足的条件是、【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23、:1x 、2x 分别为关于x 的一元二次方程2220mx x m ++-=的两个实数根、设1x 、2x 均为两个不相等的非零整数根,求m 的整数值;〔2〕利用图象求关于m 的方程1210x x m ++-=的解、24、:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC 〔或它们的延长线〕于点M 、N 、〔1〕如图1,当MAN ∠绕点A 旋转到BM DN =时,有BM DN MN +=、当MAN ∠绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;〔2〕当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明、25、:在平面直角坐标系XOY中,抛物线245y ax x=++过点A〔-1,0〕,对称轴与x轴交于点C,顶点为B、〔1〕求a的值及对称轴方程;〔2〕设点P为射线BC上任意一点〔B、C两点除外〕,过P作BC的垂线交直线AB于点D,连结PA、设△APD的面积为S,点P的纵坐标为M,求S与m的函数关系式,并写出自变量m的取值范围;〔3〕设直线AB与Y轴的交点为E,如果某一动点Q从E点出发,到抛物线对称轴上某点F,再到X轴上某点M,从M再回到点E、如何运动路径最短?请在直角坐标系中画出最短路径,并写出点M的坐标和运动的最短距离、。
2019-2020学年密云区初三一模数学试卷含答案
2019-2020学年届初三一模考试考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1. 2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信.月球距离地球的距离约为384000km,将384000用科学记数法表示为A. 53.8410⨯ B. 338410⨯ C. 33.8410⨯ D. 60.38410⨯2.下图是某个几何体的侧面展开图,则该几何体为A.棱柱B.圆柱C.棱锥D.圆锥3.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是cba5421-1-2-3-4-53A.a+c>0B. |a|<|b|C.bc>1D. ac>04.如果2350m m--=,那么代数式29().3mmm m-+的值是()A.﹣5 B.﹣1 C.1 D.55.正多边形内角和为540︒,则该正多边形的每个外角的度数为A.36︒B.72︒C.108︒D.360︒6.如图是北京地铁部分线路图.若车公庄坐标为(-3,3),崇文门站坐标为(8,-2),则雍和宫站的坐标为A.(8,6)B.(6,8)C.(-6,-8)D.(-8,-6)根据上表数据得出以下推断,其中结论正确的是A. Huawei 和Xiaomi 2018年第四季度市场份额总和达到25%B. 2018年第四季度比2017年第四季度市场份额增幅最大的是 Apple 手机C. Huawei 手机2018年第四季度比2017年第四季度市场出货量增加18.4万台D. 2018年第四季度全球智能手机出货量同比下降约10%8.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y (元)与上网时间x (小时)的函数关系如图所示,则下列判断错误..的是A.每月上网不足25小时,选择A 方式最省钱B.每月上网时间为30小时,选择B 方式最省钱C.每月上网费用为60元,选择B 方式比A 方式时间长D.每月上网时间超过70小时,选择C 方式最省钱)y (二、填空题(本题共16分,每小题2分)9. 如图所示的网格是正方形网格,则线段AB 和CD 的长度关系为:AB___ CD (填“>”,“<”或“=”)ABCD10.分式2xx - 有意义,则x 的取值范围是____________. 11.已知21x y =⎧⎨=⎩是方程3ax by +=的一组解(0,0a b ≠≠),任写出一组符合题意的a 、b 值,则a =_______,b =_______.12.比例规是一种画图工具,利用它可以把线段按一定比例伸长或缩短.它是由长短相等的两脚AD 和BC 交叉构成的,其中AD 与BC 相交于点O.如图,OA=OB,CD=2,AB=2CD ,OC=3,则OB=_______.ODCBA13.新能源汽车环保节能,越来越受到消费者的喜爱.某品牌新能源汽车2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍.求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格x 万元,则可列出方程为 .14.一般地,如果在一次实验中,结果落在区域D 中的每一点都是等可能的,用A 表示“实验结果落在区域D 中的一个小区域M ”这个事件,那么事件A 发生的概率为()P AM D =的面积的面积,下图是一个正方形及其内切圆,随机的向正方形内投一粒米,落在圆内的概率为______________.15.如图,AB 为⊙O 的直径,C 、D 是⊙O 上两点,AC=BC ,AD 与CB 交于点E.25DAB ∠=︒,则E ∠=_______.16.在平面直角坐标系xoy 中,点A (-1,2),B (-2,1)将△AOB 绕原点顺时针旋转90°后再沿x 轴翻折,得到DOE ∆,其中点A 的对应点为点D ,点B 的对应点为点E.则D 点坐标为______________.上面由△AOB 得到DOE ∆的过程,可以只经过一次图形变化完成.请你任写出一种只经过一次图形变化可由△AOB 得到DOE ∆的过程__________________________.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分) 17.下面是小明设计的“已知底和底边上的高作等腰三角形”的尺规作图过程. 已知:如图1,已知线段a 和线段b.求作:等腰三角形ABC ,使得AC=BC ,AB=a ,CD ⊥AB 于D ,CD=b.图2图1ba作法:①如图2,作射线AM ,在AM 上截取AB=a ; ②分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于E 、F 两点; ③连结EF ,EF 交AB 与点D ;④以点D 为圆心,以b 为半径作弧交射线DE 于点C. ⑤连结AC ,BC.所以,ABC ∆为所求作三角形. 根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留痕迹); (2)完成下面的证明. Q AE=BE=AF=BF ,∴四边形AEBF 为______________. Q AB 与EF 交于点D ,∴EF ⊥AB ,AD=________. Q 点C 在EF 上,∴BC=AC (填写理由:______________________________________)18. 计算:116cos3012()|32|2-︒--+- .19.解不等式组:31)12523x x x x ->+⎧⎪+⎨<+⎪⎩(20.如图,菱形ABCD 中,AC 与BD 交于点O.DE//AC ,12DE AC =. (1)求证:四边形OCED 是矩形;(2)连结AE ,交OD 于点F ,连结CF.若CF=CE=1,求AE 长.OEDCBA21. 已知方程20x mx n ++=(1)当n=m-2时,求证:方程总有两个不相等的实数根.(2)若方程有两个不相等实数根,写出一组满足条件的m ,n 值,并求出此时方程的根.22. 为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵背数量 3首 4首 5首 6首 7首 8首 人数13561015请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23. 已知直线3y kx k =+ 与函数(0)my x x=> 交于A (3,2). (1)求k ,m 值.(2)若直线3y kx k =+与x 轴交于点P ,与y 轴交于点Q.点B是y 轴上一点,且ABQ S ∆=2POQ S ∆.求点B 的纵坐标.24.如图,AB 为⊙O 的直径,E 为OB 中点,过E 作AB 垂线与⊙O 交于C 、D 两点.过点C 作⊙O 的切线CF 与DB 延长线交于点F.(1)求证:CF ⊥DF (2)若OF 长.F25.如图ABC ∆中,30BAC ∠=︒,AB=5cm,AC=,D 是线段AB 上一动点,设AD 长为x cm ,CD 长为y cm (当点A 与点D 重合时,x =0).D CBA小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小慧的探究过程,请补充完整:(1)经过取点、画图、测量,得到 x 与y 的几组对应值,如下表:x /cm 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y /cm3.5 ____ 2.7 2.3 2.0 1.8 1.7 1.8 2.0 2.3 2.7(说明:补全表格时,结果保留一位小数)(2)在平面直角坐标系x o y 中,描出补全后的表中各组数值所对应的点,并画出函数图象;(3)结合函数图象解决问题,当CD ≥2cm 时,x 的取值范围是____________________.26.已知抛物线2224y x mx m =-+-,抛物线的顶点为P . (1)求点P 的纵坐标.(2)设抛物线x 轴交于A 、B 两点,1122(,),(,)A x y B x y ,21x x >. ①判断AB 长是否为定值,并证明.②已知点M (0,-4),且MA ≥5,求21-x x m +的取值范围.27. 已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE.(1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2DCBA图1A B C D28.在平面直角坐标系xoy 中,已知P(x 1,y 1)Q(x 2,y 2),定义P 、Q 两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P 、Q 两点的直角距离,记作d(P ,Q).即d(P ,Q)=|x 2-x 1|+|y 2-y 1| 如图1,在平面直角坐标系xoy 中,A (1,4),B (5,2),则d(A ,B)=|5-1|+|2-4|=6.图1(1)如图2,已知以下三个图形: ①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P 是上面某个图形上的一个动点,且满足(,)2d O P = 总成立.写出符合题意的图形对应的序号____________.(2)若直线(3)y k x =+ 上存在点P 使得(,)2d O P =,求k 的取值范围.(3)在平面直角坐标系xoy 中,P 为动点,且d (O ,P )=3,M e 圆心为M (t ,0),半径为1. 若M e 上存在点N 使得PN=1,求t 的取值范围.备用图1密云区2018-2019学年度第二学期初三零模试题参考答案题号 1 2 3 4 5 6 7 8 1ACCDBACB二、填空题(本题共16分,每小题2分)9. < 10.2x ≠ 11.如1,1a b == (本题答案不唯一) 12. 613.96010001x x =+ 14. 4π15.20︒ 16.(2,-1) ,将△AOB 沿直线y=x 翻折得到△DOE. 三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.(1)..................................2分 Q AE=BE=AF=BF ,∴四边形AEBF 为菱形. ..................................3分 Q AB 与EF 交于点D , ∴EF ⊥AB ,AD=DB. ..................................4分Q 点C 在EF 上, ∴BC=AC(填写理由:线段垂直平分线上的点到线段两端距离相等) ..................................5分18.原式=116cos3012()|32|2-︒+=363223+- ..................................4分 =0 ..................................5分19. 解不等式组:31)12523x x x x ->+⎧⎪⎨+<+⎪⎩(①②解:由①得3x-3>x+1 .................................1分 解得:x>2.................................2分由②得:2x+5<3x+6 .................................3分 解得:x>-1.................................4分 ∴不等式组的解集为x>2 .................................5分 20.(1)证明:∵四边形ABCD 为菱形 ∴AC ⊥BD ,OA=OC ∴∠DOC=90° ∵DE//AC ,DE=12AC ∵四边形DOCE 为平行四边形 又∵∠DOC=90° ∴四边形DOCE 矩形 .................................2分(2)∵OF//CE ,O 是AC 中点 ∴F 为AE 中点 ∴CF=AF=EF ∵CF=CE=1 ∴CF=1,AE=2在Rt△ACE 中,∠ACE=90°, =.................................5分21.(1)2244(2)m n m m ∆=-=-- =248m m -+ .................................1分=2(2)40m -+>∴方程总有两个不相等的实数根 .................................2分 (2)令m=2,则n=0.................................3分 代入得220x x += 解得120,2x x ==.................................5分22.(1) 6 .................................1分(2)31120093040⨯=(人) .................................3分估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人。
北京市密云县2019-2020学年中考数学一月模拟试卷含解析
北京市密云县2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 2.下列计算正确的是( )A .326⨯=B .3+25=C .()222-=-D .2+2=23.二次函数y=ax 2+bx+c (a≠0)的图象如图,下列四个结论:①4a+c <0;②m (am+b )+b >a (m≠﹣1);③关于x 的一元二次方程ax 2+(b ﹣1)x+c=0没有实数根;④ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是( )A .4个B .3个C .2个D .1个4.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④5.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A .16B .13C .12D .236.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( )A .155B .14C .13D .1547.下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2÷a 6=1C .a 2•a 3=a 6D .(+)2=58.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 9.下列计算中,正确的是( )A .3322a a =()B .325a a a +=C .842a a a ÷=D .236a a =()10.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7B .2.5×10﹣6C .25×10﹣7D .0.25×10﹣5 11.从2 ,0,π,13 ,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .4512. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A 、B 、C 、D ,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D 等的人数为_____人.14.已知关于x 的不等式组0521x a x f -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 15.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .16.计算:a 3÷(﹣a )2=_____.17.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为_____秒.18.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)20.(6分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,以每秒2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF21.(6分)如图,在△ABC 中,∠ABC=90°,D ,E 分别为AB ,AC 的中点,延长DE 到点F ,使EF=2DE . (1)求证:四边形BCFE 是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE 是菱形.22.(8分)如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.列式表示每个B 区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a =20,b =10,求整个长方形运动场的面积.23.(8分)如图,在ABCD Y 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.24.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?25.(10分)如图,抛物线y =-x 2+bx +c 与x 轴交于A 、B 两点,且B 点的坐标为(3,0),经过A 点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD 的解析式;过x 轴上的点E (a ,0) 作直线EF ∥AD ,交抛物线于点F ,是否存在实数a ,使得以A 、D 、E 、F 为顶点的四边形是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.26.(12分)某运动品牌对第一季度A 、B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B 款运动鞋的销售量是A 款的,则1月份B 款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.27.(12分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.2.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式,正确;B 、原式不能合并,错误;C 、原式2=,错误;D 、原式故选A .【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.D【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,所以﹣2b a=﹣1,可得b=2a ,当x=﹣3时,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.4.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH 最小.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.5.D【解析】试题解析:设小明为A ,爸爸为B ,妈妈为C ,则所有的可能性是:(ABC ),(ACB ),(BAC ),(BCA ),(CAB ),(CBA ),∴他的爸爸妈妈相邻的概率是:4263=,故选D . 6.D【解析】【分析】首先根据勾股定理求得AC 的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴AC ==∴4AC sinB AB == 故选:D .【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.7.B【解析】【分析】利用合并同类项对A 进行判断;根据幂的乘方和同底数幂的除法对B 进行判断;根据同底数幂的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A 、a 2与a 3不能合并,所以A 选项错误;B 、原式=a 6÷a 6=1,所以A 选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.9.D【解析】【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D.【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.10.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6;故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.C【解析】【分析】0,π,13,6这5个数中只有0、13、6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】,0,π,13,6这5个数中有理数只有0、13、6这3个数,∴抽到有理数的概率是35,故选C.【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.12.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为47005650⨯=(人).故答案为:1.14.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.详解:0521x a x ①②,-≥⎧⎨->⎩ 由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.15.4【解析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE ,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16.a【解析】【分析】利用整式的除法运算即可得出答案.【详解】 原式,.【点睛】 本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算. 17.7秒或25秒.【解析】考点:勾股定理;等腰三角形的性质.专题:动点型;分类讨论.分析:根据等腰三角形三线合一性质可得到BD 的长,由勾股定理可求得AD 的长,再分两种情况进行分析:①PA ⊥AC ②PA ⊥AB ,从而可得到运动的时间. 解答:解:如图,作AD ⊥BC ,交BC 于点D , ∵BC=8cm ,∴BD=CD=BC=4cm ,∴AD==3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP 2=PD 2+AD 2=PC 2-AC 2,∴PD 2+AD 2=PC 2-AC 2,∴PD 2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.点评:本题利用了等腰三角形的性质和勾股定理求解.18.50【解析】【分析】根据题意设铅直距离为x 3x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x 3x , 根据题意得:2223)100x x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据销售收入为300万元可列方程18x+12(20﹣x )=300,解方程即可;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y 的范围,再根据利润=售价﹣成本列出W 与y 的一次函数,根据y 的范围确定出W 的最大值即可.【详解】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据题意得:18x+12(20﹣x )=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据题意得:13y+8.8(20﹣y )≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y )=1.8y+64,当y=15时,W 最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.20. (1)①y=-x 2-4x -3;y=x ;②t=1118± 或6350±;(2)证明见解析. 【解析】【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG=GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x 轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证.【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ;②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t,∴Q(-t,-t),∴PQ :y =-x -2t ,过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH ∴2P G G H x x x x -=-,即2P M M Q x x x x -=-,∴ 22M M t x x t --=+, ∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --) 当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴t =综上:t =t = (2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b,∴E E F E y kx b y kx b=+⎧⎨=+⎩ , ∴()E F E F y y k x x -=- ∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m∴()()()()12111c y m n x x m x x m x n =+------=()()()()112112+m x m n x x x n m x m x -+---=--∴AC=()()12m x m x ---,又∵1A E AG x x m x =-=-,∴tan ∠CAG=2AC x m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-,∴tan ∠FBH=2FH x m BH=- ∴tan ∠CAG=tan ∠FBH∴∠CAG=∠FBH∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【详解】(1)证明::∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.S22.(1)4a(2)8a(3)1500【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.试题解析:(1)矩形B的长可表示为:a+b,宽可表示为:a-b,∴每个B区矩形场地的周长为:2(a+b+a-b)=4a;(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,∴整个矩形的周长为:2(2a+b+2a-b)=8a;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500. 点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽. 23.(1)见解析;(2)1BE =时,22CE CF -的值最大,15sin 4∠=B 【解析】【分析】(1)延长BA 、CF 交于点G ,利用可证△AFG ≌△DFC 得出CF GF =,AG DC =,根据CE AB ⊥,可证出12EF GC GF ==,得出AEF G ∠=∠,利用2AB =,4BC =,点F 是AD 的中点,得出2AG =,11222AF AD BC ===,则有AG AF =,可得出AFG AEF ∠=∠,得出2EFC AEF G AEF ∠=∠+∠=∠,即可得出结论;(2)设BE=x ,则2AE x =-,4EG x =-,由勾股定理得出222216CE BC BE x =-=-,222328CG EG CE x =+=-,得出282CF x =-,求出222(1)9CE CF x -=--+,由二次函数的性质得出当x=1,即BE=1时,CE 2-CF 2有最大值,21615CE x =-=,由三角函数定义即可得出结果.【详解】解:(1)证明:如图,延长CF 交BA 的延长线于点G ,∵F 为AD 的中点,∴AF FD =.在ABCD Y 中,AB CD ∥,∴G DCF ∠=∠.在AFG V 和DFC △中,,,,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFG DFC AAS △≌△,∴CF GF =,AG DC =,∵CE AB ⊥. ∴12EF GC GF ==, ∴AEF G ∠=∠,∵2AB =,4BC =,点F 是AD 的中点,∴2AG =,11222AF AD BC ===. ∴AG AF =.∴AFG G ∠=∠.∴AFG AEF ∠=∠.在EFG V 中,2EFC AEF G AEF ∠=∠+∠=∠,又∵CFD AFG ∠=∠,∴CFD AEF ∠=∠.∴23EFD EFC CFD AEF AEF AEF ∠=∠+∠=∠+∠=∠(2)设BE x =,则2AE x =-,∵2AG CD AB ===,∴224EG AE AG x x =+=-+=-,在Rt CEG △中,222216CE BC BE x =-=-,在Rt CEG △中,22222(4)16328CG EG CE x x x =+=-+-=-,∵CF GF =, ∴222111(328)82244CF CG CG x x ⎛⎫===-=- ⎪⎝⎭, ∴22222168228(1)9CE CF x x x x x -=--+=-++=--+,∴当1x =,即1BE =时,22CE CF -的值最大,∴CE ==在Rt BEC V 中,sin CE B BC ∠==【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.24.(1)详见解析;(2)40%;(3)105;(4)516. 【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或4【解析】【分析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A 的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:930 423b cb c-++=⎧⎨-++=⎩解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:0 23k ak a-+=⎧⎨+=⎩解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=4±综上所述,满足条件的a的值为-3或4【点睛】本题考查抛物线与x 轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.26.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A 款的数量乘以,即可得出一月份B 款运动鞋销售量;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A 款的数量乘以:50×=40(双).即一月份B 款运动鞋销售了40双;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.考点:1.折线统计图;2.条形统计图.27. (1) 2n =;(2) 1139(,)28和(-539,)28;(3) 278n = 【解析】【分析】(1)设1(,0)A x ,2(,0)B x ,再根据根与系数的关系得到122x x n =-,根据勾股定理得到:2221AC x n =+、2222BC x n =+,根据222AC BC AB +=列出方程,解方程即可;(2)求出A 、B 坐标,设出点Q 坐标,利用平行四边形的性质,分类讨论点P 坐标,利用全等的性质得出P 点的横坐标后,分别代入抛物线解析式,求出P 点坐标;(3)过点D 作DH ⊥x 轴于点H ,由AE :1ED =:4,可得AO :1OH =:4.设(0)OA a a =>,可得 A 点坐标为(,0)a -,可得4,5OH a AH a ==.设D 点坐标为2(4,86)a a a n --.可证△DAH ∽△CBO ,利用相似性质列出方程整理可得到 2111220a a n --=①,将(,0)A a -代入抛物线上,可得21322n a a =+②,联立①②解方程组,即可解答.【详解】解:(1)设1(,0)A x ,2(,0)B x ,则12,x x 是方程213022x x n --=的两根, ∴122x x n =-.∵已知抛物线213(0)22y x x n n =-->与y 轴交于点C . ∴(0,-)C n 在Rt △AOC 中:2221AC x n =+,在Rt △BOC 中:2222BC x n =+,∵△ABC 为直角三角形,由题意可知∠90ACB =°,∴222AC BC AB +=,即222221221()x n x n x x +++=-,∴212n x x =-,∴22n n =,解得:120,2n n ==,又0n >,∴2n =.(2)由(1)可知:213222y x x =--,令0,y =则2132022x x --=, ∴11,x =-24x =, ∴(1,0),(4,0)A B -.①以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBPQ 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点P 作PF ⊥l ,垂足为点F ,即∠90PFQ =°=∠COB . ∵四边形CBPQ 为平行四边形,∴,PQ BC PQ =∥BC ,又l ∥y 轴,∴∠FQP =∠QGB =∠OCB ,∴△PFQ ≌△BOC ,∴4PF BO ==,∴P 点的横坐标为311+4=22, ∴211131139()2,22228y =⨯-⨯-= 即P 点坐标为1139(,)28. ②当以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBQP 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点1P 作11P F ⊥l ,垂足为点1F , 即∠1190=PF Q °=∠COB . ∵四边形11CBQ P 为平行四边形,∴1111,=PQ BC PQ ∥BC ,又l ∥y 轴, ∴∠111=F Q P ∠1Q GB =∠OCB ,∴△111PF Q ≌△BOC ,∴114==PF BO ,∴1P 点的横坐标为35-4=-22, ∴2515339()2,22228⎛⎫ ⎪=⨯--⨯-=⎝⎭y 即1P 点坐标为39(-,25)8∴符合条件的P点坐标为1139 (,) 28和39(-,25)8.(3)过点D作DH⊥x轴于点H,∵AE:1ED=:4,∴AO:1OH=:4.设(0)OA a a=>,则A点坐标为(,0)a-,∴4,5OH a AH a==.∵D点在抛物线213(0)22y x x n n=-->上,∴D点坐标为2(4,86)a a a n--,由(1)知122x x n=-,∴2nOBa=,∵AD∥BC,∴△DAH∽△CBO,∴AH DHBO CO=,∴25862a a a nn na--=,即2111220a a n--=①,又(,0)A a-在抛物线上,∴21322n a a=+②,将②代入①得:221311122()022a a a a--+=,解得10a=(舍去),232a=把32a=代入②得:278n=.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.。
【附5套中考模拟试卷】北京市密云县2019-2020学年中考数学仿真第一次备考试题含解析
北京市密云县2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算结果正确的是( ) A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a2.下列因式分解正确的是( ) A .22x 2x 1(x 1)+-=- B .22x 1(x 1)+=+C .()2x x 1x x 11-+=-+D .()()22x 22x 1x 1-=+-3.如图,AB 是⊙O 的直径,AB =8,弦CD 垂直平分OB ,E 是弧AD 上的动点,AF ⊥CE 于点F ,点E 在弧AD 上从A 运动到D 的过程中,线段CF 扫过的面积为( )A .4π+33B .4π+343C .43π+343D .43π+33 4.如图,在平行四边形ABCD 中,AE :EB=1:2,E 为AB 上一点,AC 与DE 相交于点F , S △AEF =3,则S △FCD 为( )A .6B .9C .12D .275.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)6.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表: 步数(万步) 1.0 1.2 1.1 1.4 1.3 天数335712在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.3,1.1B .1.3,1.3C .1.4,1.4D .1.3,1.47.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A.90°B.60°C.45°D.30°8.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等9.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.11.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()A.B.C.D.12.下图是某几何体的三视图,则这个几何体是()A.棱柱B.圆柱C.棱锥D.圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.14.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.15.二次函数y =ax 2+bx+c 的图象如图所示,以下结论:①abc >0;②4ac <b 2;③2a+b >0;④其顶点坐标为(12,﹣2);⑤当x <12时,y 随x 的增大而减小;⑥a+b+c >0中,正确的有______.(只填序号)16.分解因式:4ax 2-ay 2=________________.17.高速公路某收费站出城方向有编号为,,,,A B C D E 的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下: 收费出口编号 ,A B,B C,C D,D E,E A通过小客车数量(辆)260330300360240在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 18.已知反比例函数(0)ky k x=≠,在其图象所在的每个象限内,y 的值随x 的值增大而减小,那么它的图象所在的象限是第__________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x=﹣3.20.(6分)如图,AB 为⊙O 的直径,D 为⊙O 上一点,以AD 为斜边作△ADC ,使∠C=90°,∠CAD=∠DAB 求证:DC 是⊙O 的切线;若AB=9,AD=6,求DC 的长.21.(6分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣3|22.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.23.(8分)先化简,再求值:(1a﹣a)÷(1+212aa),其中a是不等式﹣2<a<2的整数解.24.(10分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.25.(10分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)26.(12分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45,问甲、乙两公司人均捐款各多少元?27.(12分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手 服装普通话主题演讲技巧李明 85 70 80 85 张华90757580结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】选项A , 3a 2-a 2 = 2 a 2;选项B , a 2·a 3= a 5;选项C , (-a 2)3 = -a 6;选项D ,a 2÷a 2 = 1.正确的只有选项C ,故选C. 2.D 【解析】 【分析】直接利用提取公因式法以及公式法分解因式,进而判断即可. 【详解】解:A 、2x 2x 1+-,无法直接分解因式,故此选项错误; B 、2x 1+,无法直接分解因式,故此选项错误; C 、2x x 1-+,无法直接分解因式,故此选项错误; D 、()()22x 22x 1x 1-=+-,正确.故选:D .此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 3.A 【解析】 【分析】连AC ,OC ,BC .线段CF 扫过的面积=扇形MAH 的面积+△MCH 的面积,从而证明120AMH ∠︒=即可解决问题. 【详解】如下图,连AC ,OC ,BC ,设CD 交AB 于H ,∵CD 垂直平分线段OB , ∴CO =CB , ∵OC =OB , ∴OC =OB =BC , ∴60ABC ∠︒=, ∵AB 是直径, ∴90ACB ∠︒=, ∴30CAB ∠︒=,∵90AFC AHC ∠∠︒==,∴点F 在以AC 为直径的⊙M 上运动,当E 从A 运动到D 时,点F 从A 运动到H ,连接MH , ∵MA =MH ,∴30MAH MHA ∠∠︒== ∴120AMH ∠︒=, ∵3AC =∴CF 扫过的面积为221203(23)(23)433360ππ⨯=+, 故选:A . 【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键. 4.D【分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论. 【详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2, ∴AE :CD=1:3, ∵AB ∥CD , ∴∠EAF=∠DCF , ∵∠DFC=∠AFE , ∴△AEF ∽△CDF , ∵S △AEF =3,∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1. 故选D. 【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 5.C 【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2), 故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数; 关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数. 6.B 【解析】 【分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数. 【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.8.D【解析】【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23;3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13[(3﹣4)2+(4﹣4)2+(5﹣4)2]=23;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法. 9.D【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.11.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.12.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥. 故选D . 【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.56.9610⨯ . 【解析】试题分析:696000=6.96×1,故答案为6.96×1. 考点:科学记数法—表示较大的数. 14.60° 【解析】 【分析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可. 【详解】(6-2)×180°÷6=120°, ∠1=120°-60°=60°. 故答案为:60°. 【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键. 15.①②③⑤ 【解析】 【分析】根据图象可判断①②③④⑤,由x=1时,y <0,可判断⑥ 【详解】由图象可得,a >0,c <0,b <0,△=b 2﹣4ac >0,对称轴为x=1,2∴abc >0,4ac <b 2,当12x <时,y 随x 的增大而减小.故①②⑤正确, ∵11,22b x a =-=< ∴2a+b >0, 故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,。
北京市密云县2019-2020学年第二次中考模拟考试数学试卷含解析
北京市密云县2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,AB 是O e 的直径,弦CD AB ⊥,CDB 30∠=o ,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3D .2π 32.一个多边形内角和是外角和的2倍,它是( ) A .五边形B .六边形C .七边形D .八边形3.如图,以O 为圆心的圆与直线y x 3=-+交于A 、B 两点,若△OAB 恰为等边三角形,则弧AB 的长度为( )A .23π B .π C .2π D .13π 4.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A .c•sin 2αB .c•cos 2αC .c•sinα•tanαD .c•sinα•cosα5.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5 ,则∠B的度数是( )A .30°B .45°C .50°D .60°6.如图,已知BD 与CE 相交于点A ,ED ∥BC ,AB=8,AC=12,AD=6,那么AE 的长等于( )A .4B .9C .12D .167.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)A .2×1011B .2×1012C .2.0×1011D .2.0×10108.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a|>|b|D .b+c >09.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果: 居民(户) 1 2 3 4 月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是50B .众数是51C .方差是42D .极差是2110.如图,在ABC △中,D 、E 分别为AB 、AC 边上的点,DE BC P ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .DF AEFC AC = B .AD ECAB AC= C .AD DEDB BC= D .DF EFBF FC= 11.下列计算正确的是( ). A .(x+y)2=x 2+y 2 B .(-12xy 2)3=-16x 3y 6 C .x 6÷x 3=x 2D 2(2)-=212.函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,则m 的值为( ) A .0B .0或2C .0或2或﹣2D .2或﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=_______.14.分解因式:=.15.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.16.若4a+3b=1,则8a+6b-3的值为______.17.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.18.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
北京市密云县2019-2020学年中考数学考前模拟卷(1)含解析
北京市密云县2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③2.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×1093.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE 等于( )A .40°B .70°C .60°D .50°4.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o5.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .76.如图是某个几何体的三视图,该几何体是()A.圆锥B.四棱锥C.圆柱D.四棱柱7.在实数225,,0,36,-1.41472,,有理数有()A.1个B.2个C.3个D.4个8.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.9.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9010.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称11.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.512.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE 的长为_________.14.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r =(2,3),b r =(4,m ),且a r ∥b r ,则m=_____.15.如图,已知点A 是反比例函数2y x=-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为______.16.计算:(﹣12)﹣2﹣2cos60°=_____. 17.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km 1,该数据用科学记数法表示为__________km 1.18.如图,已知△ABC 中,∠ABC =50°,P 为△ABC 内一点,过点P 的直线MN 分別交AB 、BC 于点M 、N .若M 在PA 的中垂线上,N 在PC 的中垂线上,则∠APC 的度数为_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n个等式,并证明其成立.20.(6分)解方程311(1)(2)xx x x-=--+.21.(6分)如图1,抛物线y1=ax1﹣12x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,34),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.(8分)综合与探究:如图1,抛物线y=322333与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(03.(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E 为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.24.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B 两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)25.(10分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?26.(12分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.27.(12分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点,∴AE=13CE , ∵AD ∥BC ,∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEF BCE S S V V =(AF BC )2=19, ∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.2.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数3.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.4.A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.5.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22'BC BD+2234+.故选B.6.B【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.7.D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:22,?0,?36,?1.4147-是有理数,故选D.考点:有理数.8.C【解析】【分析】过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=32x.∵平行四边形ABCD的周长为12,∴AB=12(12-2x)=6-x,∴y=AD∙BE=(6-x)×32333x x+0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.9.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.10.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.11.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C 、众数为3,正确;D 、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D .【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.12.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1095 【解析】【分析】由勾股定理可先求得AM ,利用条件可证得△ABM ∽△EMA ,则可求得AE 的长,进一步可求得DE .【详解】详解:∵正方形ABCD ,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.14.6【解析】根据题意得,2m=3×4,解得m=6,故答案为6.15.2 yx =【解析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.16.3【解析】【分析】按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可. 【详解】(﹣12)﹣2﹣2cos60°=4-2×1 2=3,故答案为3.【点睛】本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键. 17.1.267×102【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126 700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.18.115°【解析】【分析】根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,于是得到结论.【详解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂线上,N在PC的中垂线上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=12×130°=65°,∴∠APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.6×10+4=8248×52+4【解析】【分析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法. 20.原分式方程无解.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3即:x 2+2x ﹣x 2﹣x+2=3整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.21.(1)y 1=-14x 1+12 x-14;(1)存在,T (1),(1,(1,﹣778);(3)y=﹣12x+34或y=﹣1124x -. 【解析】【分析】(1)应用待定系数法求解析式;(1)设出点T 坐标,表示△TAC 三边,进行分类讨论;(3)设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可.【详解】解:(1)由已知,c=34, 将B (1,0)代入,得:a ﹣1324+=0, 解得a=﹣14, 抛物线解析式为y 1=14x 1-12 x+34, ∵抛物线y 1平移后得到y 1,且顶点为B (1,0),∴y 1=﹣14(x ﹣1)1,即y1=-14x1+12x-14;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,34),过点T作TE⊥y轴于E,则TC1=TE1+CE1=11+(34)1=t1﹣32t+2516,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=153 16,当TC=AC时,t1﹣32t+2516=15316,解得:t13137+,t13137-当TA=AC时,t1+16=15316,无解;当TA=TC时,t1﹣32t+2516=t1+16,解得t3=﹣778;当点T坐标分别为(1,31374+),(13137-,(1,﹣778)时,△TAC为等腰三角形;(3)如图1:设P (m ,2113424m m --+),则Q (m ,2111424m m -+-), ∵Q 、R 关于x=1对称 ∴R (1﹣m ,2111424m m -+-), ①当点P 在直线l 左侧时,PQ=1﹣m ,QR=1﹣1m ,∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0,∴P (0,34),即点P 、C 重合, ∴R (1,﹣14), 由此求直线PR 解析式为y=﹣12x+34, 当PQ=AM 且QR=GM 时,无解;②当点P 在直线l 右侧时,同理:PQ=m ﹣1,QR=1m ﹣1,则P (1,﹣54),R (0,﹣14), PQ 解析式为:y=﹣1124x -; ∴PR 解析式为:y=﹣12x+34或y=﹣1124x -. 【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.22.(1)A (﹣1,0),B (3,0),y=33(2)①A′(32t﹣1t);②A′BEF为菱形,见解析;(3)存在,P点坐标为(5373).【解析】【分析】(1)通过解方程﹣3x20得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH 即可得到A′的坐标;②把A′(32t−1,2t)代入y=−3x2+3x−3(32t−1)2+3(32t−1)2t,解方程得到t=2,此时A′点的坐标为(2,E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到32t−1=3,解方程求出t得到A′(3,3),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.【详解】(1)当y=02=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),设直线l的解析式为y=kx+b,把A(﹣1,0),D(0{k bb-+==,解得{kb==∴直线l的解析式为y=;(2)①作A′H⊥x轴于H,如图,∵OA=1,OD=3,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵点A 关于直线l的对称点为A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=12EA′=12t,A′H=3EH=3t,∴OH=OE+EH=t﹣1+12t=32t﹣1,∴A′(32t﹣1,3t);②把A′(32t﹣1,32t)代入y=﹣33x2+233x+3得﹣33(32t﹣1)2+233(32t﹣1)+3=32t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2;此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,3),E(1,0),∵∠OEF=60°∴OF=3OE=3,EF=2OE=2,∴F(0,3),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则32t﹣1=3,解得t=83,则A′(3,433),∵OE=t﹣1=53,∴此时P点坐标为(53,433);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴33332t,∴32t﹣1+32t=3,解得t=43,此时A′(123),E(13,0),点A′向左平移23个单位,向下平移23个单位得到点E,则点B(3,0)向左平移23个单位,向下平移23个单位得到点P,则P(7323,综上所述,满足条件的P点坐标为(53,33)或(73,﹣233).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.23.(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.24.(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×1402=(千米),AC=sin452CD=︒,≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×2=,∵tan45°=CDAD,CD=40(千米),∴AD=4040tan451CD==︒(千米),∴(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.25.官有200人,兵有800人【解析】【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设官有x人,兵有y人,依题意,得:10001410004x yx y+=⎧⎪⎨+=⎪⎩,解得:200800xy=⎧⎨=⎩.答:官有200人,兵有800人.【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键. 26.1x ->【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:3122x x -->,3221x x >--+,1x ->.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1. 27.作图见解析.【解析】【分析】由题意可知,先作出∠ABC 的平分线,再作出线段BD 的垂直平分线,交点即是P 点.【详解】∵点P 到∠ABC 两边的距离相等,∴点P 在∠ABC 的平分线上;∵线段BD 为等腰△PBD 的底边,∴PB=PD ,∴点P 在线段BD 的垂直平分线上,∴点P 是∠ABC 的平分线与线段BD 的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.。
北京密云区2019年初三数学一模试题解析(word版)
北京密云区2019年初三数学一模试题解析(word 版)数学试卷答案参考及评分标准阅卷须知:1、为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可、2、评分参考中只给了一种解法,假设考生的解法与给出的解法不同,正确者可参照评分参考给分、3、评分参考中所注分数,表示考生正确做到这一步应得的累加分数、【一】选择题〔此题共32分,每题4分〕题号 1 2 3 4 5 6 7 8答案 B D A B C A D A13、〔本小题总分值5分〕 解:1012sin30(2012)3-⎛⎫+- ⎪⎝⎭ 122132=-⨯+-4分1=-、 5分14、〔本小题总分值5分〕解:211x x x +=-;方程两边同时乘以),1(-x x -----------------------------------------------------1分得22(1)(1)x x x x +-=-、-----------------------------------------------2分解得23x =、-------------------------------3分 经检验,23x =是原方程的解、----------------------------------------------4分 ∴原方程的解为23x =、---------------------------------------------------------5分15、〔本小题总分值5分〕证明:∵D 是BC 的中点,∴BD =CD 、---------------------------------------------------------------1分又∵CF ∥BE ,∴∠E =∠1、------------------------------2分在△BED 和△CFD 中,E 1BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩---------------------------------------3分∴△BED ≌△CFD 〔AAS 〕------------------------------4分∴EB =CF ----------------------------------------------5分16、〔本小题总分值5分〕解:2(1)(21)(1)1x x x --+++ 22221(21)1x x x x x =--+++++--------------------------------------------------------2分22221211x x x x x =--+++++--------------------------------------------------------3分233x x =-+、-----------------------------------------------------------------------------4分∵234x x -=,原式=2(3)3437x x -+=+=、----------------------17、〔本小题总分值5分〕解:〔1〕∵反比例函数k y x =的图象与一次函数y kx b =+的图象经过点M 〔-2,1〕、∴(2)12k =-⨯=-、 1分 1(2)(2)3b =---=-、 ∴反比例函数的解析式为2y x =-、 2分一次函数的解析式为23y x =--、3分 〔2〕令0y =,可得32x =-、∴一次函数的图象与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,、 4分令0x =,可得3y =-、∴一次函数的图象与y 轴的交点坐标为(03)-,、 5分【四】解答题〔此题共25分,每题5分〕18、〔本小题总分值5分〕解:在四边形ABCD 中,∵AD DC ⊥,对角线AC CB ⊥,∴∠ACB =∠D =90°、∴△ADC 和△ACB 都是直角三角形、 在RT △ADC 中,∵AD =2,AC =DC =4、---------------1分在RT △ACB 中,∵BC AB =3cos 5B =、∴设3BC x =,5AB x =、 ∴由勾股定理得2225920x x -=、解得x =〔负值舍去〕、----------------2分∴3BC x ==,5AB x ==、-------------------∴四边形ABCD周长为:6AB BC CD DA +++=、-----------------------5分19、〔本小题总分值5分〕证明〔1〕:如图,连接OC 、-------------------------1分那么OC OA =,30ACO A ∠=∠=、在△ABC 中,∵∠A =∠B =30º,∴180120ACB A B ∠=-∠-∠=、∴1203090OCB ACB ACO ∠=∠-∠=-=、------------------------------------2分∴OC BC ⊥、∴BC 是O 的切线、-------------------------------------------------------------------------3分解〔2〕连结CD 、∵AD 是⊙O 的直径,∴∠ACD =90°、-----------------------------------4分在RT △ACD 中,∵∠A =30º,AD =∴cos 32AC AD A =⋅==、----------------------------------------------5分即弦AC 的长为3、20、〔本小题总分值5分〕解:〔1〕抽样中60分以下〔不含60分〕的有10人;-------------------------------1分〔2〕本次共抽取了50名学生的物理考试成绩;----------------------------------2分〔3〕如下图、-------------------------------------------------------------------------5分21、〔本小题总分值5分〕解:〔1〕设这个一次函数解析式为Y =KX +B (K ≠0)、∴⎩⎨⎧=+=+ .40040,50030b k b k ---------------------------解得⎩⎨⎧=-=.800,10b k∴Y =80010+-x 、----------------------------------------------------------------------2分(2))80010)(20()20(+--=-=x x x y W ---------------------------------------------3分9000)50(102+--=x 、--------------------------------------------------------------4分∴当售价定为50元时,工艺厂每天获得的利润W 最大,最大利润是9000元、------5分22、〔本小题总分值5分〕〔11分〕〔23分〔3-------------------------------5分六、解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23、〔本小题总分值7分〕解:〔1〕∵()22=242=41)m m m -⨯⨯--(, ∴由求根公式,得1221m x m m -==-,21x =-、要使1x ,2x 均为整数,2m 必为整数、∴当m 取12±±、时,1x ,2x 均为整数、 又当1m =时,1x =2x =-1,∴舍1m =、当2m =时,1210x m =-=,∴舍2m =、 ∴m 的值为-1和-2、------------------------------------------------------3分〔2〕将121x m =-,21x =-代入方程1210x x m ++-=, 整理得21m m =-、 设12y m =,21y m =-,并在同一直角坐标系中 分别画出1y 与2y 的图象〔如下图〕、由图象可得,关于m 的方程1210x x m ++-=的 解为11m =-,22m =、---------------------------7分24、〔本小题总分值7分〕解:〔1〕答:〔1〕中的结论仍然成立,即BM DN MN +=、证明:如图2,在MB 的延长线上截取BE =DN ,连结AE 、易证ABE ADN △≌△〔SAS 〕、∴AE =AN ;∠EAB =∠NAD 、90,45,45.45.BAD NAM BAM NAD EAB BAM ∠=∠=∴∠+∠=∴∠+∠=∴EAM NAM ∠=∠、又AM 为公共边,∴AEM ANM △≌△、ME MN ∴=、MN ME BE BM DN BM ∴==+=+即DN BM MN +=、------------------------------------------------------4分〔2〕猜想:线段BM DN ,和MN 之间的等量关系为:DN BM MN -=、 证明:如图3,在DN 延长线上截取DE =MB ,连结AE 、易证ABM ADE △≌△〔SAS 〕、∴AM =AE ;∠MAB =∠EAD 、易证AMN AEN △≌△〔SAS 〕、MN EN ∴=、∵DN DE EN -=,∴DN BM MN -=、---------------------------------------------------7分25、〔本小题总分值8分〕解:〔1〕∵抛物线245y ax x =++过点A 〔-1,0〕,∴1a =-、 ∴对称轴方程为22b x a =-=、-------------------------2分〔2〕∵点A 为〔-1,0〕,点B 为〔2,9〕,∴直线AB 的解析式为33y x =+、依题意知点P 的坐标为〔2,M 〕、∴点D 的坐标为〔13m -,M 〕、 ∴113(21)()22326m m S PD PC m m =⋅=-+⋅=-⋅∴S 与m 的函数关系式为2213(09);6213(0).62m m m S m m m ⎧-+⎪⎪=⎨⎪-⎪⎩-------------------------------6分 〔3〕如图:作点E 关于X 轴对称的点E ',再作点E 关于X 轴对称的点E '',连结E 'E ''交X 轴于点M ,连结EM (F 与M 重合)、那么点Q 运动的最短路径为:()E F M E →→、其中,点M 的坐标为〔2,0〕;最短距离为----8分。
北京市密云县2019-2020学年中考数学模拟试题(3)含解析
北京市密云县2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC 中,∠A=75°,则∠1+∠2=( )A .335°°B .255°C .155°D .150°2.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 3.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( ) A .3B .4C .5D .7 4.已知反比例函数y=8k x -的图象位于第一、第三象限,则k 的取值范围是( ) A .k >8 B .k≥8 C .k≤8 D .k <85.下列运算正确的是( )A .(a 2)4=a 6B .a 2•a 3=a 6C .236⨯=D .235+=6.如图,平行四边形ABCD 中,E ,F 分别在CD 、BC 的延长线上,AE ∥BD ,EF ⊥BC ,tan ∠ABC=34,EF=,则AB 的长为( )A .533B .536C .1D .1727.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .48.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.29.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折10.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米11.2的相反数是()A.﹣2B.2C.2D.212.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.14.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________15.因式分解:9a3b﹣ab=_____.16.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____17.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=23,则BC的长为______.18.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为.20.(6分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x21.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.(8分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.24.(10分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数k y x=图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______;()2证明://CD AB ;()3当四边形ABCD 的面积和PCD V 的面积相等时,求点P 的坐标.25.(10分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息: “读书节“活动计划书书本类别科普类 文学类 进价(单位:元) 18 12备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a (0<a <5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?26.(12分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .求证:BE =CF ;当四边形ACDE 为菱形时,求BD 的长.27.(12分)小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下:∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B .点睛:本题考查了三角形、四边形内角和定理,掌握n 边形内角和为(n ﹣2)×180°(n≥3且n 为整数)是解题的关键.2.A【解析】【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.3.C【解析】如图所示:过点O 作OD ⊥AB 于点D ,∵OB=3,AB=4,OD ⊥AB ,∴BD=12AB=12×4=2, 在Rt △BOD 中,2222325OB BD -=-=故选C .4.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.5.C【解析】【分析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ==C选项正确;D D选项错误.故选:C.【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.6.B【解析】【分析】由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE 是平行四边形,∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点,∵EF ⊥BC ,∴∠EFC=90°,∵AB ∥CD ,∴∠ECF=∠ABC ,∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF 34,∴,根据勾股定理得,3,∴AB=12CE=6, 故选B .【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 7.B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.A【解析】试题解析:由于点A 、B 在反比例函数图象上关于原点对称,则△ABC 的面积=2|k|=2×4=1. 故选A .考点:反比例函数系数k 的几何意义.9.B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.10.D【解析】【分析】在Rt △ABC 中,∠CAB=90°,∠B=α,AC=800米,根据tanα=AC AB,即可解决问题. 【详解】在Rt △ABC 中,∵∠CAB=90°,∠B=α,AC=800米, ∴tanα=AC AB, ∴AB=800tan tan AC αα=, 故选D .【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.11.A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键. 12.C【解析】【分析】根据DE∥AB可求得∠CDE=∠B解答即可.【详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE⊥AB于E,1km/h×30分钟=9km,∴AC=9km,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.14.17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解. 15.ab(3a+1)(3a-1).【解析】试题分析:原式提取公因式后,利用平方差公式分解即可.试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考点: 提公因式法与公式法的综合运用.16.﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.17.2【解析】【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3OC=2,∴22OC PC+222(23)+=4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,22151()2+=易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得5,则5535=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(35【解析】试题分析:(1)先根据旋转得:90ADG A ∠=∠=o ,计算180FDG ∠=︒,即点F D G 、、共线,再根据SAS 证明△AFE ≌△AFG ,得EF=FG ,可得结论EF=DF+DG=DF+AE ;(2)如图2,同理作辅助线:把△ABE 绕点A 逆时针旋转90o 至△ADG ,证明△EAF ≌△GAF ,得EF=FG ,所以EF=DF−DG=DF−BE;(3)如图3,同理作辅助线:把△ABD 绕点A 逆时针旋转90o 至△ACG ,证明△AED ≌△AEG ,得DE EG =,先由勾股定理求EG 的长,从而得结论.试题解析:(1)思路梳理:如图1,把△ABE 绕点A 逆时针旋转90o 至△ADG ,可使AB 与AD 重合,即AB=AD ,由旋转得:∠ADG=∠A=90o ,BE=DG ,∠DAG=∠BAE ,AE=AG ,∴∠FDG=∠ADF+∠ADG=90o +90o =180o ,即点F. D. G 共线,∵四边形ABCD 为矩形,∴∠BAD=90o ,∵∠EAF=45o ,∴904545BAE FAD ∠+∠=-=o o o ,∴45FAD DAG FAG ∠+∠=∠=o ,∴45EAF FAG ∠=∠=o ,在△AFE 和△AFG 中,∵AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△AFG(SAS),∴EF=FG ,∴EF=DF+DG=DF+AE ;故答案为:△AFE ,EF=DF+AE ;(2)类比引申:如图2,EF=DF−BE,理由是:把△ABE绕点A逆时针旋转90o至△ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=90o,∴∠BAE+∠BAG=90o,∵∠EAF=45o,∴∠FAG=90o−45o=45o,∴∠EAF=∠FAG=45o,在△EAF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF−DG=DF−BE;(3)联想拓展:如图3,把△ABD绕点A逆时针旋转90o至△ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=90o,AB=AC,∴∠B=∠ACB=45o ,∴∠ACG=∠B=45o ,∴∠BCG=∠ACB+∠ACG=45o +45o =90o ,∵EC=2,CG=BD=1, 由勾股定理得:22125EG =+=,∵∠BAD=∠CAG ,∠BAC=90o ,∴∠DAG=90o ,∵∠BAD+∠EAC=45o ,∴∠CAG+∠EAC=45o =∠EAG ,∴∠DAE=45o ,∴∠DAE=∠EAG=45o ,∵AE=AE ,∴△AED ≌△AEG ,∴ 5.DE EG ==20.(1)x 1=9,x 2=﹣2;(2)x 1=1,x 2=﹣23. 【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣7x ﹣18=0,(x ﹣9)(x+2)=0,x ﹣9=0,x+2=0,x 1=9,x 2=﹣2;(2)3x (x ﹣1)=2﹣2x ,3x (x ﹣1)+2(x ﹣1)=0,(x ﹣1)(3x+2)=0,x ﹣1=0,3x+2=0,x 1=1,x 2=﹣ .【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.21.1平方米【解析】【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.22.(1)y=3x;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=mx(m≠0)的图象过点A(1,1),∴1=1m ∴m=1.∴反比例函数的表达式为y=3x.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴31 {2k bb==+-,解得:1{2kb-==,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x 轴的交点C 的坐标为(2,0).∵S △ABP =1,12PC×1+12PC×2=1. ∴PC=2,∴点P 的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S △ABP =S △ACP +S △BCP 列方程是关键.23.(1)证明见解析(2)13【解析】【分析】(1)先根据同角的余角相等得到∠ACE=∠BCD ,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD ,∠EAC=∠B=45°,即可证得△AED 是直角三角形,再利用勾股定理即可求出DE 的长.【详解】(1)∵△ACB 和△ECD 都是等腰直角三角形∴AC=BC ,EC=DC ,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA ,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE ≌△BCD (SAS );(2)∵△ACB 和△ECD 都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE ≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD 是直角三角形13DE ∴===【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.24.(1)1;(2)证明见解析;(1)P 点坐标为()13-,. 【解析】【分析】 ()1由点B 的坐标,利用反比例函数图象上点的坐标特征可求出k 值;()2设A 点坐标为3a,a ⎛⎫ ⎪⎝⎭,则D 点坐标为30,a ⎛⎫⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出PC PD PB PA=,结合P P ∠∠=可得出PDC V ∽PAB V ,由相似三角形的性质可得出CDP A ∠∠=,再利用“同位角相等,两直线平行”可证出CD//AB ; ()3由四边形ABCD 的面积和PCD V 的面积相等可得出PAB PCD S 2S =V V ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论.【详解】()1解:B Q 点()1,3在反比例函数k y x=的图象, k 133∴=⨯=.故答案为:1.()2证明:Q 反比例函数解析式为3y x=, ∴设A 点坐标为3a,.a ⎛⎫ ⎪⎝⎭PB x ⊥Q 轴于点C ,PA y ⊥轴于点D ,D ∴点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0, 3PB 3a ∴=-,3PC a=-,PA 1a =-,PD 1=, 3PC 1a 3PB 1a 3a-∴==--,PD 1PA 1a=-, PC PD PB PA∴=. 又P P Q ∠∠=,PDC V ∴∽PAB V ,CDP A ∠∠∴=,CD//AB ∴.()3解:Q 四边形ABCD 的面积和PCD V 的面积相等,PAB PCD S 2S ∴=V V ,()131331a 212a 2a ⎛⎫⎛⎫∴⨯-⨯-=⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭, 整理得:2(a 1)2-=,解得:1a 1=2a 1=舍去),P ∴点坐标为()1,3-.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:()1根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;()2利用相似三角形的判定定理找出PDC V ∽PAB V ;()3由三角形的面积公式,找出关于a 的方程.25.(1)A 类图书的标价为27元,B 类图书的标价为18元;(2)当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本,利润最大.【解析】【分析】(1)先设B 类图书的标价为x 元,则由题意可知A 类图书的标价为1.5x 元,然后根据题意列出方程,求解即可.(2)先设购进A 类图书t 本,总利润为w 元,则购进B 类图书为(1000-t )本,根据题目中所给的信息列出不等式组,求出t 的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B 类图书的标价为x 元,则A 类图书的标价为1.5x 元, 根据题意可得54054010 1.5x x-=, 化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A 类图书的标价为:1.5x=1.5×18=27(元),答:A 类图书的标价为27元,B 类图书的标价为18元;(2)设购进A 类图书t 本,总利润为w 元,A 类图书的标价为(27-a )元(0<a <5),由题意得,()1812100016800600t t t +-≤⎧≥⎨⎩, 解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.26.(1)证明见解析(2【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴,∴BD=BE ﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 27.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根. ∴240b ac -≥,∴24b ac ≥.。
北京市密云县2019-2020学年中考第五次模拟数学试题含解析
北京市密云县2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-2.如图是抛物线y=ax 2+bx+c (a≠0)的图象的一部分,抛物线的顶点坐标是A (1,4),与x 轴的一个交点是B (3,0),下列结论:①abc >0;②2a+b=0;③方程ax 2+bx+c=4有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣2.0);⑤x (ax+b )≤a+b ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个3.如图1、2、3分别表示甲、乙、丙三人由A 地到B 地的路线图,已知 甲的路线为:A→C→B ;乙的路线为:A→D→E→F→B ,其中E 为AB 的中点; 丙的路线为:A→I→J→K→B ,其中J 在AB 上,且AJ >JB .若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )A .甲=乙=丙B .甲<乙<丙C .乙<丙<甲D .丙<乙<甲4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是5.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.6.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.3137.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.458.直线y=3x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–610.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70°B.65°C.62°D.60°11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm12.将抛物线y=12x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=12(x﹣8)2+5 B.y=12(x﹣4)2+5 C.y=12(x﹣8)2+3 D.y=12(x﹣4)2+3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____ 14.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.15.如图,矩形ABCD中,如果以AB为直径的⊙O沿着BC滚动一周,点B恰好与点C重合,那么BC AB的值等于________.(结果保留两位小数)16.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)17.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.18.9的算术平方根是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是»AC的中点,⊙O的半径为1,求图中阴影部分的面积.20.(6分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.21.(6分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点.从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值; CD 总计/t A 200 B x 300 总计/t240260500(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调动方案.22.(8分)如图,AB 是半径为2的⊙O 的直径,直线l 与AB 所在直线垂直,垂足为C ,OC =3,P 是圆上异于A 、B 的动点,直线AP 、BP 分别交l 于M 、N 两点. (1)当∠A =30°时,MN 的长是 ; (2)求证:MC•CN 是定值;(3)MN 是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN 为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.23.(8分)计算:(﹣1)2018﹣93. 24.(10分)先化简22121211x x x x x ÷---++,然后从﹣1,0,2中选一个合适的x 的值,代入求值. 25.(10分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.26.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.27.(12分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元. (1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y 台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a 元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a 应取何值?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】由题意(),3A m m -,因为O e 与反比例函数ky x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】Q 函数3y x =-与ky x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O Q e 与反比例函数ky x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称,()3,B m m ∴-, 31m m ∴=-,12m ∴=-∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=-故选:A .【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称. 2.B 【解析】 【分析】通过图象得到a 、b 、c 符号和抛物线对称轴,将方程24ax bx c ++=转化为函数图象交点问题,利用抛物线顶点证明()+x ax b a b ≤+. 【详解】由图象可知,抛物线开口向下,则0a <,0c >,Q 抛物线的顶点坐标是()1,4A ,∴抛物线对称轴为直线12bx a=-=, ∴2b a =-,∴0b >,则①错误,②正确;方程24ax bx c ++=的解,可以看做直线4y =与抛物线2y ax bx c =++的交点的横坐标, 由图象可知,直线4y =经过抛物线顶点,则直线4y =与抛物线有且只有一个交点, 则方程24ax bx c ++=有两个相等的实数根,③正确;由抛物线对称性,抛物线与x 轴的另一个交点是()1,0-,则④错误; 不等式()x ax b a b +≤+可以化为2ax bx c a b c ++≤++,Q 抛物线顶点为()1,4,∴当1x =时,y a b c =++最大, ∴2ax bx c a b c ++≤++故⑤正确.故选:B . 【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式. 3.A 【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.∵AE=BE=12AB,∴AD=EF=12AC,DE=BE=12BC,∴甲=乙.图3与图1中,三个三角形相似,所以JKAI=JBAJ=BK AIIJ AC,=AJAB=IJBC.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故选A.点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.4.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数5.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D到AB3当0≤x≤2时,y=2133•224x x x =; 当2≤x≤4时,y=13 •32x x =. 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 6.B 【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B .7.C 【解析】 【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB= DF DB ,EF CD =BFBD ,从而可得EF AB +EF CD =DF DB +BFBD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直, ∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB= DF DB ,EF CD =BFBD , ∴EF AB +EF CD =DF DB +BF BD =BD BD=1. ∵AB=1,CD=3, ∴1EF +3EF=1,∴EF=3 4 .故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键. 8.D【解析】【分析】利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-13,令x=0可得y=1,∴直线与x轴交于点(-13,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.9.A【解析】【分析】根据有理数的减法,即可解答.【详解】()393912,--=+=故选A.【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.10.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.11.A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=12x2﹣6x+21=12(x2﹣12x)+21=12[(x﹣6)2﹣16]+21=12(x﹣6)2+1,故y=12(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=12(x﹣4)2+1.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 14.m≤1.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.15.3.1【解析】分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.详解:∵以AB为直径的⊙O沿着BC滚动一周,点B恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴BCAB=π≈3.1.故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.16.-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<1,b<1.考点:一次函数图象与系数的关系17.1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故答案为1.18.1.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239,∴9算术平方根为1.故答案为1.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)CD与⊙O相切.理由如下:∵AC为∠DAB的平分线,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半径,∴CD与⊙O相切.(2)如图,连接EB,由AB为直径,得到∠AEB=90°,∴EB∥CD,F为EB的中点.∴OF为△ABE的中位线.∴OF=12AE=12,即CF=DE=12.在Rt△OBF中,根据勾股定理得:3∵E是»AC的中点,∴»AE=»EC,∴AE=EC.∴S弓形AE=S弓形EC.∴S阴影=S△DEC=12×12×338.【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD 垂直于CD,得到OC垂直于CD,即可得证.(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用.20.(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解析】【分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【点睛】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】【分析】(1)根据题意可得解.(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩…………∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w 与x 之间的函数关系式,并注意分类讨论思想的应用.22.(1)833;(2)MC•NC =5;(3)a+b 的最小值为25;(4)以MN 为直径的一系列圆经过定点D ,此定点D 在直线AB 上且CD 的长为5.【解析】【分析】(1)由题意得AO =OB =2、OC =3、AC =5、BC =1,根据MC =ACtan ∠A = 533、CN =3tan BC BNC=∠可得答案; (2)证△ACM ∽△NCB 得MC AC BC NC=,由此即可求得答案; (3)设MC =a 、NC =b ,由(2)知ab =5,由P 是圆上异于A 、B 的动点知a >0,可得b =5a (a >0),根据反比例函数的性质得a+b 不存在最大值,当a =b 时,a+b 最小,据此求解可得;(4)设该圆与AC 的交点为D ,连接DM 、DN ,证△MDC ∽△DNC 得MC DC DC NC=,即MC •NC =DC 2=5,即DC =5,据此知以MN 为直径的一系列圆经过定点D ,此顶点D 在直线AB 上且CD 的长为5.【详解】(1)如图所示,根据题意知,AO =OB =2、OC =3,则AC =OA+OC =5,BC =OC ﹣OB =1,∵AC ⊥直线l ,∴∠ACM =∠ACN =90°,∴MC =ACtan ∠A =5×333, ∵∠ABP =∠NBC ,∴∠BNC=∠A=30°,∴CN=3 tan3BCBNC==∠,则MN=MC+CN=533+3=833,故答案为:833;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴MC AC BC NC=,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=5a(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a=b得a=5a,解之得a=5(负值舍去),此时b=5,此时a+b的最小值为25;(4)如图,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴MC DCDC NC=,即MC•NC=DC2,由(2)知MC•NC=5,∴DC2=5,∴DC5∴以MN 为直径的一系列圆经过定点D ,此定点D 在直线AB 上且CD【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.23.﹣【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.详解:原式=1﹣=﹣=﹣点睛:此题主要考查了实数运算,正确化简各数是解题关键.24.-11,2x -. 【解析】【分析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=22121·1x x x x-+- -21x + =21(1)·1)(1)x x x x -+-( -21x + =121)1x x x x (--++ =()121)1x x x x x x --++( =-1x. 当x=-1或者x=1时分式没有意义 所以选择当x=2时,原式=12-. 【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.25.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.27.(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.【解析】【分析】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得:90000500x=80000x,解得:x=4000,经检验,x=4000是原方程的根.答:二月份冰箱每台售价为4000元.(2)根据题意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y为整数,∴y=3,9,10,11,2.∴洗衣机的台数为:2,11,10,9,3.∴有五种购货方案.(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利润相同,∴1﹣a=0,∴a=1.答:a的值为1.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市密云县2019年中考数学一模试卷
一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的
1.(4分)(2019•密云县一模)﹣的倒数是()
解:∵(﹣)
的倒数是﹣
3.(4分)(2019•密云县一模)在下列四个黑体字母中,既是轴对称图形,又是中心对称图
B
4.(4分)(2019•密云县一模)函数中,自变量x的取值范围是()
5.(4分)(2019•密云县一模)在一个不透明的袋子里装有3个黑球和2个白球,他们除颜
B
,
.
B
7.(4分)(2019•密云县一模)某射击运动员在一次射击练习中,成绩(单位:环)记录如
×
8.(4分)(2019•密云县一模)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()
B
二、填空题(本题共16分,每小题4分)
9.(4分)(2019•密云县一模)分解因式:a3﹣2a2+a=a(a﹣1)2.
10.(4分)(2019•密云县一模)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为3πcm2.
=
11.(4分)(2019•密云县一模)将一副三角板按图中方式叠放,则角α的度数为75°.
12.(4分)(2019•密云县一模)观察下列等式:
第1个等式:a1==×(1﹣);
第2个等式:a2==×(﹣);
第3个等式:a3==×(﹣);
第4个等式:a4==×(﹣);
…
请解答下列问题:
(1)按以上规律列出第5个等式:a5==×(﹣);
(2)求a1+a2+a3+a4+…+a100的值为.
=×)
=×﹣)
=×﹣)
=×﹣)
=×﹣)
故答案为:,×﹣
×﹣+(﹣×﹣×+﹣+﹣)
×)
.
故答案为:.
三、解答题(本题共30分,每小题5分)
13.(5分)(2019•密云县一模)计算:.
14.(5分)(2019•密云县一模)解不等式:5(x﹣2)+8<6(x﹣1)+7.
15.(5分)(2019•密云县一模)已知(a≠b),求的值.
=,通分得出﹣,推出,化简得
,代入求出即可.
+=,
=
﹣,
﹣
,
,
,
是解此题的关键,用了整体代入的方法(即把
16.(5分)(2019•密云县一模)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
,
17.(5分)(2019•密云县一模)如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).
(1)求直线L1的解析式.
(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)
由题意得
.
×
×
18.(5分)(2019•密云县一模)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.
量关系可列出方程+
+
四、解答题(本题共20分,每小题5分)
19.(5分)(2019•密云县一模)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD 的中点,连接AE、CF.
(1)证明:四边形AECF是矩形;
(2)若AB=8,求菱形的面积.
AD EC=BC
AE=
4=32
20.(5分)(2019•密云县一模)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.
21.(5分)(2019•密云县一模)某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了560名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?
×=4.8
22.(5分)(2019•密云县一模)如图,长方形制片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁减和拼图
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
(1)所拼成得四边形是什么特殊四边形?
(2)则拼成的这个四边形纸片的周长的最小值是多少?
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.(7分)(2019•密云县一模)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x ﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).
(1)当k=﹣2时,求反比例函数的解析式;
(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
y=
,可得<﹣
(﹣,﹣,即可得=
,
,
;
)﹣﹣
﹣
﹣
,﹣k
=,
=
=
±
24.(7分)(2019•密云县一模)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
BE=AB=2
BE=1
的距离为
PH=PM=
PN=
=×=,
,
,
MC=MN=MP=
,
)时,
25.(8分)(2019•密云县一模)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
,根据相似的性质得到:
,
,时,点,
数学试卷。